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To verify whether a transferable utility game is exact, one has to check a linear inequality for each
exact balanced collection of coalitions. This paper studies the structure and properties of the class of
exact balanced collections. Comparing the definition of exact balanced collections with the definition
of balanced collections, the weight vector of a balanced collection must be positive whereas the weight
vector for an exact balanced collection may contain one negative weight. We investigate minimal exact
balanced collections, and show that only these collections are needed to obtain exactness. The relation
between minimality of an exact balanced collection and uniqueness of the corresponding weight vector
is analyzed. We show how the class of minimal exact balanced collections can be partitioned into three
basic types each of which can be systematically generated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important notions in cooperative game theory
is the core. Introduced by Gillies (1953), the core consists of
all allocations that are both individually and coalitionally stable.
Given an allocation in the core of the game, no coalition has an
incentive to split off. There exist games for which such an allocation
does not exist, resulting in an empty core. Bondareva (1963) and
Shapley (1967) showed independently that non-emptiness of the
core is equivalent with balancedness.

A collection of coalitions is balanced if one can find positive
weights for all coalitions in the collection such that every player
is present in coalitions with total weight exactly equal to one.
A game is balanced if for all such collections and all such
weights, the weighted sum of the values of the coalitions does
not exceed the value of the grand coalition. An interpretation is
that the players can distribute one unit of working time among all
coalitions in such a way that for every coalition, all members are
active for an amount of time equal to the coalition’s weight, and in
doing so the players cannot create more value than by working one
unit of time in the grand coalition.

The concept of balanced collections has played a major role
in the literature on the nucleolus (Schmeidler, 1969), the pre-
nucleolus (Schmeidler, 1969), and weighted nucleoli (Derks and
Haller, 1999). In particular, it is an important part of the Kohlberg
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condition (Kohlberg, 1971), which is used to check if a given im-
putation is the nucleolus of a given game. Furthermore, balanced
collections are strong tools in proofs on properties and characteri-
zations as is seen in e.g., Derks and Haller (1999).

To verify that the core of a game is non-empty, not all balanced
collections are needed. A balanced collection of coalitions is
minimal, if there does not exist a proper subset that is also
balanced. As it turns out, only minimal balanced collections
have to be considered to ensure non-emptiness of the core. This
greatly reduces the number of constraints to be checked for non-
emptiness of the core. Furthermore, the class of minimal balanced
collections is sharp, in the sense that there exists no subclass of the
class of minimal balanced collections that ensures balancedness of
the game.

A game is exact (Schmeidler, 1972) if for every coalition,
there exists a core element that allocates precisely the value of
the coalition to its members. Therefore in such a core element,
the coalition gets exactly its stand alone value. Many important
applications of cooperative game theory have led to the study of
exact games. Classes of games such as e.g., convex games (Shapley,
1971), risk allocation games with no aggregate uncertainty (Cs6ka
et al., 2009), convex multi-choice games (Branzei et al., 2009)
and multi-issue allocation games (Calleja et al., 2005) are exact.
Exactness turns out to be equivalent with exact balancedness as
introduced in Csoéka et al. (2011). Exact balancedness is similar to
the notion of balancedness, when we allow one of the weights to
be negative.

Regarding exact balancedness, many exact balanced collections
are redundant when verifying the exactness of a game. We show
that only minimal exact balanced collections are essential to obtain
exactness. However, it is not possible to use the same approach as
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with minimal balanced collections. This is due to the fact that while
the set of balanced weight vectors is a convex set in which the
extreme points are the weight vectors corresponding with minimal
balanced collections, the set of exact balanced weight vectors is not
a convex set.

We show that the class of minimal exact balanced collections
can be partitioned into three types. The first type consists of all
minimal balanced sets. The second type, the class of minimal
subbalanced collections, is formed by all minimal balanced
collections for every proper subgame, to which two coalitions are
added: the grand coalition of the subgame, and the grand coalition
of the original game. The last type, the class of minimal negative
balanced collections, consists of all other minimal exact balanced
collections for which every weight vector has one negative weight.

One of the main results concerns the special structure of the
class of minimal negative balanced collections. We show that
every minimal negative balanced collection can be obtained from
a minimal balanced collection by replacing one coalition, with a
weight strictly smaller than one, by its complement. Moreover, for
every minimal negative balanced collection there exists exactly
one such combination of a minimal balanced collection and a
coalition with a weight strictly smaller than one.

The class of minimal exact balanced collections ensures exact-
ness of the game, but the class can be reduced even further. We
show that only the class of minimal subbalanced collections and
the class of minimal negative balanced collections are needed to
guarantee exactness. So, the class of minimal balanced collections
is redundant.

With respect to the uniqueness of the weights, it is well known
that the class of minimal balanced collections coincides with the
set of balanced collections for which the set of balanced weight
vectors consists of one point. A similar result can be obtained for
minimal exact balanced collections. If the exact balanced weight
vector is unique for a certain exact balanced collection, then this
collection is minimal exact balanced. The other way around is not
true in a strict sense. For two types, minimal balanced and minimal
negative balanced collections, the corresponding weight vector is
unique. For every minimal subbalanced collection however, there
exists more than one exact balanced weight vector but all weight
vectors are related to each other by a linear transformation, and
induce the same constraint on the game.

In the process, we also see how we can systematically and
efficiently generate all minimal exact balanced collections, by
adapting the inductive approach to construct all minimal balanced
collections by Peleg (1965).

Just as balanced collections are not only used to verify the non-
emptiness of the core, but also in characterizing the pre-nucleolus
useful in several results on (variations of) the nucleolus, these
insights in the theoretical structure of exact balanced collections
provide a wider range of techniques to obtain further results on
these solution concepts.

