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Allocation of the EU Parliament seats

via integer linear programming and revised quotas

Paolo Serafini
Department of Mathematics and Computer Science, University of Udine

Abstract. We deal with the problem of assigning seats to the European Parliament within the special requirements
imposed by the rules of the EU. Since the usual rounding techniques, like in the divisor methods, may fail to satisfy
these requirements, we propose to use integer linear programming (ILP) to provide at the same time rounding and
satisfaction of the requirements. Using ILP makes central the choice of quotas to which the seats should be as close
as possible. We investigate how the special requirements can affect the very definition of quotas, and define projective
quotas. Finally we compare the various methods by using the EU Parliament data.

1 Introduction

This note contains some reflections after reading the document [2], also called ‘The Cambridge Compromise’.
The allocation of seats to the constituencies of a state is a well studied problem (see for instance [1]) and
seemingly there is little else to say. All methods are designed to satisfy the following obvious requirement:

1. a constituency, i.e., a country for the European Union, must not receive less seats than a smaller country.

However, the rules for the EU Parliament introduce three new concepts which alter the usual framework
(see [3]):

2. no country can receive more seats than a stated upper bound;
3. no country can receive less seats than a stated lower bound;
4. seats must satisfy the so called ‘degressive proportionality’ requirement.

Degressive proportionality means that the ratio population/seats should be an increasing function of the
population. In other words, in a larger country more people are needed to form a seat.

Finding a simple method of assigning seats within these rules is the subject of [2]. The proposal is to first
assign to each country a number of seats equal to the lower bound, and then to assign the remaining seats
via a divisor method, by possibly capping the seats whenever they exceed the upper bound.

As shown in [2] the method may fail to satisfy the degressive proportionality rule. With regard to this
point the authors suggest to weaken the rule by requiring degressive proportionality only before rounding.
As a matter of fact it seems difficult to reconcile rounding schemes, like for instance the ones used in divisor
methods or in largest remainders methods, with degressive proportionality.

Here we take a different attitude in order to comply with these rules. As they are, they seem particularly
suited to model the problem via an integer linear programming (ILP) problem. The rules become hard
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constraints that must be satisfied by the seat assignment. In addition an objective function has to be added
to the problem to get proportionality (in a way still to be made more precise) as much as possible.

It may be argued that using ILP is not transparent. A specific mathematical knowledge is required in
order to model the problem and to solve it. However, in our opinion, also a divisor method requires some
mathematical skills and is not amenable to the layman. Nowadays, linear programming packages are largely
available (even on spreadsheets) and the model, given its modest size and simple structure, can be easily
replicated in most governmental offices and university departments, so that educated people can check the
result without any particular effort.

This statement may look in contrast with the attitude taken in [5] where verifiability for the layman
of a biproportional seat assignment is pursued, with seats assigned according to the method suggested in
[4]. We think that assigning seats to countries is indeed a delicate issue, but more at a governmental level,
where tools to understand an approach and check a result are somehow available. On the contrary, assigning
seats to parties on the basis of the votes expressed by the citizens requires some form of ‘understanding’ the
method at the same level of the voters themselves.

The proportionality issue can be approached by defining rational numbers, so called ‘quotas’, to which
the integer numbers representing the seats should adhere as much as possible, for instance minimizing some
form of deviation from the quotas. This way the problem of assigning the seats is split into two separate
problems, namely first defining the quotas to deal with proportionality, and then solving an ILP model to
deal with rounding.

In order to define the quotas we may face the problem from two different points of view. On one hand we
may consider the requirements 1.– 4. just as constraints and we try to minimize a measure of the deviation
of the seats from the ‘natural’ quotas. On the other hand we may consider the constraints as directives which
involve smoothly all countries and as a consequence the concept of quotas must be revised.

The note is organized as follows. In Section 2 the problem is defined in mathematical terms. The integer
linear programming problem is presented in Section 3. The concept of quotas is revised in Section 4 and
projective quotas are defined. Simpler affine quotas are defined in Section 5 together with divisor quotas
derived by the method proposed in [2], and the modified quotas proposed in [1]. The results are briefly
discussed in Section 6 and some conclusions follow in Section 7. Finally all results are displayed in tables at
the end of the note.

