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Abstract

In the context of an infinitely repeated Prisoners’ Dilemma, we explore how
cooperation is initiated when players signal and coordinate through their actions.
There are two types of players - patient and impatient - and a player’s type is
private information. An impatient type is incapable of cooperative play, while if
both players are patient types - and this is common knowledge - then they can
cooperate with a grim trigger strategy. We find that the longer that players have
gone without cooperating, the lower is the probability that they’ll cooperate in
the next period. While the probability of cooperation emerging is always positive,
there is a positive probability that cooperation never occurs.

∗We thank the constructive and insightful comments of two anonymous referees.
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1 Introduction

Antitrust and competition law has long recognized that collusion comes in two vari-
eties: explicit and tacit. Explicit collusion involves express communication among the
parties regarding the collusive agreement - what outcome is to be supported and how
it is to be sustained. Tacit collusion is coordination without express communication.
A common form of tacit collusion is indirect communication through price signaling:
A firm raises its price with the hope that other firms will interpret this move as an
invitation to collude and respond by matching the price increase. As a member of
the 7th Circuit Court, Judge Richard Posner articulated such a mechanism in the
High Fructose Corn Syrup decision:

Section 1 of the Sherman Act forbids contracts, combinations, or con-
spiracies in restraint of trade. This statutory language is broad enough,
as we noted in JTC Petroleum Co. v. Piasa Motor Fuels, Inc (1999), to
encompass a purely tacit agreement to fix prices, that is, an agreement
made without any actual communication among the parties to the agree-
ment. If a firm raises price in the expectation that its competitors will
do likewise, and they do, the firm’s behavior can be conceptualized as
the offer of a unilateral contract that the offerees accept by raising their
prices.1

Of course, a firm raising its price in anticipation that it may be subsequently
matched is taking a risk because rival firms may not respond in kind, either because
they failed to properly interpret the price signal or deliberately chose not to collude.
If the price rise is not matched then the firm will experience a decline in profit from
a loss of demand. The prospect of such a signalling cost was well-recognized in
the airlines industry where tacit collusion was implemented not with actual price
increases but instead the announcement of future price increases which could be
retracted (prior to any transactions taking place) in the event that rival firms did not
respond with similar announcements (Borenstein, 2004). However, when such price
announcements are unavailable as a signalling device, a firm must then consider the
risky route of raising price without knowing how rivals will react. Of course, a firm
always has the option of waiting on the hope that another firm will take the initiative
of raising price. The trade-off from waiting is that it avoids the possible demand loss
from raising price but could delay the time until a collusive outcome is reached.

The objective of this paper is to explore the emergence of tacit collusion when
firms perceive themselves as facing a waiting game with regards to price signalling.
The setting is an infinitely repeated two-player Prisoners’ Dilemma under incomplete
information. There are two player types. One type never colludes, while the other
type has the capacity to collude and will surely do so once convinced its rival is
also capable of colluding. As our approach will deploy the equilibrium framework,
we will not be exploring the non-equilibrium process by which players settle upon a

1 In Re High Fructose Corn Syrup Antitrust Litigation Appeal of A & W Bottling Inc et al, United
States Court of Appeals, Seventh Circuit, 295 F3d 651, 2002; p. 2.
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collusive equilibrium; players will always be playing according to some equilibrium.
Tacit collusion in our setting refers to the coordination on collusive prices within the
context of a particular equilibrium. To capture the uncertainty that a firm faces, we
allow not just for uncertainty about the other firm’s type - is my rival willing and
able to collude? - but also uncertainty about what the other firm will do - even if
my rival is willing and able to collude, will it take the lead or wait for me to make
the first move and raise price? This latter uncertainty is modelled by characterizing
an equilibrium in which collusive-type firms randomize between setting a low and a
high price.

To be more concrete, it is not difficult to imagine the owners or managers of two
gas stations at an intersection debating whether to post higher prices on its station’s
sign or instead deciding to "wait and see" what the other station’s manager will do.
Is the other station also contemplating a collusive price hike but similarly holding off
raising price? Or is the other station oblivious to such reasoning and has no intent of
trying to tacitly collude? As time moves on without any price hikes, a station manager
adjusts her beliefs as to whether the other manager is "waiting" or "oblivious" and
modifies her calculus accordingly whether or not to go ahead and raise price. Does
waiting simply delay the ultimate arrival of collusion or could collusion never emerge?

It is important to emphasize that our objective is not to derive a Folk Theorem
or, more generally, characterize the set of equilibrium payoffs. The focus is on be-
havior, rather than payoffs, and, more specifically, to explore the implications for the
emergence of collusion when firms perceive themselves as in a waiting game when
it comes to taking the lead in initiating collusion. For this reason, our analysis will
examine a partial separating equilibrium that encompasses the waiting game feature,
though we will also characterize a separating and a pooling equilibrium. The primary
questions we will explore are: Is the likelihood of collusion declining over time? If so,
does it converge to zero? If it converges to zero, does it occur asymptotically or in
finite time? That is, does a sufficiently long string of failed attempts to collude result
in a collusive type believing that it is so unlikely the other player is a collusive type
that it gives up trying to collude? Or is collusion assured of eventually occurring?2

To address these questions, we focus on a class of equilibria that encompass two
distinct phases: learning and collusion. In the learning phase, players are potentially
signalling their types and seeking to initiate collusion. In the collusion phase, their
types have been revealed and they cooperate in standard fashion using a grim trigger
strategy. Our focus is on properties of the learning phase. We find that the probability
of collusion emerging in any period is declining over time but is always positive; at no
point are beliefs sufficiently pessimistic that collusive types give up trying to collude.
While always positive, the probability of collusion emerging in the current period
(given it has not yet occurred) converges to zero asymptotically. Furthermore, even

2As much of repeated games is about deriving Folk Theorems, it is important to recognize a
distinct body of work for which the focus is on characterizing equilibrium behavior, rather than
characterizing the set of equilibrium payoffs. This work is more applied in nature in that it is largely
concerned with or motivated by observed behavior. An example is Harrington and Skrzypacz (2010)
where conditions are derived for which an equilibrium exists that is consistent with collusive practices
documented for several intermediate goods markets.
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if both players are collusive types, the probability they never achieve the collusive
outcome can be positive. Though collusive type players never give up trying to collude
- in the sense that they always choose the collusive price with positive probability -
they may never succeed in colluding.

While there is a huge body of work on the theory of collusion, none of it, to our
knowledge, explores the emergence of collusion through means that can reasonably
be interpreted as tacit.3 Our model does, however, share some features with the
literature on reputation in that it allows private information over a player’s type
and the space of types includes those which are committed to a particular strategy.4

The seminal work of Kreps et al (1982) examines cooperation in a finitely repeated
Prisoners’ Dilemma where an "irrational" type might be endowed with tit-for-tat,
while a "rational" type optimizes unconstrained. More recently, reputation research
has considered an infinitely repeated game with commitment types with the typical
research objective being to narrow down the set of equilibrium payoffs (compared
to the usual Folk Theorem). When one player’s type is private information, the
issue is cast as whether equilibria with low payoffs for that player can be eliminated;
see, for example, Cripps and Thomas (1997) and Cripps, Dekel, and Pesendorfer
(2005). More recently, there has been research allowing both players to have private
information; see, for example, Atakan and Ekmekci (2008).