The paper is organized as follows: the subsequent section in-
troduces some notions regarding cooperative game theory, and re-
peats the main results regarding balanced collections. Section 3
contains the definitions of several notions regarding exact bal-
ancedness, and includes the results on the uniqueness of the
weights. Section 4 shows that the class of minimal exact balanced
collections can be partitioned into three easily identifiable types.
Section 5 states that minimal exact balanced collections are suffi-
cient to ensure exactness of the game. Section 6 describes the con-
struction of minimal exact balanced collections.

2. Balancedness
First, we introduce some basic notions regarding cooperative

game theory and balancedness. Given a finite player set N, a
transferable utility game v € TU is defined by a function v on

the set 2V of all subsets of N assigning to each coalition S e 2N
a value v(S) such that v() = 0. Define & = 2N \ {#}, and for
allS € W lete’ € RY besuchthate; = 1ifi € Sande; = 0
otherwise. For a game v € TUV, the core C(v) is defined as the set
of efficient pay-off vectors, for which no coalition has an incentive
to split off:

Cw)={xeR" | x=v(N), ) x> v forallS e .
ieN ieS

To check for non-emptiness of the core, one can use the notion of

balancedness.

Definition 2.1. Let 8 C &, 8 # {N}. A weight vector 8 € RV
is called balanced on 8 if s > 0 forall S € 8B, 8s = 0 for all
S ¢ Band ), Bse’ = e. We denote the set of all balanced
weight vectors on 8 by A*(8B). The collection 8 is called balanced
if AT(8) # . Denote B for the set of all balanced collections on
player set N,and AT = Ugzv A1 (B).

In the remainder, we will typically use 8 and C to denote
balanced collections, and use 8 and y to denote their respective
weight vectors.

Example 2.2. let N = {1, 2}. The collections {{1}} and {{2}}
are not balanced, since one of the players is not present in the
collection. By definition {{1, 2}} is not balanced. The collection
{{1}, {1, 2}} is not balanced. This follows as a balanced weight vec-
tor B cannot satisfy the equations B, = 1and B3y + Bu 2 =1
simultaneously, since B(1; > 0. A similar reasoning holds for the
collection {{2}, {1, 2}}. The two remaining collections are 8 =
{{1},{2}} and ¢ = {{1}, {2}, {1, 2}}, which are both balanced.
Take B € A% such that B3 = Bizy = land s = O for
S € &\ {{1},{2}}, and take y € A" such that 15 = 1and
ys = 0forS € & \ {{1,2}}. We have AT(B) = {B} while
AT@) ={aB+(1—-ay|laec (0,1} O

Now, for a vector 8 € RY, we define the set

V)= quveTu" | ) psu(s) < v(N)}
SeN

of transferable utility games for which the weighted sum of the
values of the coalitions with respect to 8 is less than or equal
to the worth of the grand coalition. Also, we define V¥ (8) =
Ngeatrz V(B) and VT = Ngn VT(B). So, VH(B) is the set of
games that satisfy the constraints imposed by all balanced weight
vectors for collection 8, and V7 is the set of games that satisfy the
constraints imposed by all balanced weight vectors.

Consider some 8 € B". Note that v € V(B) for some 8 €
AT (8) does not imply that v € V*(B). This is illustrated by the
following example.

Example 2.3. Consider a three person game v € TU" such that
v({1) = 2,v({1,2}) = 8,v({1,3}) = 8,v({2,3})) = 4and
v(N) = 8. We find that the balanced collection 8 = {{1}, {1, 2},
{1, 3}, {2, 3}} corresponds with more than one balanced weight
vector, for instance B = (3, 3,3.2) andy = (3,2, 32,2). We
have that

> Bsv(S)

Ses

1 1 1 3
SrIh + o1 2h) + 2 v({1.3) + Jv({2.3)

= 8 =v(N),
but
S pv(S) = u((1h) + 2u({1,2) + 2u((1, 3D + 20012, 3D
4 8 8 8

SeB
=9 > v(N).

So,v € V(B) but v ¢ V(y). This implies thatv ¢ V*(8). O
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We call a game v € TU" balanced if v € V™.

Theorem 2.4 (Bondareva, 1963; Shapley, 1967). Let v € TUV. Then
Cv) #W@ifandonlyif v e VT,

It is well known that not all balanced collections are necessary to
guarantee that a game is balanced. Minimal balanced collections
suffice to characterize the class of games with a non-empty core.

Definition 2.5. A collection 8 € B is called minimal balanced
if there does not exist a ¢ C B such that ¢ € BN. The class of
minimal balanced collections on player set N is denoted by BY

min*
Note that in Example 2.2, only the collection {{1}, {2}} is minimal
balanced. We define V.. = N vV (B) as the class of games

that satisfy the constraints originating from minimal balanced
collections.

Theorem 2.6 (Bondareva, 1963; Shapley, 1967). A game v € TU" is

balanced ifand only if v € V.. ,ie, VT =V

Not only do we need just the minimal balanced collections
to characterize the non-emptiness of the core, an additional
advantage of minimal balanced collections is that for every
minimal balanced collection there exists only one balanced vector
of weights. For the following theorem, we provide the proof by
Peleg and Sudhélter (2003) as we will use a similar technique later
on to prove results on minimal exact balanced collections.

Theorem 2.7 (Bondareva, 1963; Shapley, 1967). A collection B € BY
is minimal balanced if and only if |AT(B)| = 1.

Proof (Peleg and Sudhéiter, 2003). Let 8 € BN. Take 8 € AT (B).

First we show that a balanced collection that is not minimal
corresponds to more than one balanced weight vector. If ¢ C B
is a balanced collection with weights y € AT (@), then it is readily
verified that ay + (1 —a)B € AT (8) fora € [0, 1), so the weight
vector for 8 is not unique.

Second, we show that every collection with more than one
balanced weight vector is not minimal. Assume that there exists
another weight vector « € A(B),a # p. As there exists a
coalition S € B such that 8s > «as, we obtain thata = min{ﬂs"‘_sas |
Bs > as} is well defined. Let ys = (1 + a)as — afs forall S € B.
Then ¢ = {S € B8 | ys > 0} is a proper subcollection of B with
y € AT(@).So, € € BY and B is not minimal. O

The following theorem states that we cannot characterize
the set of balanced games by a subset of the minimal balanced
collections.