2 Problem statement

There are given n countries. Their populations are p1, . . . , pn. We assume that the countries are sorted as
p1 > p2 > . . . > pn (we may freely assume that there are no countries with the same population). Let
P :=

∑
i pi. The house size (total number of seats in the parliament) is H. The number of seats to be

assigned to country i is xi. The maximum number of seats for each country is M and the minimum number
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is m. The constraints to be satisfied by the seats are

x1 ≥ x2 ≥ . . . ≥ xn (1)

p1

x1
>
p2

x2
> . . . >

pn
xn

(2)

x1 ≤M, xn ≥ m (3)∑
i

xi = H (4)

In the actual case of the EU Parliament the data are m = 6, M = 96, H = 751. The population
data are reported in Table 1. The constraint (1) is the requirement 1. The constraints (2) is the degressive
proportionality requirement 4. The requirements 2. and 3. are the bounds (3).

Note that constraints (1) and (2) together restrict considerably the range of possible solutions. If, for
instance, we consider two variables x1 and x2, the feasible values are those included between the straight
lines x2 = x1 and x2 = (p2/p1)x1 For p2 close to p1 this is a narrow cone which may not include integer
points satisfying also (4). Indeed the counterexample provided in [2] by extracting five European countries
with almost equal populations shows that there can be no feasible solution at all.

The lower bound constraint in (3) is present in many actual laws (e.g., in the US House of Representatives
we have m = 1). The upper bound in (3) may be questioned. However, this is a political decision which is in
the same line as the degressive proportionality.

The seat allocation must satisfy the constraints (1)-(2)-(3)-(4) and at the same time to be as proportional
as possible to the respective populations. We address this problem by splitting these requirements into two
separate problems.

On one hand the proportionality requirement leads to the definition of rational numbers, called quotas,
which constitute the ideal proportional seat assignment if only seats were allowed to be fractional. There are
many ways to define meaningful quotas. Note that, since the seats have to be close to the quotas, it makes
sense to have the quotas themselves satisfying the constraints (1)-(2)-(3)-(4), although this is not strictly
necessary. Perhaps the simplest way is to define the following natural quotas

qi = pi
H

P

However, the bounds (3) may be not satisfied by the natural quotas and the degressive proportionality
constraints (2) are clearly never satisfied. Hence we need to possibly find other ways of defining the quotas
for the EU Parliament.

The question we address for the quota definition is whether the seat allocation has simply to satisfy the
constraints while trying to be as proportional as possible to the natural quotas, or the requirements imposed
by the law, including the bounds, should have an effect which spreads over all countries, even those which
should be unaffected by the constraints. This should be reflected in the quotas themselves. In Section 4 we
pursue the second view.
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Then the seat allocation within the stated constraints is taken care of by finding integer numbers satisfying
the constraints and as close as possible to the defined quotas. This is explained in the next section.

3 An integer linear programming model

A first integer linear programming problem for the seat assignment minimizing the sum of deviations from
given quotas qi is the following:

min
n∑
i=1

wi

wi ≥ qi − xi i = 1, . . . , n

wi ≥ xi − qi i = 1, . . . , n

xi ≥ xi+1 i = 1, . . . , n− 1

pi+1 xi ≤ pi xi+1 i = 1, . . . , n− 1
n∑
i=1

xi = H

x1 ≤M, xn ≥ m

xi integer i = 1, . . . , n

(5)

A drawback of (5) is that optimal solutions are not guaranteed to be unique. For any two countries which
are in defect (or in surplus) of seats with deviation larger than one for at least one country, we may exchange
seats without altering the objective function value. For example, we might have qi = 16.3 and qj = 15.6 for
two countries i and j. Assume also that 16 pi > 18 pj . Then a feasible solution with xi = 17 and xj = 17 and
another feasible solution with xi = 18 and xj = 16 (everything else the same) would have the same objective
function value, since wi+wj is the same in both cases. However, the first solution is clearly preferable because
the maximum deviation is smaller.