Our model considers two-sided incomplete information in the infinitely repeated
setting when the commitment type is myopic. It differs in several respects from
previous work on reputation. Prior research for the infinitely repeated setting has
not explored the Prisoners’ Dilemma but rather other stage games including games
of common interests, conflicting interests,5 and strictly conflicting interests.6 More
importantly, the central issue in the reputation literature is about characterizing the
set of equilibrium payoffs which, as noted above, is distinct from our objective. The
task before us is not to limit the set of equilibria but rather to explore the dynamics
of play for a particular class of equilibria. In our setting, a player ultimately wants
to reveal it is a cooperative type but would like to do so only after the other player
has done so. Thus, the issue is about the timing of building a reputation and whether
that tendency to wait prevents cooperation from ever emerging. In this sense, our
equilibrium has some commonality to the war of attrition characterized in Atakan
and Ekmekci (2009) though they consider a different class of stage games.7

3Coordination within the context of a coordination game, rather than a game of conflict, is
explored in Crawford and Haller (1990).

4For a review of some of the research on reputation, see Mailath and Samuelson (2006).
5The Stackelberg action for one player minimaxes the other player.
6Player 1’s Stackelberg action along with player 2’s best reply produces the highest stage game

payoff for player 1 and the minimax payoff for player 2.
7 In Atakan and Ekmekci (2009), the equilibrium is equivalent to a war of attrition as each player

seeks to hold out revealing it is not committed to its Stackelberg action. In their setting, the player
that concedes in the war of attrition increases its current period payoff relative to not conceding,
but ends up with a lower future payoff than if its rival had conceded. In our setting, the player that
concedes decreases its current period payoff, relative to its rival conceding, but suffers no disadvantage
in terms of its future payoff from having conceded first. In our setting, waiting occurs in order to
avoid a short-run cost fron conceding, while, in their setting, waiting occurs to influence the future
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Though for complete information, a related mathematical structure to that ex-
plored here is Dixit and Shapiro (1985). They consider a repeated Battle of the Sexes
game which can be interpreted as two players simultaneously deciding whether or not
to enter a market. It is profitable for one and only one firm to enter. The stage game
then has two asymmetric pure-strategy equilibria and one symmetric mixed-strategy
equilibrium. In the repeated version, the dynamic equilibrium has randomization in
each period with, effectively, the game terminating once there is entry. Farrell (1987)
considers this structure when players can precede their actions with messages. One
can consider our equilibrium as encompassing a waiting game for which the terminal
payoff (received after firms’ types are common knowledge) is either the present value
of the collusive payoff (when both are collusive types) or the non-collusive payoff
(when one or both are non-collusive types).

After describing the model in Section 2, we define in Section 3 a class of Markov
Perfect Bayesian Equilibrium (MPBE) possessing distinct learning and collusion
phases. Sections 4 and 5 consider particular MPBE for which the learning phase
is non-trivial and derives properties relating to the likelihood of collusion emerging.
In Section 6, additional results are derived for some examples. Concluding remarks
are provided in Section 7, and all proofs are in the appendix.

2 Model

Consider a two-player Prisoners’ Dilemma:

Prisoners’ Dilemma
Player 2

Player 1
C D

C a, a c, b

D b, c d, d

where C is interpreted as the high collusive price, and D as the low competitive price.
Assume8

b > a > d ≥ c.

and9

2a ≥ b+ c ≥ a+ d.

The first inequality is standard as it means the highest symmetric payoff has both
players choosing C rather than taking turns cheating (that is, one player choosing
D and the other choosing C).10 The second inequality is new and is critical to our
characterization. This assumption can be re-arranged to b − a ≥ d − c, so that the

payoff.
8 It is typical to assume d > c but we allow d = c.
9Note that we cannot have d = c and b+ c = a+d holding simultaneously as it would then imply

b = a, which violates the assumption that b > a.
10The condition 2a ≥ b+ c is not necessary for our results but rather is to motivate the focus on

players trying to sustain (C,C) in every period.
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gain to playing D when the other player is expected to play C is at least as great as
the gain to playing D when the other player is expected to play D. Let us show that
this condition holds for both the Cournot and Bertrand oligopoly games.

Consider the symmetric Cournot quantity game with constant marginal cost c
and inverse market demand for firm i of β0− β1qi− β2qj where β0 > 0, β1 ≥ β2 > 0;
thus, products can be differentiated. In mapping the Prisoners’ Dilemma to this
setting, action C corresponds to some low quantity ql, and action D to some high
quantity qh. b− a > d− c is then

qh
h
β0 − β1q

h − β2q
l − c

i
− ql

h
β0 − (β1 + β2) q

l − c
i

> qh
h
β0 − (β1 + β2) q

h − c
i
− ql

h
β0 − β1q

l − β2q
h − c

i
,

which holds if and only if qh > ql. The Bertrand price game with homogeneous goods
and constant marginal cost is, loosely speaking, the special case when

b = 2a, a > d = c = 0.

If both set the monopoly price then each earns a. Deviation from that outcome
involves just undercutting the rival’s price which means that the price-cost margin
is approximately the same but sales are doubled so that the payoff is 2a. Given the
other firm prices at cost, pricing at cost as well yields a profit of zero (so, d = 0) as
does pricing at the monopoly price (so, c = 0).11

Players are infinitely-lived and anticipate interacting in a Prisoners’ Dilemma each
period. If players have a common discount factor of δ, the grim trigger strategy is a
subgame perfect equilibrium iff:

δ >
b− a

b− d
. (1)

To capture uncertainty on the part of a player as to whether the other player is willing
to cooperate, it is assumed that a player’s discount factor is private information. A
player can be of two possible types. A player can be type L (for "long run") which
means its discount factor is δ where δ > b−a

b−d . Or a player can be type M (for
"myopic") which means its discount factor is zero (though any value less than b−a

b−d
should suffice). Hence, type M players always choose D. A necessary condition for
cooperative play to emerge and persist over time is then that both players are type
L.