Theorem 2.8 (Bondareva, 1963; Shapley, 1967). Let B € BN, . Then

there exists a game v € TUN such that v € V*(C) for all collections
CeBl \{Blandv & V1 (B).

3. Exact balancedness

Games with a non-empty core can be characterized using bal-
anced collections. A similar characterization exists for exact games.
Exact games form a subclass of the class of games with a non-empty
core.

Definition 3.1. A game v € TUV is exact if for every coalition
S € W there exists anx € C(v) such that Y . _. x; = v(S).

Schmeidler (1972) provides a characterization of exact games.
Csoka et al. (2011) introduces two different characterizations of
exact games, one using total balancedness and overbalancedness,
and one using exact balancedness. For a discussion on these three
characterizations we refer to Csoka et al. (2011). Here, we use exact
balancedness as defined by Cséka et al. (2011) except that in line
with Definition 2.1 we exclude the trivial collection {N}.

ieS

Definition 3.2 (Csoka et al., 2011). For a collection & C N, & #
{N}, a vector of weights A € R¥ is called exact balanced if there
existsaT € & suchthat s > OforallS € €\ {T}, A1 #0,As =0
forallS & &,and ) rse® = eN. We denote A(&) for the set of
all exact balanced vectors on &. A collection & C W is called exact
balanced if A(§) # §. Denote EN for the set of all exact balanced
collections on player set N,and A = Ugpn A(E).

In the remainder, we will typically use & and £ to denote exact
balanced collections, and use A and § to denote their respective
weight vectors.

Note the discrepancy with the definition of balanced vectors.
For exact balanced weight vectors, we allow for one negative
weight. As Csb6ka et al. (2011) argues, the negative weight in
an exact balanced collection can be interpreted as players in
the coalition with a negative weight working overtime in other
coalitions, and paying the opportunity cost of doing so to the
coalition that is active for a negative amount of time. It is readily
checked that AT(§) C A(&) for every & C W, and therefore
BY < EM.In contrast with A+, A is not a convex set in general,
since a convex combination of two elements of A is not necessarily
an element of A.

Example 3.3. Let N = {1, 2, 3}. Take A, § € R such that A(; 5 =
)\{13) = ],)\.{]} = —1and 5{1,2} = 8{2’3} = 1,5{2} = —1.Clearly,
X and § are exact balanced weight vectors. However, the convex
combination %(A + &) is not an exact balanced weight vector, as it
has two negative components. This means that A is not a convex
set. O

Define, similar to the definitions of V*(8) and V*,V(&) =
Micaey V(A forall € € EN and V = Ngpn V(E). As V(A) is the
class of games that satisfy the constraint imposed by weight vector
A, V(&) is the set of all games that satisfy the constraints imposed
by the exact balanced weight vectors of the collection & and V is
the class of exact balanced games.

Theorem 3.4 (Cséka et al., 2011). A game v € TUN is exact if and
onlyif veV.

So, just as balancedness is equivalent with non-emptiness of the
core we have that exact balancedness is equivalent with the
existence for every coalition of a core element where this coalition
gets precisely its stand-alone value. Similar to the definition of
minimal balanced collections, we define minimal exact balanced
collections.

Definition 3.5. A collection & € EV is minimal exact balanced if
there exists no D C €& such that D € EV. We denote EJ} for the
class of minimal exact balanced collections.

Example 3.6. Regarding exact balancedness, a similar reasoning
as in Example 2.2 can be used to show that only {{1}, {2}} and
{{1}, {2}, {1, 2}} are exact balanced for two-person games. Since
clearly A(&) = A1 () for every & € EN, we have EN = B" and
EN.. = BN. . This is not surprising, since for two-player games,
whenever the core is non-empty there exists a core element where
player 1 gets v({1}) and there exists a core element where player
2 gets v({2}). So, the concepts of balancedness and exactness are
equivalent for two player games. For games with three or more
players, BN C EN. For a player set consisting of three players, EN

min
and BY, are giveninTable 1. O

If the size of the player set increases, the number of collections
in the different classes grows considerably. Table 2 shows the
number of collections in all classes for up to 4 players. The minimal
balanced collections as well as the minimal exact balanced
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Table 1
Minimal balanced and minimal exact balanced collections for N = {1, 2, 3}.
IB€1\]1in E;\]‘nin
{1}, {2}, {3} {1}, {2}, {3}
(1,2}, {3} (1,2}, {3}
{13} {2} {1,3} {2}
2,31 {1} 2,31 {1}
{1,2},{1,3},{2,3} (1,2}, {1,3},{2, 3}
{1}, {1, 2}, {1, 3}
{2}.{1,2}, {2, 3}
{3}, {1,3}, {2, 3}
{11, {21, {1, 2}, N
{1}, {3}, {1, 3L, N
{2}, 3}, {2, 3L, N
Table 2
Number of collections in different classes.
IN| 3 4
|BM| 42 18878
BN, 5 41
|EN| 63 27014
|EN 11 165

‘min

collections are generated using methods introduced later on in this
paper.

As we have shown in Theorem 2.7, the class of minimal balanced
collections coincides with the set of balanced collections with a
unique weight vector. For minimal exact balanced collections, a
somewhat weaker statement holds: the class of minimal exact
balanced collections not containing the grand coalition coincides
with the set of exact balanced collections with a unique weight
vector.

Theorem 3.7. Let & € EN. Then & € EN

min A1d N ¢ & if and only if
|A(€)] = 1.

Proof. We prove the ‘only if part of the theorem by showing that
we can construct an exact balanced subcollection of & if the weight
vector is not unique. Take & € EN.  withN ¢ €. Suppose that there
exist two weight vectors A, u € A(€) such that A # pu.