In order to assign a larger penalty to larger deviations and still have a linear model we split each deviation
wi into smaller terms wik as wi =

∑K
k=1 wik, with 0 ≤ wik ≤ 1 (we have to figure out a number K of terms

large enough to allow wi to be split into the wik’s). Then each wik receives the penalty coefficient k. Due to
these coefficients in the objective function, the deviation wi will be first ‘filled’ by the terms with smallest k.
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Therefore it is advisable to model the seat assignment problem as the following ILP problem.

min
n∑
i=1

K∑
k=1

k wik

wi ≥ qi − xi i = 1, . . . , n

wi ≥ xi − qi i = 1, . . . , n

wi =
K∑
k=1

wik i = 1, . . . , n

xi ≥ xi+1 i = 1, . . . , n− 1

pi+1 xi ≤ pi xi+1 i = 1, . . . , n− 1
n∑
i=1

xi = H

0 ≤ wik ≤ 1 i = 1, . . . , n, k = 1, . . . ,K

x1 ≤M, xn ≥ m

xi integer i = 1, . . . , n

(6)

It is helpful to note that the model (6) is equivalent to (5) with the linear objective function
∑n
i=1 wi

replaced by the nonlinear objective function.

n∑
i=1

(
(bwic+ 1) (wi − bwic) +

bwic∑
k=1

k
)

=
n∑
i=1

(bwic+ 1) (2wi − bwic)
2

(7)

Each term in this objective function is nothing but a piecewise linear convex function looking like a parabola.
The above construction of expressing in a linear way the minimization of a piecewise linear convex function
is a standard practice in mathematical programming.

Let us call ‘adjacent’ two solutions obtained one from each other by an exchange of one seat. Then we
have:

Proposition 1. There are no adjacent optimal solution of (6), if the fractional parts of the quotas are
different for any two countries.

Proof: We develop the proof by using the equivalent objective function (7). Assume wi = xi − qi and
wj = xj−qj > 1. Then increasing xi by one increases the corresponding term in (7) by wi+1 and decreasing
xj by one decreases the corresponding term by wj . Hence the objective function remains invariant only
if wi + 1 = wj and therefore only if the fractional parts of the quotas are equal. Assume wi = xi − qi

and wj = xj − qj < 1. Then a decrease of xj by one makes the seat value to ‘cross’ the quota. It is not
difficult to see that the objective function cannot remain invariant in this case. Assume wi = qi−xi < 1 and
wj = xj − qj < 1. In this case both seat values cross their quotas and invariance holds only if the fractional
parts of the quotas are equal. The remaining cases can be dealt with in the same way.
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Since we may assume that having the same fractional quotas for two countries is an event with probability
zero, we are assured that almost always (6) does not have adjacent optima. Note also that having the same
fractional quota is only a necessary condition to have adjacent optima and not a sufficient one.

There might be however equivalent non-adjacent optimal solutions. As can be seen from (7) the difference
between two solutions is an integer number plus a linear combination with integer coefficients of fractional
parts of quotas or their complements to unity. If we assume that such a linear combination can be integral
with negligible probability, then (6) has a unique solution with high probability.

For the countries which are forced either to the lower or to the upper bound, the deviation is constant.
So these countries do not play a role in the minimization, even if their terms are included in the objective
function.

Due to the integrality of xi we may expect that the inequalities pi+1 xi ≤ pi xi+1 will be always satisfied
as strict inequalities so that (2) is satisfied.

The model (6) can be clearly applied with any type of quotas. The seat assignment provided by (6) by
using natural quotas is reported in Table 2, column 1. In column 0 we report the result of model (6) if we
drop the degressive proportionality constraint. By comparing the two columns it is interesting to note that
degressive proportionality has a stronger effect on the large countries than on the small ones. Indeed, to keep
the ratios pi/xi in the proper order, larger seat changes are required for larger populations.

We observe that the model (5) can be adapted to measure the relative deviation instead of the absolute
deviation, by simply replacing each wi ≥ qi−xi with wi ≥ 1−xi/qi and each wi ≥ xi−qi with wi ≥ xi/qi−1.
As Balinski and Young ([1] p. 129) observe, ‘it can be argued that staying within the quota is not really
compatible with the idea of proportionality at all, since it allows a much greater variance in the per capita
representation of smaller states than it does for larger states’. Since the concept of minimizing the absolute
deviation is very close to the concept of staying within the quota, it makes sense to use the relative deviation.
However, we do not explore this direction in this note.