3 Class of Markov Perfect Bayesian Equilibria

There are potentially many equilibria to this game and we’ll focus on what we believe
is a natural class in which there is a learning phase and a collusion phase.12 During
11The reference to "loosely speaking" is that this interpretation requires three prices - monopoly

price, just below the monopoly price, and marginal cost - while the Prisoners’ Dilemma has only two
actions.
12Strategies are described only when a player is type L because, when type M, a player always

chooses D.
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the learning phase, players are exclusively trying to learn about the other player’s
type towards initiating collusion. This interpretation is made appropriate by focusing
on strategies which depend only on beliefs as to the other player’s type (as long as
players’ types are private information) and otherwise are independent of the history
of play. When instead both players’ types are public information, firms enter the
collusion phase if they are both type L by adopting the grim trigger strategy for the
remainder of the horizon. At that point, behavior depends on the history of play.
Finally, there is the case when one player’s type is revealed to be L and the other
player’s type is still private information. We will assume that both players (when
they are type L) adopt the grim trigger strategy. As one player has revealed his type,
the learning phase is over in which case it is natural that the player whose type has
been revealed adopts a grim trigger strategy towards achieving collusion; and the
other player’s best response, if type L, will be to do the same.

To describe strategies during the learning phase, let αt denote the probability that
a player attaches to the other player being type L in period t. For the symmetric
equilibria that we will characterize, αt is common to both players as long as both
players’ types are private information. Since only type L players choose action C
then if, on the equilibrium path, a player chooses C then the player must be type L.
Hence, players’ types are private information only as long as they have both chosen
D. Given symmetric strategies (and symmetric initial beliefs), players have common
beliefs regarding the other player’s type, and these beliefs are common knowledge.
Hence, αt is not only the probability that player 1 attaches to player 2 being type
L but is also player 1’s point belief as to the probability that player 2 attaches to
player 1 being type L, and so forth.

The solution concept is Markov Perfect Bayesian Equilibrium (MPBE), where a
strategy is Markovian during the phase when players’ types are not common knowl-
edge. More specifically, if αt ∈ (0, 1) then a type L agent’s period t play depends
only on αt and no other element of the history; a Markov strategy is then of the
form, q (·) : [0, 1] → [0, 1]. As long as players’ types are private information, beliefs
are updated as follows. Suppose, in period t, αt ∈ (0, 1) and a type L player chooses
C with probability qt ∈ (0, 1) . If a player was observed to choose D in period t then
the other player updates using Bayes Rule:

αt+1 =
αt
¡
1− qt

¢
1− αtqt

. (2)

α1 is the common prior probability.
We can partition the class of MPBE according to q1, the probability that a type

L chooses C in the first period. Initially consider a strategy profile in which q1 = 1;
that is, a type L player chooses C for sure. The strategy is then separating which
means that the learning phase is limited to the first period. If both players choose C
in period 1 then it is common knowledge both are type L and they adopt the grim
trigger strategy. If, say, player 1 chooses D then player 2 assigns probability zero
to player 1 being type L in which case player 2 chooses D, whether of type L or M.
Thus, one or both choosing D in period 1 results in both choosing D in all ensuing
periods, in which case there is no collusion.
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To verify this strategy profile is an equilibrium, we need to show that choosing C
for sure in period 1 is optimal and, in response to both choosing C in period 1, it is
optimal for players to adopt the grim trigger strategy. Regarding period 1, q1 = 1 is
optimal iff

α1
µ

a

1− δ

¶
+
¡
1− α1

¢µ
c+

δd

1− δ

¶
≥ α1b+

¡
1− α1

¢
d+

δd

1− δ
⇒ (3)

α1 ≥ (1− δ) (d− c)

(1− δ) (d− c) + δ (a− d)− (1− δ) (b− a)
(4)

where (4) follows from (3) assuming the denominator is positive. (If the denominator
is negative then (3) does not hold.) The denominator is positive and the RHS of (4)
is less than one if and only if

δ (a− d)− (1− δ) (b− a) > 0⇒ δ >
b− a

b− d
,

which we assumed in (1) to ensure that collusion is feasible under complete informa-
tion. Also note that if this condition is satisfied then, in response to both choosing
C in period 1, it is optimal to adopt the grim trigger strategy for the remainder of
the horizon. In sum, if players are sufficiently patient (as specified in (1)) and attach
sufficient probability to the other player being type L (as specified in (4)) then, when
both players are type L, they will choose action C in the first period and collusion
will immediately ensue. For this equilibrium, the learning phase is trivial.

Next consider a MPBE in which q1 = 0 so that type L players (as well as type M
players) choose D in the first period. Since, by (2), α2 = α1 then, by the Markovian
assumption, q2 = 0. By induction, qt = 0 for all t. This is a pooling equilibrium; it
has no learning phase and firms never collude.

Finally, consider a MPBE in which q1 ∈ (0, 1) so that a type L player assigns
positive probability to both choosing C and D, so it is a partial separating equilibrium.
In that we have already specified what happens when one or both players choose C
(a player who chose C adopts the grim trigger strategy), let us explore the various
possibilities when all previous play involves D having been chosen. There are three
cases: i) ∃T > 1 such that qt ∈ (0, 1) for all t ∈ {1, ..., T − 1} and qT = 1; ii) ∃T > 1
such that qt ∈ (0, 1) for all t ∈ {1, ..., T − 1} and qT = 0; and iii) qt ∈ (0, 1) for all
t.13

Case (i) has firms randomizing until period T at which time (if both have always
chosen D) they choose C for sure. Let us show that such behavior cannot be part of
a MPBE. In period T −1 (assuming both players chose D over periods 1, ..., T −2), a
type L firm is supposed to randomize in which case the payoffs from choosing C and

13With the Markovian assumption, note that case (i) means that if α = αT then q = 1, rather
than stating that players set q = 1 in period T regardless of what their beliefs are. That is, on the
equilibrium path, q (α) = 1 for α = αT and q (α) ∈ (0, 1) for all α ∈ α1, ..., αT−1 . This point
analogously applies to case (ii).
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D must be equal. The payoffs are

Play C: α

∙
q

µ
a

1− δ

¶
+ (1− q)

µ
c+

δa

1− δ

¶¸
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
Play D: α

∙
q

µ
b+

δa

1− δ

¶
+ (1− q)

µ
d+

δa

1− δ

¶¸
+ (1− α)

µ
d+ δc+

δ2d

1− δ

¶
and it is clear that D yields a strictly higher payoff than C regardless of q. The
reasoning is simple and standard. The only way it can be optimal to choose C is that
it somehow positively influences a player’s future payoff. However, when the other
player is type L, a player will receive a

1−δ in the future whether C or D is chosen in
the current period; and if the other player is type M, c+ δd

1−δ is received whether C
or D is chosen. Thus, D is clearly preferred. There cannot then be a MPBE in which
firms initially randomize and then adopt C for sure.