Ifboth . € AT(€) and u € AT (&), we have by Theorem 2.7
that & ¢ BY, . Hence, there exists an exact balanced subcollection
of & in this case.

Nextassume € € B .1 € AT(§)andpu & AT(E).LetU € €
be such that uy < 0, and take a = min{ﬁ—i | S € &€\ {U}} and

B = 1= (L —au). Note that 0 < a < 1since As > O and us > 0
forallS € &€ \ {U}, and a > 1 would imply that

eN = Zuses = Z use® + uyel < Z Arse® + AyeY

See Seev(U) SeeV(U)
= stes <eéN,
Se¢

where the strict inequality uses that uy < 0 < Ay. Note that
Bs = t=(ks —aus) > OforallS € &, with equality for
at least one coalition. If we take 8 = {S € & | B > 0},
then B is a proper subset of &€ and Y s, Bse® = Y ¢ Bse® =
ZSES (%es - %es)
€ eBl..

Finally, let A & AT(€) and u ¢ A1 (&). This means that there
exist coalitionsT € € and U € & suchthat A < Oand uy < 0.

Assume T = U.Takea = min{% | S € &}. Note thata > 0
since for S € & either both As > Oand us > 0 orboth As < 0
and us < 0.1t holds thata < 1, as a > 1 would imply that either
A=pory ¢ihis >y oipus = 1fori € N\ T,anon-empty set
since by assumption N ¢ &. We construct §s = ﬁ)\s — ﬁlis

eV, so 8 € BN which contradicts

forallS € € and D = {S € & | §s # 0}. It is readily verified that
8 > 0forallS € D\ {T}and Y s, 8se° = e". This shows that
D € EN and by construction O ¢ &, which contradicts & € EY, .
Now assume T # U. Take a = M“_/\ . It is readily checked that
O<a<1lTake§ =ar+ (1 —apuand D = {S € & | §s # O}.
We have §s > O foreveryS € D \ {T,U} and 67 = 0. Since
Y sep 858 = Y e @hse® + > o (1 — a)use’ = eV this shows
that D € EN which contradicts € € EY, .
To prove the ‘if’ part of the theorem, let & € N be such that
A(€) = {A} for some . € RY. First suppose & ¢ EN. . We
show that we can construct a second weight vector in A(&). As
& ¢ EN. ., there exists an exact balanced subcollection D C €.
Take 1 € A(D) and define the function f : [0,1] — R* by
f(b) = (1 — b)A + bpu. As f is continuous, there exists an € > 0
such that the sign of fs (¢) coincides with the sign of As forall S € &.
Since Y g o fs(€)€® = D s o (1 — €)Ase® + > ¢, euse’ = eV, we
obtain that f (e) € A(€&) while f(€) # A, a contradiction.
Secondly, suppose N € &. It is readily checked that Ay < 1,
and if Ay < 1 we obtain that the collection 4 = & \ {N} is exact

balanced with weight vector us = 1fi~ for every S € 4 which

contradicts € € EY, . Hence, Ay = 1.As Y 5oy As€® = 0,
we have that ZSES\{N} 21se> = 0. Define the weight vector u by
us = 2Xxs forall S € € \ {N}, uy = 1and us = 0 otherwise. It is

readily checked that u € A(&) with u # A, a contradiction. O

There exist minimal exact balanced collections with more than
one exact balanced weight vector. By Theorem 3.7 such a collection
must contain the set N.

Example 3.8. Take N = {1, 2, 3}. The collection & = {{1}, {2},
{1, 2}, N} is minimal exact balanced, but there exists more than
one weight vector: define A by A;;y = A;zy = 1, A12) = —1and
Ay = land u by My = ppy = 2, 1,2y = —2 and uy = 1.1tis
readily checked that . € A(§) and u € A(8). O

If a minimal exact balanced collection does contain the grand
coalition, then there exists more than one exact balanced weight
vector, but these weight vectors are related in a special way
and induce the same constraint on the game. Furthermore, if
for an exact balanced collection all weight vectors induce the
same constraint on the game, then the collection is minimal exact
balanced.

Theorem 3.9. Let & € EN. Then &€ € EN. and N € & if and only if
forevery A € A(€) and i € A(E) there exists a scalar a > 0 such

that

us = ars forallS € &\ {N},
un =iy = 1.

Proof. For the ‘only if part of the proof, let & € EJ}, be such that
N € &.Let A € A(€). It is readily checked that Ay < 1, and if
An < 1we obtain that the collection € = &\ {N} is exact balanced
with weight vector ys = ]fiN for every S € C.Hence, Ay = 1.
Take T € & suchthat A1 < 0.SuchanT € & exists,as N € &
and therefore & ¢ BY,,. AS Y ¢ ¢\ (vy As€® = 0and &5 > O for

min*
allS € &\ {T}, we obtainthat S C T forallS € & \ {T, N}.
This implies that the location of the negative weight is unique,
ur < 0 for every u € A(8). Rewriting ZSES\{N} A€ =0
yields oo\ —i—ies = e', and therefore & \ {N, T} € B'.If
there exists a minimal balanced collection 8 € B[, such that
B C &\ {T, N}, it is readily checked that 8 U {T, N} is an exact
balanced collection, which contradicts our assumption of & € EN

min*
Hence, € \ {N, T} € BL, .Since & \ {N, T} € B , by Theorem 2.7
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there is a unique balanced vector of weights 8 of & \ {N, T}.
Note that

eN = e + el + Z e

Se€\(N,T}

eV + Aar Z Bse® + Z AseS

Se&\(N.T} Se&\(N.T}

=ée'+ Z (ArBs + As)e’.

Se&\(N,T}

This implies that ZSGE\{N nrBs + rs)eS = 0.If ApfBs # Ag for
someS € &\ {N, T} we have B + e(ArB + 1) € BT . for small

min

€ > 0.50, A7B8s + As = 0 and therefore As = —Arﬁs for every
S € &\ {N,T}. Now take u € A(€) and take a = ‘” . Since

ur < 0and Ay < 0,a > 0. We have ur = air by defmltlon
and us = —purfs = —arrfs = As forevery S € € \ {N, T}.
For the ‘if’ part of the proof, clearly N € &. Suppose & ¢ EN, .