4 Projective quotas

In this section we revise the natural definition of quotas in order to embed in the quota definition the bounding
constraints and the degressive proportionality requirement. We pursue the idea that these requirements
should affect in a harmonious way all countries. In other words, even if the quota of a country is cut to
the upper bound M , we still want all quotas to keep as much as possible their population proportions. A
similar requirement should hold for the lower bound m. Also the degressive proportionality requirement
should correspond to a smooth curve.

We assume that q1 > M and qn < m (as in the current EU Parliament). If, for instance, q1 < M , the
question can be addressed in a simpler way (see Section 5). Therefore we want to define new quotas q̃i such
that the following constraints are satisfied

q̃1 > q̃2 > . . . > q̃n (8)
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p1

q̃1
>
p2

q̃2
> . . . >

pn
q̃n

(9)

q̃1 = M, q̃n = m (10)∑
i

q̃i = H (11)

The idea is to define q̃ as a function of the natural quotas q such that the three equality constraints (10) and
(11) are satisfied and, furthermore, also the inequalities (8) and (9) are satisfied. The criterion of simplicity
would call for an affine function, but obviously affine functions cannot work here since they have two degrees
of freedom while there are three equality constraints to be satisfied.

Hence we look for functions which are closest to the affine functions and have at least three degrees
of freedom. These are the projective transformations, which are indeed linear in an extended space. In [2]
it is noted that non-linear functions of power type have been proposed in the literature but they present
the disadvantage of an ‘unprincipled use of a power, non-robustness with respect to certain population
distributions, non-transparent, relative difficulty of computation’. We share this criticism with respect to
power functions and think that projective functions constitute a better choice if non-linearity has eventually
to be chosen.

Hence, having in mind a projective transformation, we want to define a function

q̃(q) =
α q + β

γ q + 1

so that each natural quota qi is mapped into a projective quota q̃i = q̃(qi) as

q̃i =
α qi + β

γ qi + 1
(12)

where the parameters α, β and γ are computed so that

q̃1 = M, q̃n = m,
∑
i

q̃i = H (13)

The effect of (12) together with (13) is to smoothly squeeze the interval [qn, q1] into the interval [m,M ] by
also keeping invariant the sum of the quotas. Note that the function q̃(q) must be an increasing function of
q in order to satisfy the constraint (8) (actually the dependence should be w.r.t the populations, but since
qi is linearly related to pi the analysis can be carried out directly on qi which leads to notationally simpler
relations) and the function

r(q) :=
q

q̃(q)
= q

γ q + 1
α q + β

must be also an increasing function of q in order to satisfy the constraint (9).
As for the first condition it is immediate to see that

Proposition 2. The function q̃(q) is increasing if and only if α > β γ.
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It is also easy to see that (only a sufficient condition),

Proposition 3. The function r(q) is increasing if αγ > 0, and α > β γ > 0.

In order to satisfy the first two constraints in (13) we impose

M =
α q1 + β

γ q1 + 1
, m =

α qn + β

γ qn + 1

from which we get

α(γ) =
γ (M q1 −mqn) +M −m

q1 − qn
,

β(γ) =
−γ q1 qn (M −m) +mq1 −M qn

q1 − qn

(14)

The value for γ can be easily computed by imposing the third constraint in (13) and using binary search.
For the EU parliament data we get

α = 0.91458, β = 5.44076, γ = 0.00183231,

so that the conditions of Proposition 2 and 3 hold.
We may wonder whether these conditions hold in general, so that the idea of using projective quotas is

robust enough to work with general data.

Proposition 4. α > β γ if γ > −1/q1.