Turning to case (ii), players initially randomize and then (assuming it has been D
all along) choose D for sure in period T. By our Markovian assumption, it also means
choosing D in all ensuing periods. While such an equilibrium can be shown to exist
by construction, this case is not very interesting for our purposes. One of our primary
questions is determining whether players will eventually cooperate. By construction,
this equilibrium provides a negative answer to that question by specifying that, after
some series of periods in which D is chosen, players give up trying to collude and
choose D for sure thereafter. What we cannot sort out with such an equilibrium is
whether giving up collusion is arbitrary (each player chooses D for sure only because
the other player does so) or is necessary (it is not an equilibrium for players to
continue to randomize). This issue can be explored with the equilibria under case
(iii).14

Case (iii) is when players randomize as long as D has always been chosen (and thus
they are uncertain as to players’ types). This is the equilibrium that will draw our
attention for the remainder of the paper. It is worthy of analysis for several reasons.
First, it is useful to know whether such an equilibrium exists or instead equilibria must
be of the form in case (ii) in that beliefs eventually become sufficiently pessimistic
that attempts at collusion must stop. We will see, in fact, that attempts to collude do
not have to stop. Thus, the termination of learning in case (ii) is imposed arbitrarily.
Second, if these equilibria do exist - players keep on trying to collude in the sense of
choosing C with positive probability - there is the question of whether it implies that
collusion will eventually occur for sure. The answer is not obvious as it depends on
whether the probability of choosing C declines over time and the speed of decline.
Third, the primary focus of the paper is on the learning phase which makes this
equilibrium attractive because learning is not arbitrarily assumed to terminate in
some period by firms forsaking the possibility of collusion by choosing D for sure
(as with case (ii)). Instead, firms randomize as long as it is optimal to do so which
continues to provide the opportunity to learn a rival’s type.
14Case (ii) MPBE can be shown to exist by construction using backward induction from period

T . In fact, the MPBE that we focus our attention is the case when T = +∞ and is the limit of case
(ii) MPBE as T → +∞.
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4 Properties of a Markov Perfect Bayesian Equilibrium

In this section we explore some properties of a Markov Perfect Bayesian Equilibrium.
Recall that a MPBE is partly described by: if αt ∈ (0, 1) then a type L agent’s period
t play depends only on αt and no other element of the history, so it is of the form,
q (·) : [0, 1]→ [0, 1]. The particular class of MPBE we will explore are defined by the
following properties. In period 1, choose C with probability q

¡
α1
¢
∈ (0, 1). In period

t ≥ 2, if (D,D) in all previous periods then choose C with probability q
¡
αt
¢
∈ (0, 1);

and if (D,D) in periods 1, ..., t−2 and not (D,D) in period t then choose C and adopt
the grim trigger strategy. Recall that, as long as both players chose D, αt evolves
according to (2). Equilibrium conditions are of three types. First, conditions to
ensure randomization is optimal when (D,D) has always been played. Second, given
both players chose D up to the preceding period and then one player chose C and the
other chose D in the preceding period, it is optimal for the player who chose C to do
so again in the current period (it being the initial move for the grim trigger strategy).
Third, in response to the history just described, it is optimal for the player who chose
D to choose C (again, it being the initial move for the grim trigger strategy). The last
scenario just requires optimality of the grim trigger strategy given the other player
is type L and chooses the grim trigger strategy, which is satisfied iff (1) holds. The
second case is distinct in that player 1 remains uncertain as to the other player’s type.
After dealing with the first set of conditions, we’ll examine the second condition.15

Before tackling these conditions, a comment is order. In deriving equilibrium
conditions, a player will go through the thought experiment of deviating from q (·).
Note, however, that this does not upset the specification of common beliefs. For
suppose player 1 deviates in period t by not choosing C with probability q

¡
αt
¢
. As

each player expects the other to have chosen C with probability q
¡
αt
¢
, each player

assigns probability
αt(1−q(αt))
1−αtq(αt) to the other player being type L. While player 1

knows that player 2’s beliefs about player 1’s type are incorrect, that is irrelevant as
all player 1 cares about is player 2’s type and player 2’s beliefs, both of which are

summarized by
αt(1−q(αt))
1−αtq(αt) . Thus,

αt(1−q(αt))
1−αtq(αt) remains the relevant state variable,

even if a player deviates from equilibrium play.
Suppose both players’ types are private information, so either it is period 1 or

it is some future period but both players have thus far only chosen D. A player’s
expected payoff from choosing C is

WC(α) ≡ α

∙
q

µ
a

1− δ

¶
+ (1− q)

µ
c+

δa

1− δ

¶¸
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
.

15As shown by, for example, Bhaskar (1998) and Bhaskar, Mailath, and Morris (2008), mixed
strategy equilibria for an infinitely repeated game need not be purifiable, which, if that is the case,
removes an important motivation for mixed strategy equilibria. The loss of purification is due to the
loss of local uniqueness of Nash equilibrium. For example, Bhaskar (2000) derived a continuum of
mixed strategy Nash equilibria for a repeated game, none of which were the limit of pure strategy
equilibria of a perturbed game. This concern about purification could well provide a rationale for
our focus on Markov equilibria. With MPBE, randomization only occurs when strategies condition
on players’ (common) belief over the other player’s type. While we have not proven local uniqueness
of such equilibria, it would be most surprising if that was not the case.
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With probability α, the other player is type L and chooses C with probability q which
results in cooperative payoff a being earned in the current and future periods; and
chooses D with probability 1− q so that payoff c is earned in the current period and
the cooperative payoff thereafter. Note that, regardless of the other player’s action,
if the other player is type L as well then both players adopt the grim trigger strategy
thereafter so a is earned in the future. With probability 1 − α, the other player is
type M so D is chosen which results in a payoff of c in the current and subsequent
period (as C is chosen in the next period as well on the hope that collusion will have
been initiated) and the non-collusive payoff d thereafter. Simplifying this expression,

WC(α) = αq (a− c) + (1 + δ) c+ δα

∙
(a− d)

1− δ
+ (d− c)

¸
+

δ2d

1− δ
. (5)

The expected payoff from choosing D is

WD(α) ≡ α

∙
q

µ
b+

δa

1− δ

¶
+ (1− q)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶¸
+(1− α)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
,

which can be simplified to

WD(α) = αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
. (6)

If, in equilibrium, q ∈ (0, 1) then the expressions in (5) and (6) must be the same:

αq (a− c) + (1 + δ) c+ δα

∙
(a− d)

1− δ
+ (d− c)

¸
+

δ2d

1− δ

= αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
.

Re-arranging gives us:

αq =
δ
h

a
1−δ − V

³
α(1−q)
1−αq

´i
− (1− α) δ(a−d)1−δ − [1 + δ (1− α)] (d− c)

δ
³

a
1−δ − V

³
α(1−q)
1−αq

´´
+ (b− a)− (d− c)

. (7)

Define:

α ≡
¡
1− δ2

¢
(d− c)

δ [(1− δ) (a− c) + δ (a− d)]
∈ [0, 1) ,

where α ≥ 0 follows from d ≥ c and a > d. In Theorem 1, we show that players
randomize when α > α.16 To show α < 1, note that

δ [(1− δ) (a− c) + δ (a− d)] >
¡
1− δ2

¢
(d− c)⇔ δ >

d− c

a− c
.