As & is not minimal, there exists a & ¢ €& such that D € EJ. .
Let L € A(&) and § € A(D). Define u = (1 — b)A + bé, where
b > 0is sufficiently small, such that the sign of §s equals the sign
of us forevery S € &.Clearly, u € A(€).Take T € & \ D and
Ue &§ND,U # N.Such a U exists, as {N} is not a minimal
exact balanced collection by definition. Since ur = (1 — b)Ar
and uy = (1 — b)Ay + bdy # (1 — b)Ay, there does not exist
a scalar a > 0 such that ur = air and uy = aiy, which is a
contradiction. O

S

We have shown that for minimal exact balanced collections either
the corresponding weight vector is unique or all corresponding
weight vectors induce the same constraint on the game. This
enables us to use one standardized weight vector for every minimal
exact balanced collection. In the remainder, for every minimal
balanced collection 8 we denote 8% for the unique balanced
weight vector. More general, for every & € EN. with N ¢ &,
we denote A8 for the unique exact balanced weight vector. For
& € EN._with N € €, A denotes the unique standardized exact

min
balanced weight vector such that min{k | S € &} = —1. Notice
that for notational convenience, for 8 € BN, the standardized

weight vector is both denoted by 8% and A%.
4. Partitioning the class of minimal exact balanced collections

In this section we study the structure of the class of minimal
exact balanced collections. It turns out that this set can be
decomposed in three parts, all related to balanced collections. The
first part consists of all minimal balanced collections.

N N
Theorem4.1. B, CE_. .

Proof. Let 8 € BNY, . It is clear that every minimal balanced
collection is also exact balanced. It remains to show that it is also
minimal exact balanced. Assume there exists an exact balanced
collection & C B andtake A € A(8). We will show that this results
in a contradiction with & € Bl

Since 8 € B, we know that there exists a T € & such that
Ar < 0 as B does not have a proper subset that is balanced. Take

B
a= min{% |S €&\ {Thandy = (8% — ar). Note that

0 <a< 1since B > 0andAs > OforallS € &€ \ {T},anda > 1
would imply that

Z)Lses = Z kges +)»T€T,
Seé Seé&\(T}
> BEe + e
Se&\(T})
= AC.
See

eN.

A

IA

Now ys > O for all S € B, with equality for at least one coalition.
Take @ = {S € & | ys > 0}. Then € is a proper subset of 8 and

D yset =) ysef —Z A S—Z]aisaes

See SeB SeB Se€

1 v a Ny n

= —_ e =e

1—a 1—a

)

so € € BY, contradicting 8 € BY. . O

The second part of the partition of EN. = consists of so-called

negative balanced collectlons The set of all negative balanced

collections is denoted by IB%mm The negative balanced collections
can be obtained, by replacing one coalition in a minimal balanced
collection by its complement. However, this is only allowed for the
coalitions with weight strictly smaller than 1. We have

N ={B\(SHUUN\S) |8 eB' .ScB:p2 <1}

Example4.2. Let N = {1, 2, 3,4}, and consider the minimal
balanced collection 8 = {{1, 2}, {1, 3}, {2, 3}, {4}}. For the weight
vector 8% it holds that ﬁ? 5 = 1 . This means that & = (8 \

{{1,2}h U ({{3,4}) = {{3.4} {1 3),{2,3), {4)) € By, Itis
readily checked that & € EV, since e!13) 4-¢{2:3) f 2p{4 _ (3.4} — oN,
As ﬂﬁ} = 1, we cannot replace the coalition {4} by its complement

to obtain an element of By, . [

For every negative balanced collection we use the balanced
weight vector of the corresponding minimal balanced collection to
compute an exact balanced weight vector. The negative weight of
the exact balanced weight vector is placed on the coalition that has
replaced its complement.

Theorem 4.3. Let § € ]B . Let B e ]BN ,and U € B be such that
€ = (B\{UDU(N\U)). Lem5 BforallS € B\{U}, Ay =

_
1-p3
Proof. As 8 € Bl and ¥ < 1, weknow N\ U ¢ B. As

B
0 < B{# < 1, we obtain that As = lfsﬂﬁ > OforallS € &\ {U}
u

and As = 0for S € N \ €. Then 1 € A(E).

B
and Ayvy = —]ﬁ—"s < 0.Fori e U,
7/3”
B 1
Z As = 1 : ] Z ﬂs =1
5€€.,55i Ses\{U},S3i © IBU - ﬂU SeB\{U},S3i

and fori € N \ U it holds that

T = BZ _ BJ

_ 38
Seg,Sai 1 ﬂU

So,indeed A € A(§). O

B
SeB\{U},S3i -85

By definition of EN
B € BN, , we have N ¢ & for every € € Bmm Hence, for this
second part of the partition we can focus on collections without the
grand coalition. Consider such a collection which is not minimal
balanced. Then it is minimal exact balanced if and only if it is
negative balanced. This also implies that the exact balanced weight
vector of Theorem 4.3 is in fact the unique exact balanced weight
vector.

and the observation that N ¢ 8B for every

Theorem 4.4.
. =N

(1) IB3mm < IE:{'\Jnm \B

(i) Let & € EN.

min

min®

\BN. andN ¢ €. Then € € IB%mm
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. Let B € BN

rmn

Proof of (i). Let & € B
€= (:B\{U})ucN\{U}).Letxs =

f’éﬁ and As = 0 for S € W \ &. From Theorem 4.3, it follows
U

that & € A(€) and therefore & € EV.

We prove that & € EN. . Assume on the contrary that there
exists a subset D C &, with D € EJJ. . By minimality of 8, it must
hold that N \ U € D as otherwise £ C B which would be in
contradiction with Theorem 4.1.