Proof: Just note that
α(γ)− β(γ) γ =

(M −m) (1 + γ q1) (1 + γ qn)
q1 − qn

Let us define
f(γ, q) :=

α(γ) q + β(γ)
γ q + 1

By definition f(γ, q1) = M and f(γ, qn) = m, for any γ. It is also interesting to note that

f(− 1
q1
, q) = m, f(− 1

qn
, q) = M, for any q (15)

Since
∂f(γ, q)
∂γ

=
(M −m) (q1 − q) (q − qn)

(q1 − qn) (1 + γ q)2

the function f(γ, q) is increasing w.r.t γ for any fixed value qn < q < q1. We also have

lim
γ→∞

f(γ, q) = M − qn (q1 − q) (M −m)
q (q1 − qn)

=: f̄(q)
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Fig. 1. Projective and natural quota functions
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Fig. 2. Seat representation for projective quotas

Proposition 5. If
∑
i f̄(qi) > H, then there is a unique value γ̄ > −1/q1 for which

∑
i f(γ̄, qi) = H and

the function q̃(q) is increasing.

Proof: From (15), one has ∑
i

f(− 1
q1
, qi) = mn < H

This fact, together with the hypothesis and the strictly increasing monotonicity of f(γ, q) w.r.t. γ, proves
the first statement. In turn this result together with Propositions 4 and 2 implies the second statement.

Apart from very strange instances (like for instance n = 3, q1 > M , q2 = M , q3 = m, and in general with
many large countries and just one very small country) one usually has∑

i

f̄(qi) > H
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so that we may say that in the vast majority of real cases the function q̃(q) is increasing. If γ̄ is positive
and sufficiently small, then the conditions αγ > 0, and α > β γ > 0 are satisfied so that the degressive
proportionality requirement is satisfied as well.

The projective quotas q̃i are reported in Table 1 together with the values pi/q̃i. The functions q̃(H p/P )
and r(H p/P ) are as in the Figures 1 and 2 respectively. In Figure 1 it is also shown as a dashed line the
natural quota function q(p).

Rounding the projective quotas may fail in general to satisfy degressive proportionality. If, for instance,
we assign the seats for the EU Parliament according to the Largest Remainders rule, for which certainly
(1) is satisfied, we note that (2) is not. Therefore in order to find the seat assignment we use the same ILP
model (6) the only difference being that qi is replaced by q̃i. The solution is reported in Table 2, column 4.

5 Other quotas

If one of the constraints (10) is missing then we may resort to simpler affine quotas, namely

q̂(q) = α q + β (16)

Let us suppose that the missing constraints is the upper bound. Incidentally, this situation could arise in
the future with new member countries, as pointed out in [2]. From∑

i

(α qi + β) = H, α qn + β = m

we easily get

q̂(q) =
H − nm
H − n qn

q +
H (m− qn)
H − n qn

(17)

For the quotas to satisfy degressive proportionality we just need β > 0 which is clearly always satisfied.

Divisor methods adjust the divisor after rounding some rational numbers which are essentially quotas.
However, we may think of computing the divisor d without rounding, and then we define the numbers so
obtained as divisor quotas. In other words we carry out the same computation suggested in [2], i.e.

A(p, d) = min
{
b+

p

d
, M

}
(18)

with b called the base and find the divisor d̄ for which
∑
iA(pi, d̄) = H. The numbers A(pi, d̄) are the divisor

quotas. Then we round the quotas via the ILP model (6) by using the divisor quotas.

The question arises about the value to be chosen for b. In [2] it is suggested to take b = m− 1 = 5. This
choice is justified by the proposed rounding up, so that the final number of seats will always be at least m.
However, without rounding, there is no guarantee that A(pn, d̄) ≥ 6 if b = 5. Indeed with b = 5 we have
A(pn, d̄) = 5.517.
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It is therefore advisable to find that b for which A(pn, d̄) = 6. This can be done again by binary search in
an outer loop, w.r.t. the inner loop for computing the divisor d̄. The computation for the EU data leads to
b = 5.49562 and d̄ = 1.22708. The divisor quotas computed with these values are reported in Table 1. The
seats obtained by using the divisor quotas are in Table 2, column 2.

Divisor quotas are essentially affine quotas if the upper bound constraints are non active (or missing). In
this A(p, d) = b+ p/d which corresponds to (16), and by computing d and b to satisfy the constraints we get
exactly (17).