16For the case of d = c, they may also randomize when α = α.
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Given (1) holds, a sufficient condition for δ > d−c
a−c is

b− a

b− d
≥ d− c

a− c
⇔ (b− a) (a− c) ≥ (d− c) (b− d)⇔ b+ c ≥ a+ d

which is true by assumption. Thus, by our previous assumptions, α ∈ [0, 1).
Next consider the situation in which, prior to the previous period, (D,D) had

always been played so that both players’ types were private information, and, in the
previous period, one player chose C and the other chose D. If both are type L, they
adopt the grim trigger strategy. For the player who knows the other player’s type
(and thus knows he’ll choose C), choosing C is optimal iff (1) holds. Now consider the
player whose type has been revealed and remains uncertain as to the other player’s
type. If that player assigns probability α to the other player being type L then he
prefers to choose C iff

α

µ
a

1− δ

¶
+ (1− α)

µ
c+

δd

1− δ

¶
≥ α

µ
b+

δd

1− δ

¶
+ (1− α)

µ
d

1− δ

¶
which is equivalent to

α ≥ (1− δ) (d− c)

δ (a− d)− (1− δ) [(b− a)− (d− c)]
≡ α∗.

α ≥ α∗ iff: ¡
1− δ2

¢
(d− c)

δ [(1− δ) (a− c) + δ (a− d)]
≥ (1− δ) (d− c)

δ (a− d)− (1− δ) [(b− a)− (d− c)]
⇒

1 + δ

δ [(1− δ) (a− c) + δ (a− d)]
≥ 1

δ (a− d)− (1− δ) [(b− a)− (d− c)]
. (8)

Letting δ → 1, (8) holds iff
2

a− d
≥ 1

a− d
,

which is true. Thus, as long as α > α(1−q(α))
1−αq(α) > α and δ is sufficiently close to one

then as soon as one player chooses C, both players, if they are type L, will optimally
adopt the grim trigger strategy.

Theorem 1 states that there is a symmetric MPBE in which, as long as players’
types are private information, a type L player randomizes between playing C and D
when α > α, and chooses D for sure when α ≤ α. When a player randomizes, C is
chosen with probability q (α), as defined in (7). V : [0, 1] → < denotes the MPBE
value function for a type L player. Proofs are in the appendix.17

Theorem 1 There exists bδ ∈ (0, 1) such that if δ > bδ then there is a symmetric
Markov Perfect Bayesian Equilibrium q (·) such that

q (α)

½
= 0 if α ∈ (0, α]
∈ (0, 1) if α ∈ (α, 1]

17 In Theorem 1, it can be show that δ = (d−c)+
√
(d−c)2+4(b−d)[(b−d)−(a−c)]

2(b−d) .
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V (α)

(
= d

1−δ if α ∈ (0, α]
∈
³

d
1−δ ,

a
1−δ

´
if α ∈ (α, 1]

and limα→1 q (α) < 1.

The next result concerns the evolution of beliefs and behavior in response to a
failure to cooperate, by which we mean both players have thus far always chosen D.
Recall that if a player assigns probability α to the other player being type L then,
after observing the other player choose D, the updated probability is α(1−q(α))

1−αq(α) where
q (α) is the equilibrium probability that a type L player chooses C given beliefs α.
Further recall, from Theorem 1, that if α > α then q (α) > 0.

Theorem 2 If q (·) is a symmetric Markov Perfect Bayesian Equilibrium as de-
scribed in Theorem 1 then: i) if α > α then α(1−q(α))

1−αq(α) > α; ii) if α1 > α then

limt→∞αt = α and q
¡
αt
¢
> 0 for all t; iii) if α > 0 then limα↓αq (α) = 0; and iv)

limt→∞ αtq
¡
αt
¢
= 0.

Theorem 2 shows that if α1 > α then αt > α for all t which then implies q
¡
αt
¢
> 0

for all t.18 Therefore, no matter how long players have failed to cooperate, a type L
player will continue to try to initiate cooperation (in the sense of assigning positive
probability of choosing C). In other words, beliefs never become so pessimistic about
the other player’s willingness to cooperate that a player prefers to abandon any
prospects of cooperation by playing D for sure. When α > 0, it is also the case
that the probability of a player initiating cooperation converges to zero over time in
response to the probability that the other player is type L converging to α after a
history of failed cooperation. Note that the probability of a type L player playing C
must converge to zero as the probability of a player being type L approaches α (> 0)
from above. If q (α) was instead bounded above zero then a sufficiently long sequence
of playing D would have to result in a sufficiently small probability of the player
being type L, which would contradict this probability being bounded below by α (at
least when α > 0). Finally, conditional on cooperation not yet having emerged, the
probability assigned to a player initiating cooperation is αtq

¡
αt
¢
in which case the

probability that cooperation emerges out of period t is 1−
¡
1− αtq

¡
αt
¢¢2. While this

value is always positive - so collusion is always a possibility - it converges to zero in
response to an ever-increasing sequence of failed attempts at collusion, in which case
collusion eventually becomes very unlikely to emerge. Whether collusion emerges for
sure is explored for the class of MPBE examined in the next section.

5 Affine Markov Perfect Bayesian Equilibrium

Consider the class of MPBE described in Theorem 1 and let us focus on those for
which the value function is affine in α when players’ types are private information.

18Note that this result is not obvious. If α > 0 then, in principle, αt < α unless q (α) → 0
sufficiently fast as α→ α .
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Definition 3 An affine Markov Perfect Bayesian Equilibrium is a MPBE (as de-
scribed in Theorem 1) in which the value function is affine over α ∈ [α, 1].

Theorem 4 There exists a unique affine Markov Perfect Bayesian Equilibrium. The
value function is

V (α) =

½
d
1−δ if α ∈ [0, α]
x+ yα if α ∈ [α, 1] (9)

where (x, y) is the unique solution to:

x+ y

¡
1− δ2

¢
(d− c)

δ [(1− δ) (a− c) + δ (a− d)]
=

d

1− δ
(10)

x+ y =
2aδ + (1− δ)

h
(b− a)− (d− c)−

√
Ω
i

2δ (1− δ)
. (11)

and

Ω ≡ [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c) . (12)

Furthermore, if α ∈ (α, 1] then

q (α) =
δ (a− d) + δ (1− δ) (d− c− y)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
(13)

+

µ
1

α

¶"
δa− δ (1− δ)x− δ (a− d)−

¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

#

In the preceding section, we established that αtq
¡
αt
¢
converges to zero and thus

is eventually decreasing over time. For affine MPBE, we can now say that αtq
¡
αt
¢

is monotonically declining over time, in which case the probability a player chooses
C decreases with the length of time for which cooperative play has not yet occurred.
It is also the case that a type L player’s equilibrium value is decreasing with the
likelihood assigned to players being type L.

Theorem 5 If q (·) is defined by (13) then αq (α) is increasing in α and V (α) is
increasing in α.