We distinguish two cases:

(i) Assume A9 > OforallS € D\ {N\ U}. We know A0, < 1,

since AR\, = 1 would mean that D \ {N \ U} is a balanced
collection on U which contradicts minimality of 8 as we can
omit U from 8. Given that )‘ﬁ\u < 1, we can reverse the

and U € 8 be such that

procedure for constructing &:take A= (D\{N\UHU ({U})
and take s = forallS € D\{N\U}anday = — ”20” .
r 2u =Ry

We obtainas > OforallS € A\ {U}and oy # 0. Furthermore,
forie U:

As MW\
Z s = Z 1—22 - 1—22

SeA,Si SeD\{N\U},S>i N\U N\U
_ 1 _ )‘i{lJ)\U 1
B )“;?\U 1- )“;?\U -
and fori € N \ U it holds that
D D
2 o= D 1—ki°© e ig’\u =1
SeA,Soi SeD\{N\U},Sai N\U N\U

So, @ € A(#A) and therefore A € EN. As A C B this
contradicts our assumption of 8 € EJl. .

(ii) Assume A“D < OforsomeT € D \ {N \ U}, which means that
D e BV, \ BN _

, and take

min and A0, > 0.Take ¢ =

N\U
TeD such that A}@ < 0. We construct the weight vector y
with ys = ,85+ T AP forallS € €and ys = 0ifS € ¥\ €.
Furthermore take@ = {S € & | ys # 0}.By definition of 8, we
obtain yy\y = 0and ys > OforallS € €\ {T}.So, ¢ C B and
y € A(C) so we obtain a contradiction with the minimality of
B.

So, we have & € EN. . From Theorem 3.7 it follows that A(§) =

{A}.Since Ayyy < 0,8 € ]Emm \ BN,
Proof of (ii). Let & € EN, \ BN, andN ¢ &.TakeT € & such that

}tf < 0.Take B = (& \ {T}H U {N \ T} and define s = for all

Seé&\{T}and By\r = —
Furthermore, fori € N\ T:
AE 1 A8

Z'BSZZﬁ‘FﬂN\T:_i— L =1,
SeB,Sai Seg,Sai T T
and fori € T it holds that

AE 1-28
2, A=) 1—28  1-a8

SeB.Ssi Seg\(T},Sai

T Ag We obtain s > 0 for allS € B.

So, 8 € BM.It remains to show that 8 is minimal. Here we need the
condition that N ¢ &, since there is no minimal balanced collection
that contains N. If 8 is not minimal, then there exists a B’ € Bﬂm
such that 8’ C B. More precisely, as every balanced collection is
the union of minimal balanced collections there exists a 8’ € BN

min
suchthat N\ T € B'.

First suppose there exists a 8 € A1 (8’) such that ,B;,\T < 1

Then we obtain by definition ofﬁﬁ’ﬁn that (B"\ {N\T}H U ({T}) €
B C EN. \BN. . Consequently, we have 8'\ {N\T}U (T} C &,

min min min*®
a contraction with the minimality of &.

Next suppose that for every minimal balanced collection ¢ ¢ B
with (N \ T) € ¢ it holds that ,Bﬁ\T = 1. Take such a minimal
balanced collection ¢ C 8B with (N \ T) € C. We define a new
collection ;D @ \{N\T}.Since N\T <;Z i) we have D ¢ &.Also,
Y ses Bs € = " and therefore Y, fe® = e — g1 e\ =T
This contradicts the minimality of &, since we can take §s = ¢ for
everyS € D and 7 = —1,and we have (1 —¢€)8 + €8 € A(8) for
smalle > 0. O
The third part of the partition consists of the minimal subbalanced
collections. These collections consist of all minimal balanced
collections of a subgame, to which the grand coalition of both the
subgame and the original game are added.

For every M C N such that |M| > 2, define

rnln(M) {BU{M,N} | B eB
Also, define
Byin = Uncn, =2 B (M),

as the set of all minimal subbalanced collections.

For every minimal subbalanced collection, we can relate the
weight vector of the underlying minimal balanced collection of a
subgame to an exact balanced weight vector. For all coalitions in
the balanced collection, the weight in the exact balanced weight
vector is equal to the weight in the underlying balanced weight
vector. The weight on the grand coalition of the subgame equals
—1 in the exact balanced weight vector, and lastly the weight on
the grand coalition in the original game equals 1.

min

Theorem 4.5. Let € € BY. Let M C N and 8 € BY.  be such that

& = (BU{M,N}).Let As = ﬁs forallS € 8, Ay = —1, Ay =1
and As = 0forallS € N \ & Then A € A(E).

Proof. It is readily checked that Y o Ase® = > 5 B’ —eM +
eV =eNVand As > OforallS € & \ {M}.Hence, A € A(§). O

The following theorem shows that every minimal subbalanced
collection is minimal exact balanced. Also, every minimal exact
balanced collection that contains the grand coalition is a minimal
subbalanced collection. This also means that the weight vector
of Theorem 4.5 coincides with the standardized weight vector as
introduced in Section 3.

Theorem 4.6.

( ) IBglr\rlnn g E%m \Bmm' ~N

(ii) Let € € E}, \ BN, andN € &. Then & € B, .

Proof of (i). Let € € BY, .LetM C N and 8 € B, be such that

€ = (BU{M,N}).Let s = B¢ forall s e B, ay=—-1Ay=1
and As = Oforall S € & \ &. Theorem 4.5 shows that A € A(§),
s0 & e EN.