Balinski and Young ([1] pp. 133-134) propose the following modified quotas to take care of lower and
upper bounds. They define the function

B(q, t) =

{
m if t q < m
t q if m ≤ t q ≤M
M if t q > M

(19)

with q the natural quota. The modified quotas are the numbers B(qi, t̄) with t̄ a multiplier such that∑
iB(qi, t̄) = H (see Table 1). For the EU data we have t̄ = 1.00309. It turns out that there is no difference

in using (6) with the natural quotas or these modified quotas. Indeed trimming the natural quotas at the
extremes in the very definition of the modified quotas produces the same effect as using the natural quotas
and bound the seats in the ILP model (6).

Note that modified quotas and divisor quotas differ only by the way they take care of the lower bound,
but this has strong impact on the quota functions and consequently on the computed seats (see Figure 3).
Moreover the modified quota functions do not satisfy degressive proportionality as it is obvious from the
definition, whilst the divisor quotas do, just because of the difference in the lower bound.

6 Results

A comparison of the seats obtained with the different methods is shown in Figure 3 and in Table 2. In Figure
3 the different quota functions are also shown.

The projective quota function is the only curve in Figure 3. The three piecewise linear functions are:
the quota function (18) with the divisor d̄ computed with rounding and b = 5, as in [2], with breakpoint
at a population of roughly 74,464,000 people; the divisor quota function (18) with the divisor d̄ computed
without rounding and b = 5.49562, with breakpoint at 74,101,900 (these two functions almost coincide); the
modified quota (19), with breakpoints at 3,991,160 and 63,858,500.

The seats computed by using the projective quotas are the bullets (•) lying almost exactly on the
projective quota function. The stars (∗) refer to the seats in [2], whereas the little squares ( ) to the seats
computed by using the divisor quotas (only the squares are visible when the seats coincide). The circles (◦)
are the seats computed by using the natural quotas. These are also the seats computed by using the modified
quotas. The plus signs (+) refer to the present seats in the EU parliament. From the figure it can be seen
that the actual seat distribution does not have a regular pattern.
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Fig. 3. Seats and quota functions for the various methods. Seats from: ◦ natural and modified quotas, divisor quotas,
∗ seats in [2], • projective quotas, + actual seats

We briefly comment on Table 2. The column 0 is the allocation via ILP and natural quotas but without
the constraint of degressive proportionality; the column 1 is the allocation via ILP and natural quotas (the
same numbers are obtained by using ILP and modified quotas); column 2, via ILP and divisor quotas;
column 3, allocation in [2]; column 4, via ILP and projective quotas. The column 5 refers to the present
allocation in the EU parliament. Note that the seat sum in this column is 754 and the three extra seats are
assigned to Germany. Clearly the seats in columns 1, 2 and 4 are computed with the constraint of degressive
proportionality.

The seats of column 0 would be the ones most preferred by the largest countries of the EU. However,
these seats do not comply with the degressive proportionality requirement. The seats of column 1 do comply
with all constraints and would be the most preferred feasible seats by the largest countries. Clearly the need
of being as close as possible to the natural quotas while making the smallest effort to comply with the other
requirements produces seats reflecting the respective population sizes better than other methods.

The seats in columns 2 and 3 differ only in four countries. This is due to the fact that they refer to the
same divisor method but with different rounding schemes. It can be checked that the difference in the four
countries is just due to the degressive proportionality requirement, which is satisfied by using the ILP model.

The seats of column 4 are the ones obtained by the projective quotas. This would be the most preferred
method by the smallest countries. These figures show that complying with the EU requirements to a full
extent has the effect of favoring the smallest countries.
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The seats of column 5, i.e., the present situation, are by far the most penalizing for the large countries.
Going from column 1 to column 5 the large countries (from Germany to Poland, comprising 70.45% of the
total population) loose seats in favor of the small countries.

7 Conclusions

In this note we have proposed some different methods of computing the seats in the EU Parliament. All of
them do satisfy the requirements 1. – 4. exposed in the Introduction. The novelty of these methods is that
they are based on integer linear programming models. This is not customary in problems of this type, for
which rounding has been always taken care of in other ways. However, the usual rounding methods may
fail to satisfy the degressive proportionality requirement, and it is seems plausible to say that only ILP
techniques can deal efficiently with this constraint. As already outlined in the Introduction we think that
ILP models are, more or less, as transparent as other methods, and therefore they can be considered as
possible ways of computing seats.