While αq (α) is increasing in α, q (α) need not be increasing in α everywhere,
though we know that eventually it must be increasing in α since it converges to zero
(when α > 0). We next show that when d > c then q (α) is decreasing over time as
lower probability is attached to players being type L (given only D has been chosen
thus far). However, when d = c then q (α) is, interestingly, independent of a player’s
beliefs as to the other player’s type and thus is constant over time. Though it is still
the case that αt is declining, a type L player maintains the same probability of acting
cooperatively.
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Theorem 6 If q (·) is defined by (13) then, for α > α: i) if d > c then q (α) is
increasing in α; and ii) if d = c then q (α) = q0 for some q0 ∈ (0, 1) .

When d = c - so a player is not harmed when choosing the cooperative action -
the probability that a type L player chooses C is fixed at some positive value. Thus,
if both players are type L then, almost surely, players will eventually achieve the
collusive outcome. However, whether cooperative play ultimately emerges is not so
clear when d > c as then the probability of cooperation being initiated converges to
zero. To examine this issue, define QT as the probability that players are still not
colluding by the end of period T, conditional on both players being type L. If q (·) is
a MPBE, QT is defined by

QT =
TY
t=1

¡
1− qt

¢2
where, given α1, qt is defined recursively by:

qt = q
¡
αt
¢
, t ≥ 1; αt =

αt−1
¡
1− qt−1

¢
1− αt−1qt−1

, t ≥ 2.

The next result shows that, even when both players are type L, there is a positive
probability that collusion never emerges even though they never give up trying (that
is, they always choose C with positive probability).19

Theorem 7 If q (α) is defined by (13) and d > c then limT→∞QT > 0.

If both players are type L then, in any period, there is always a positive proba-
bility that one of them will choose the cooperative action and thereby result in the
emergence of collusion. This property follows from αt > α for all t; regardless of
how long the other player has chosen D, a player assigns sufficient probability to its
rival being type L that it is optimal to continue to try to cooperate (as reflected in
choosing C with positive probability). For αt > α (> 0) , it must be the case that
a long sequence of choosing D is not a sufficiently pessimistic signal that the other
player is type L which can only be the case if, as αt → α, the probability that a type
L player chooses C converges sufficiently fast to zero. But, as shown in the previous
result, this also has the implication that the probability that two type L players start
colluding in period t is going to zero sufficiently fast, which means collusion is not
assured. In short, even if both players are willing and able to cooperate, there is a
positive probability that they never do so though they never give up trying.

6 Examples

In this section, we derive the affine MPBE from Theorem 4 for some examples. Ex-
ample 1 is a case in which the probability of a player choosing the cooperative action
is independent of α and, therefore, fixed over time. When players are more patient,

19Theorem 7 is true as long as q (α) = A+B 1
α
for some A and B where B < 0 and A+B < 1.
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we show that collusion is more likely to emerge. In Example 2, the probability a
type L player chooses the cooperative action is increasing in the likelihood it assigns
to the other player also being type L. In response to an ever-lengthening sequence
of failed cooperation, the probability of cooperation emerging is declining. Further-
more, conditional on both players being type L, the probability that collusion never
occurs is positive. Finally, Example 3 considers an asymmetric Prisoners’ Dilemma in
which the collusive outcome does not split the surplus equally. Surprisingly, greater
asymmetry makes collusion more likely to emerge.

6.1 Example 1: Bertrand Price Game

Assume b = 2a, d = c = 0, and normalize so a = 1.

Bertrand Price Game
Player 2

Player 1
C D

C 1, 1 0, 2

D 2, 0 0, 0

This case approximates the Bertrand price game in which, for example, market de-
mand is perfectly inelastic at two units with a maximum willingness to pay of 1, and
firms have zero marginal cost.

Since d = c, we know that α = 0 and the probability of a type L player cooperating
is independent of α and thus constant over time. Equilibrium play and payoffs are
described by20

q (α) =

√
4δ + 1− 1√
4δ + 1 + 1

V (α) =

µ
1 + δ − (1− δ)

√
4δ + 1

2δ (1− δ)

¶
α.

As one would expect, the probability of choosing C is higher when players are more
patient:

∂q

∂δ
=

4¡√
4δ + 1 + 1

¢2√
4δ + 1

> 0.

The probability that two type L players are colluding by period T ≥ 2 is

1−
∙
1−

µ√
4δ + 1− 1√
4δ + 1 + 1

¶¸2(T−1)
.

When δ = .9, Figure 1 shows how the probability of collusion rises rapidly over time,

20Derivations for all examples are available on request.
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and that it is quite close to one by period 10.

Figure 1: Probability of collusion by period T (δ = .9)
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6.2 Example 2: Bertrand Price Game with Relative Compensation

Let us modify the Bertrand price game so that managers - not owners - are re-
peatedly making price decisions and managerial compensation is based on relative
performance. Specifically, a manager receives compensation equal to half of firm
profit but, in the event that the other firm has higher profit, incurs a penalty equal
to one-quarter of the rival firm’s profit. The single-period payoff to a manager is
then:

Payoff of manager i in period t =

½
(1/2)πti if πti ≥ πtj
(1/2)πti − (1/4)πtj if πti < πtj

where πti is the period t profit of firm i. If market demand is perfectly inelastic at
two units with a maximum willingness to pay of 2 (and zero marginal cost) then the
managers’ payoff matrix is represented by

Bertrand Price Game
with Relative Compensation

Player 2

Player 1
C D

C 1, 1 −1, 2
D 2,−1 0, 0

Equilibrium has:

q (α) =

⎧⎨⎩ 0 if α ∈
h
0, 1−δ

2

2δ−δ2
i

[αδ(2−δ)−(1−δ2)](
√
2δ−1)

α
√
2δ(2δ−1) if α ∈

³
1−δ2
2δ−δ2 , 1

i
V (α) =

⎧⎨⎩ 0 if α ∈
h
0, 1−δ

2

2δ−δ2
i

[δ2−1−α(2δ−δ2)][δ−(1−δ)
√
2δ]

δ(1−δ)(2δ−1) if α ∈
³
1−δ2
2δ−δ2 , 1

i
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We know from Theorem 6 that, when α > 1−δ2
2δ−δ2 (= α), q (α) is increasing in α.

If δ = .8 then α = .375 and, for α > .375,

q (α) ' .335− .126

α
,

which is plotted in Figure 2. If players have thus far always played D then, in each
player updating their beliefs as to the other player’s type, αt will fall over time which
then induces type L players to choose C with a lower probability. If a string of (D,D)
gets longer and longer, so that αt → α, q (α)→ 0 and does so at an increasingly fast
rate; note that q (α) is strictly concave in α.

Figure 2: Probability of choosing C, δ = .8
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When a player initially assigns a 50% chance to its rival being type L, the prob-
ability that collusion has not been achieved by period T is shown in Figure 3. There
is a 36% chance that collusion is never achieved.