Suppose & ¢ EN. . Take D C € such that D € E’r‘im We have
N € D since the players in N \ M are not present in any other
coalition in &. This also implies that Ay’ = 1. As {N} ¢ EN we have
Y seo\n) ~o € = 0. This means that there existsa T € D \ {N}

such that A < OandS < TforallS € D \ {N}. Hence,

> seo\N.T) —;—;es =el,soD\{N,T} e B
First, suppose T = M.Then D C & gives D\ {N, M} C B which
contradicts B € BM, .
Second, suppose T # M. Note thatS C M foreveryS € D\ {N}
as D\ {M,N} € B and 8 € B, .Soin particular T C M. On

the other hand, we have shown that S € T forall S € D \ {N}.
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Hence, M ¢ D and D \ {N} ¢ B. Define the weight vector § such
that §s = )f@ forall S € D \ {N} and §s = 0 otherwise. Now,
for small € > 0 we have eA? + 8% € AT(8) which contradicts
Theorem 2.7.

Proof of (ii). By Theorem 3.9 we have )Lff, = 1.Take T € ¢
such that A{ = —1. We have Y 5 . vy As¢® = 0 which yields
Y scevpv.r) As€® = e, and therefore € \ N, T} € B'. If there exists

a minimal balanced collection 8 € Bfmn suchthat 8 C & \ {T, N},
itis readily checked that 8U{T, N} is an exact balanced collection,

Wthh contradicts our assumption of € € EN. . Hence, &\ {N, T} €

Bl and€ € BY, . O
The following corollary follows from Theorems 4.1, 4.4 and 4.6.

and BN,

min’ min

Corollary 4.7. The three sets BY B

of IEmm

form a partition

min’

5. Sufficient conditions for exactness

As mentioned before, the class of minimal balanced collections
is useful as one does not need other balanced collections to check
whether a game is balanced. The class of minimal exact balanced
weights exhibits the same feature: the following theorem shows
that we only need the minimal exact balanced collections to check
whether a game is exact.

Theorem 5.1. Let v € V(€) forall & € EN, . Thenv € V.

Proof. Let D € EN \ EN. . Let§ € A(D). It suffices to show that
vevV(d)ie,) s.p 551)(5) < v(N).

First, assume8 € A*(i)) Then Theorems 2.6 and 4.1 imply that
v e V().

Second, assume that § ¢ AT (D).TakeU € D such thatdy < 0.

IfU = N, then define € = D \ {N}and ys = —— forallS € €
andys = O0forallS € & \ €. We have y € A+(@) and € € BN,
Note that v € V(§) is directly implied by v € V(y). Hence, in the
remainder we will assume that U # N.

Since D ¢ EJ}, , we can take 4 € EY. such that 4 C D.

Case 1: A} > 0, so either A;} > O or U ¢ A If A € EN. \ BN,
then take T € # such that A"" < 0.1f A € BY.  defineT = #.

min’
Define a = mm{ | S € A\ {T, U}}. We first show thata < 1.

Suppose on the contrary that a > 1. As §s > )L;*’ for every
S e D\ {U},wehaveforie N\ U that

Z(SS_ Z 85> Z )\.Azl,

SeD, SeD\{U}, SeD\{U},
Soi Sai Sai

a contradiction.
If we can find an 4 € EN such that A C D and Neepn. V()N

V(A) € V(5), we may conclude that N v V(E) € V(8). We
discriminate between two subcases:
e a=1IfT\ U # ¢, thenfori e T\ U it holds that

Z(SS_ Z As + 87 > Z )L‘A—f—)CA—]

SeD, SeD\(T,U}, SeD\{T,U},

Sai Sai Sai

which cannot hold. On the other hand, if T \ U = {, define
5s—

Ks = M s forallS € D,xky = landks = Oforall S €

N\(i)U{N}).TakeJC ={S € DU{N} | «s # 0}. Now
V(k) NV(A*) C V() as from
OF =80) Y _ksv(S) = D (s —AHv(S)
SeXx SeD\{U}
— O = svU) + (A — du)v(N)
< (A — du)v(N),
and ) s, 22v(S) < v(N) itfollows that ) s_, 8sv(S) < v(N).

Note that X \ {N, U} e BV asks > OforallS € X \ {N, U} and

ZKSES: Z 5se5 — Z rte

Sex SeD\(U} SeDV(U)
1
= . ((e —sye’) — (" — ey
=eY.
e a < 1.Wedefinexs = 1-8s — ;=2¢ forallS € D, k5 =0

forS € & \ D and define X = {S € D | «s # 0}. By
definition of a, we obtain X C D. It is now easily seen that
V() NV(A*) CV(8),as

D ssuS) =(1—a) Y ksv(S) +a)_ Afv(S) < v(N).

Sed SeX SeA

Note that X € EN and x € A(K),asks > OforallS e
K\ {U}, ky < 0,and

1 a
Se%l(ses :Sezm(l_aas— 1—a s)es
ZSS ——ZA’A’eS_e

Se;D SeA,

Case 2: A} < 0.Takea = min{% | S € A}.Itholds thata < 1,
S

asa = 1would imply that s = A2 forall S € 4 which implies
8s = O0forallS € D \ . Furthermore, a > 1 would imply that
D5 ssi®s > Dseassiry = 1forie N\ U.

Again, if we can find an 4 € EN such that 4 C D
and Ngnv V(E) N V(A) < V(§), we may conclude that

Neceh. V(E) C V(). We construct ks = -85 — 7222 for all

SceDand X = {S € D | ks # 0}.Wehave V(x)NV (L") C V(§),
as

D suS) =1 —a) ) ksv(S)+ay  rfv(S) < v(N).

SedD SeX SeA

We have X € EN and k € A(X) since ks > OforallS € X \ {U}
and ) o, kse® =e. O

The equivalent of Theorem 2.8 for minimal exact balanced
collections however does not hold, as there exist minimal exact
balanced collections that are redundant. The following example
illustrates this.