The difference in seat assignments between different methods is due to the choice of quotas. The methods
proposed in this note and the one proposed in [2] are all mathematically sound. Looking at the figures in
Table 2 the methods can be ‘ordered’ according to the seats given to large countries. Clearly the question of
the choice of one particular method seems at this point more a political issue than a mathematical one.
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country pi qi q̃i pi/q̃i A(pi, d̄) B(qi, t̄)

Germany 81 802 257 122.596 96.000 852 107. 96.000 96.000

France 64 714 074 96.987 79.937 809 563. 84.534 96.000

UK 62 008 048 92.931 77.275 802 431. 81.229 93.218

Italy 60 340 328 90.432 75.618 797 964. 79.192 90.711

Spain 45 989 016 68.923 60.799 756 417. 61.664 69.136

Poland 38 167 329 57.201 52.277 730 104. 52.111 57.378

Romania 21 462 186 32.165 32.918 651 983. 31.708 32.265

Netherlands 16 574 989 24.841 26.934 615 399. 25.739 24.918

Greece 11 305 118 16.943 20.306 556 738. 19.303 16.995

Belgium 10 839 905 16.246 19.712 549 915. 18.735 16.296

Portugal 10 637 713 15.943 19.453 546 833. 18.488 15.992

Czech R. 10 506 813 15.746 19.286 544 797. 18.328 15.795

Hungary 10 014 324 15.008 18.654 536 842. 17.727 15.055

Sweden 9 340 682 13.999 17.788 525 125. 16.904 14.042

Austria 8 375 290 12.552 16.540 506 362. 15.725 12.591

Bulgaria 7 563 710 11.336 15.486 488 407. 14.734 11.371

Denmark 5 534 738 8.295 12.832 431 322. 12.255 8.321

Slovakia 5 424 925 8.130 12.688 427 579. 12.121 8.155

Finland 5 351 427 8.020 12.591 425 027. 12.032 8.045

Ireland 4 467 854 6.696 11.425 391 075. 10.952 6.717

Lithuania 3 329 039 4.989 9.913 335 820. 9.562 6.000

Latvia 2 248 374 3.370 8.470 265 444. 8.242 6.000

Slovenia 2 046 976 3.068 8.200 249 619. 7.996 6.000

Estonia 1 340 127 2.008 7.251 184 821. 7.132 6.000

Cyprus 803 147 1.204 6.527 123 046. 6.477 6.000

Luxembourg 502 066 .752 6.120 82 030. 6.109 6.000

Malta 412 970 .619 6.000 68 828. 6.000 6.000

Table 1. Different quotas
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country 0 1 2 3 4 5

Germany 96 96 96 96 96 99

France 96 90 85 85 80 74

UK 93 87 82 81 77 73

Italy 91 85 80 79 76 73

Spain 69 66 62 62 61 54

Poland 57 55 52 52 52 51

Romania 32 31 32 32 33 33

Netherlands 25 24 26 26 27 26

Greece 17 17 18 19 19 22

Belgium 16 17 18 19 19 22

Portugal 16 17 18 18 19 22

Czech R. 16 17 18 18 19 22

Hungary 15 17 18 18 19 22

Sweden 14 16 17 17 18 20

Austria 13 15 16 16 17 19

Bulgaria 12 14 15 15 16 18

Denmark 8 11 12 12 13 13

Slovakia 8 11 12 12 13 13

Finland 8 11 12 12 13 13

Ireland 7 10 11 11 12 12

Lithuania 6 8 10 10 10 12

Latvia 6 6 8 8 8 9

Slovenia 6 6 8 8 8 8

Estonia 6 6 7 7 7 6

Cyprus 6 6 6 6 7 6

Luxembourg 6 6 6 6 6 6

Malta 6 6 6 6 6 6

Table 2. Comparison of different seat assignments: 0: via natural quotas without degressive proportionality;
1: via natural quotas; 2: via divisor quotas; 3: seats as in [2]; 4: via projective quotas; 5: present allocation.