Figure 3: Probability of No Collusion by Period T , δ = .8, α1 = 0.5
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6.3 Example 3: Asymmetric Bertrand Price Game

Consider the following generalization of Example 1 where the collusive outcome is
now allowed to be asymmetric and γ ∈ [1/2, 1).21

Asymmetric Bertrand Price Game
Player 2

Player 1
Cooperate Defect

Cooperate γ, 1− γ 0, 1

Defect 1, 0 0, 0

The collusive outcome gives player 1 a market share of γ which is at least 1/2. There
is an affine MPBE with

q1 =

p
γ(γ + 4δ(1− γ))− γp
γ(γ + 4δ(1− γ)) + γ

q2 =

p
(1− γ)(1− γ + 4δγ)− (1− γ)p
(1− γ)(1− γ + 4δγ) + (1− γ)

V2(α1) =

"
(γ − δ + 3δ(1− γ))− (1− δ)

p
γ(γ + 4δ(1− γ))

2(1− δ)δ

#
α1

V1(α2) =

"
(1− δ − γ + 3δγ)− (1− δ)

p
(1− γ)(1− γ + 4δγ)

2(1− δ)δ

#
α2.

As with Example 1, q1 and q2 do not depend on α. One can prove that q1 is decreasing
in γ and increasing in δ, and q2 is increasing in γ and δ.

It might be expected that the player with the higher share of collusive profit
would play C with a higher probability. However, when the share of collusive profit
for player 1 (γ) is larger, the probability of playing C is actually higher for player 2
and lower for player 1. Since player 1 gains more by achieving cooperative play when
γ is bigger, player 2 must be more likely to play C if player 1 is to be indifferent
between playing C and D; and recall that D is more attractive when the other player
is more likely to initiate cooperation. The player who benefits more from colluding
is then less likely to take the first move in cooperating.

To explore the effect of asymmetry on the likelihood of collusion, consider the
probability that collusion is initiated in any period:

1− (1− q1) (1− q2) = 1−
4µq

γ+4δ(1−γ)
γ + 1

¶³q
1−γ+4δγ
1−γ + 1

´ .
It is straightforward to show that it is increasing in γ,

∂ [1− (1− q1) (1− q2)]

∂γ
> 0, (14)

21A preliminary analysis suggests that many of the results in Sections 3 and 4 can be extended to
when the Prisoners’ Dilemma is asymmetric.
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so collusion is more likely when the collusive outcome is more skewed to favor one
firm.

As the equilibrium condition for the grim trigger strategy is δ ≥ γ, increasing
asymmetry by raising γ makes collusion more difficult in the sense that the minimum
discount factor is higher. However, conditional on the collusive outcome being sus-
tainable, asymmetry reduces the expected time until collusion is achieved, as reflected
in (14). In fact, as asymmetry becomes extreme, collusion is achieved immediately.22

lim
γ→1

q1 (α1) =

p
γ(γ + 4δ(1− γ))− γp
γ(γ + 4δ(1− γ)) + γ

= 0

lim
γ→1

q2 (α2) = lim
γ→1

p
(1− γ)(1− γ + 4δγ)− (1− γ)p
(1− γ)(1− γ + 4δγ) + (1− γ)

= lim
γ→1

q
1−γ+4δγ
1−γ − 1q

1−γ+4δγ
1−γ + 1

= 1

Therefore,
lim
γ→1

1− (1− q1) (1− q2) = 1.

For when δ = .8, Figure 4 depicts the relationship between the asymmetry of the
collusive outcome and the probability of collusion emerging, given it has not yet
happened.

Figure 4: Per period probability of collusion emerging, δ = .8
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7 Concluding Remarks

In practice, communication - either express or implicit - is essential to collusion.
This we know from both experimental work and the many documented episodes of
cartels. Communication can manifest itself in two ways - exchange of information
and exchange of intentions. There is a limited amount of work in oligopoly theory on

22Keep in mind that as we let γ → 1, we must have δ → 1 so that δ ≥ γ is satisfied.
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collusion and the exchange of information. In Athey and Bagwell (2001, 2008), firms
have private information about their cost and exchange (costless) messages about
cost, while in Hanazono and Yang (2007) and Gerlach (2009), firms have private
signals on demand and seek to share that information. Then there is work in which
sales or some other endogenous variable is private information and firms exchange
messages for monitoring purposes; see Aoyagi (2002), Chan and Zhang (2009), and
Harrington and Skrzypacz (2010).23 Communication may also be used to resolve
strategic uncertainty; specifically, in order to coordinate a move from a non-collusive
to a collusive equilibrium. Here, intentions rather than hard information is being
communicated.

Within the context of the equilibrium paradigm, the current paper sought to make
progress on the tacit signalling of the intention to collude. In a sense, signalling in our
model is part information (regarding a player’s type) and part intentions (regarding
cooperative play). Let us summarize our main findings. If the initial probability
that players are capable of colluding is sufficiently high then, in any period, there is
always the prospect of collusion emerging; no matter how long is there a history of
failed collusion, beliefs as to players being cooperative types remain sufficiently high
that it is worthwhile for them to continue to try to cooperate. This does not imply,
however, that collusion is assured. For a wide class of situations, there is a positive
probability that collusion never emerges. Players never give up trying to collude but
they may also never succeed.

In terms of future work, one research direction is to allow a player’s type to change
over time, rather than remain fixed forever.24 When a cooperative type raises price
and does not receive a favorable response, it’ll infer that its rival is an uncooperative
type. In that case, it might be inclined to try again later on the hope that the rival’s
type has changed. But it may also be the case that a player who has previously failed
to respond in kind to an invitation to collude will see itself as having the onus to
initiate cooperation (in the event that its type changes) because its rival believes it
is an uncooperative type. Now suppose players are currently engaged in cooperative
play. A deviation by a player is part of equilibrium play and signals a change in a
player’s type to being uncooperative. Assuming persistence in types, the punishment
of the deviator would have a certain credibility (beyond simply being an equilibrium)
in that the other player believes there is little point in trying to cooperate. Indeed,
non-cooperation may be the unique equilibrium. All this could put the burden on the
deviator to re-initiate cooperation. Even this cursory analysis suggests that a rich
set of behavior could arise from allowing types to evolve stochastically over time.

23There is also an extensive game theory literature on the issue of private monitoring. See Compte
(1998), Kandori and Matsushima (1998), Kandori (2002), Zheng (2008), and Obara (2009)
24Recent work by Escobar and Toikka (2009) provides a foundation for such an analysis.
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8 Appendix: Proofs

Proof of Theorem 1. Let us first establish the stated properties on q (·). A player
strictly prefers D to C iff:

αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
(15)

> αq

µ
a

1− δ

¶
+ α (1− q)

µ
c+

δa

1− δ

¶
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
.