Example 5.2. Consider the minimal exact balanced collections
8 = {{1,2},{1,3}, {2, 3}} with weight vector 8% such that
Bl = Bls = Bbs = 3.€ = {1}, {2, 3}} with weights
B = Bos = land & = {{1,2},{1,3}, {1}} with A{},, =
M3 = land A{ = —1. We have V(€) N V(€) C V(&B), since
8 _ 1ge 3

B* = iﬂ + Z)L . O

The question arises which minimal exact balanced collections
we can discard. It turns out that for [N| > 3, Ngpn \pv V(E) C

V. So, we can omit all the minimal balanced conditions. To show
this, we first introduce a lemma to construct particular members
of EN.

min*

Lemma5.3. Let [N| > 3andtakeS € N and T € N such that

SNT =40

(i) IfSUT = N,|T| > 2andi € T, then {SU {i}, T, {i}} €
mm\Bmm

(i) F SUT # N, then {S, T,SUT, N} € E}, \ BN, .
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Proof of (i). The collection {S U {i}, T, N \ {i}} is minimal balanced
with weight vector A such that Asupy = Ar = Anyy = % By
definition ofIBSmm, we have {SU {i}, T, {i}} € B By Theorem 4.4
this means that {S U {i}, T, {i}} € Emm \ BN
Proof of (ii). The collectrg)n {S, T} is minimal balanced for player
setS U T. By definition of]B in(SUT), wehave {S,T,SUT,N} €
mm(S U T). By Theorem 46 this means that {S,T,S UT,N} €
\ BN |

min*

min*

lTlll'l

Theorem 5.4. Let v € V(&) forevery & € E
Thenv € V.

Proof. Let B € BY. .First, consider the case where B is a partition.

Assume B8 = {S,T} for some S,T € 2N \ {#}. Note that
ﬂs = /37 1. Without loss of generality, we assume |S| < |T]|.
Takei € T, A = {{i}, S, S U {i}, N} with A}, = A8 = A{ = 1and
Mg = —land D = {SU (i}, T, {i}} with A0, = A? = Tand
Ay = —1.Bylemma5.3, A € EY; \ B}, and D € EJ, \ B}, .
Now v € VT (8) follows from v € V(A) and v € V(D): from

v({i}) + v(S) —v(S U {ih) + v(N) = v(N),
and

v(S U{i}) +u(T) —v({i}) < v(N),

it follows that

v(S) +v(T) < v(N).

We show that for every partition 8 with |8| > 3 there exists a
partition € such that |G| < 8] and Ngen. \BN vEe)nve) <
V(8). This suffices to show that Ng en. \BN. V() C V(B) for
every partition 8 € BY. .

Assume that B is a partrtlon of the player set N, with | 8| > 3.
TakeS € 8 and T € B withS # T. Define A = {S,T,SUT, N}

N\ BN. and|N| > 3.

with A& = A = A = land A%; = —1. By Lemma 5.3 we
have A € EN. \ BN, . Define D = (8\{S,T}) U{SUT}and

8 € A(D) suchthat s = 1forallS € D. It is readily checked
that V(D) N V(4A) € V(B). Furthermore, D is a partition and
|D| < [B].
Second, consider the case where 8 is not a partition. Take T €
B such that B < 1.As B is not a partition, such a coalition exists
andN\T ¢ B.Define@ = {T,N\T}and D = (JB\{T})U{N\T}
B

with §s =
T T

already shown that NgerN, \a) vV(e) C V(o). Furthermore, by

\ BY. .From

min*

Theorem 4.4 we know that D eEN

BE(T) +v(N\T)] < BFv(N),
and

(1—ﬁ$”)( > ﬁfﬂ£u(s)— ﬁiv(w\r)>
SeD\(N\T) =87 1—pr

< (1= BN,
it follows that
> BEV(S) < v(N).
SesB
So ﬂge]EN \BY V(€) CNg. B V(8). Therefore, v € V ifand only
1fvev(8)forall€e]EN \]E O

min min*

min

We have shown that for verifying that a game is exact, the class
of minimal balanced collections is redundant. However, as the
following example demonstrates, there exists an even smaller
subclass of the class of minimal exact balanced collections that still
ensures exactness of the game.

Example 5.5. Let N = {1, 2, 3, 4}. Consider the minimal exact bal-
anced collections A = {{2}, {1, 4}, {1, 2,4}, N}, D = {{1, 2, 4},
{1,2,3},{1,2}} and & = {{2}, {1, 2}, {1, 4}, {1, 2, 3}}. From

v({2}) +v({1,4}) —v({1,2,4}) + v(N) < v(N),

and

v({1,2,4}) +v({1,2,3}) —v({1,2}) = v(N),

we have that

v({2}) + v({1,4}) + v({1,2,3}) —v({1,2}) = v(N).

This implies that V(4) N V(D) C V(&), so & isredundant. O

Further research on the topic could possibly establish a character-
ization of a subclass of minimal exact balanced collections that is
sharp, in the sense that no collection can be left out while still guar-
anteeing exactness.

6. On the construction of minimal exact balanced collections

Using Theorem 2.6, it can be checked if a game is balanced uti-
lizing minimal balanced collections only. However, the efficiency
of this approach depends on the construction of these collections.
Peleg (1965) provides an efficient and comprehensive algorithm
for obtaining all minimal balanced collections. Given a player set
and the corresponding class of minimal balanced collections, the
algorithm constructs from every minimal balanced collection a
number of candidate collections for a player set with one player
extra. By checking a number of basic conditions on the candidate
collection and the weight vector of the collection on the smaller
player set, it is readily checked if the candidate is indeed minimal.

This procedure can be extended to efficiently check for exact-
ness of a game. As we derived an explicit relation between min-
imal balanced collections on the one hand and minimal negative
balanced collections and minimal subbalanced collections on the
other hand, the collections and their respective weight vectors
can be constructed from the minimal balanced collections. The-
orems 4.4 and 4.6 prove the relation between minimal balanced
collections on the one hand and minimal negative balanced col-
lections and minimal subbalanced collections on the other hand.
Theorems 4.3 and 4.5 show how the exact balanced weight vec-
tors can be obtained from minimal balanced weight vectors. Note
that the minimal balanced collections of every subset of the player
set, which are needed to construct the minimal subbalanced col-
lections, are constructed by the Peleg procedure in the process.
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