Note that V (α) has a lower bound of d
1−δ - as a player can assure itself of a payoff

of at least d
1−δ by always choosing D - which then implies V

³
α(1−q)
1−αq

´
≥ d

1−δ . Thus,

a sufficient condition for (15) involves substituting d
1−δ for V

³
α(1−q)
1−αq

´
:

αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δ

µ
d

1− δ

¶¶
(16)

> αq

µ
a

1− δ

¶
+ α (1− q)

µ
c+

δa

1− δ

¶
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
or

αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d

1− δ

¶
− αq

µ
a

1− δ

¶
(17)

−α (1− q)

µ
c+

δa

1− δ

¶
− (1− α)

µ
c+ δc+

δ2d

1− δ

¶
> 0.

Take the derivative of the LHS of (17) with respect to q:

α

µ
b+

δa

1− δ

¶
− α

µ
d

1− δ

¶
− α

µ
a

1− δ

¶
+ α

µ
c+

δa

1− δ

¶
(18)

= α [(b− a)− (d− c)] + αδ

µ
a− d

1− δ

¶
> 0,

since b− a ≥ d− c and a− d > 0. Hence, the difference between the payoff to D and
the payoff to C is minimized when q = 0. Thus, D is surely strictly preferred to C if
(16) holds when q = 0:

d

1− δ
> α

µ
c+

δa

1− δ

¶
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
(19)
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d

1− δ
> c+ α

µ
δa

1− δ

¶
+ (1− α)

µ
δc+

δ2d

1− δ

¶
d

1− δ
− δc− δ2d

1− δ
− c > α

µ
δa

1− δ
− δc− δ2d

1− δ

¶
(1 + δ) (d− c) > δα

µ
a− c+

δ (a− d)

1− δ

¶
α <

(1 + δ) (d− c)

δ
³
a− c+ δ(a−d)

1−δ

´ = ¡
1− δ2

¢
(d− c)

δ [(1− δ) (a− c) + δ (a− d)]
(≡ α)

Thus, if α < α then, in equilibrium, q (α) = 0.
To prove that q (α) = 0, suppose not. It follows from q (α) > 0 that

α (1− q (α))

1− αq (α)
< α.

The preceding analysis showed q (α) = 0 ∀α < α and since q = 0 implies

α (1− q)

1− αq
= α

then, by stationary, qt = 0 ∀t ≥ t0 when αt
0
< α. Hence,

V

µ
α (1− q (α))

1− αq (α)

¶
=

d

1− δ
. (20)

For q (α) > 0, the expected payoff from choosing C must be at least as great as that
from choosing D:

αq

µ
a

1− δ

¶
+ α (1− q)

µ
c+

δa

1− δ

¶
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
(21)

≥ αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d

1− δ

¶
,

where we used (20). However, note that the expressions in (21) are the same as those
in (16). By our previous analysis, if α = α then (16) holds with equality when q = 0
and with strict inequality when q > 0. We conclude that (21) and q (α) > 0 are
inconsistent and, therefore, q (α) = 0.

Finally, let us prove that if α ∈ (α, 1] then q (α) ∈ (0, 1) and limα→1q (α) < 1. To
show that q (α) > 0, suppose not so ∃α0 > α such that q (α0) = 0. By the preceding
logic, V (α0) = d

1−δ . In that case, the payoff to D is at least as great as that from C iff
(19) holds with a weak inequality, but the previous analysis showed that is the case
iff α ≤ α. Therefore, if α > α then q (α) > 0. To show that q (α) < 1, evaluate the
payoffs from C and from D as q → 1 :

Play C : α

µ
a

1− δ

¶
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
Play D : α

µ
b+

δa

1− δ

¶
+ (1− α)

µ
d+

δd

1− δ

¶
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Since choosing D yields a strictly higher payoff ∀α ∈ (0, 1], it follows that q (α) must
be bounded below 1 ∀α ∈ [0, 1]. Therefore, q (α) < 1 ∀α ∈ (0, 1] and limα→1q (α) < 1.

To complete the proof, let us show the properties on V (·) are true, given the
properties on q (·) hold. First note that, in equilibrium, V : [0, 1] →

h
d
1−δ ,

a
1−δ

i
, as

V (α) has a lower bound of d
1−δ and

a
1−δ is an upper bound because the highest average

symmetric payoff is a. If q (α) = 0 then type L players play D for sure in the current
period and since α(1−q(α))

1−αq = α then the same is true for all ensuing periods; hence,

by stationarity, if q (α) = 0 then V (α) = d
1−δ . To show that V (α) ∈

³
d
1−δ ,

a
1−δ

´
when α ∈ (α, 1) , note that q (α) ∈ (0, 1) implies V (α) =WC(α) =WD(α). d

1−δ is a
lower bound on V (α) for all α since at least that value can be achieved by choosing
D in every period. Using the payoff from choosing D, we have:

V (α) = αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
≥ αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δ

d

1− δ

¶
>

d

1− δ
+ αq

µ
a− d

1− δ

¶
>

d

1− δ

since b > a > d. Using the payoff from choosing C, we have:

V (α) = αq

µ
a

1− δ

¶
+ α (1− q)

µ
c+

δa

1− δ

¶
+ (1− α)

µ
c+ δc+

δ2d

1− δ

¶
=

a

1− δ
− α (1− q) (a− c)− (1− α)

µ
a

1− δ
− c− δc− δ2d

1− δ

¶
<

a

1− δ
,

since a > c, d. This establishes the properties on V (·).
Proof of Theorem 2. To show that α > α implies α(1−q(α))

1−αq(α) > α, suppose not so

that ∃α0 > α such that α0(1−q(α0))
1−α0q(α0) ≤ α. By the proof of Theorem 1, V

³
α0(1−q(α0))
1−α0q(α0)

´
=

d
1−δ and, from (7), we have:

α0q
¡
α0
¢
=

δ
³
a−d
1−δ

´
− [1 + δ (1− α0)] (d− c)− (1− α0) δ(a−d)1−δ

δ
³
a−d
1−δ

´
+ (b− a)− (d− c)

(22)

We’ve made the supposition

α ≥ α0 (1− q (α0))

1− α0q∗ (α0)

which is equivalent to

α0q
¡
α0
¢
≥ α0 − α

1− α
. (23)
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Substitute (22) into (23):

α0δ
³
a−d
1−δ

´
− [1 + δ (1− α0)] (d− c)

δ
³
a−d
1−δ

´
+ (b− a)− (d− c)

≥
α0 − (1−δ2)(d−c)

δ[(1−δ)(a−c)+δ(a−d)]

1− (1−δ2)(d−c)
δ[(1−δ)(a−c)+δ(a−d)]

⇒

α0δ (a− d)− (1− δ) (d− c)− δ (1− δ) (1− α) (d− c)

δ (a− d) + (1− δ) [(b− a)− (d− c)]

≥
αδ (1− δ) (a− c) + αδ2 (a− d)−

¡
1− δ2

¢
(d− c)

δ [(1− δ) (a− c) + δ (a− d)]−
¡
1− δ2

¢
(d− c)

As the numerators are equal and positive (since it equals α0−α) then the inequality
holds iff

δ [(1− δ) (a− c) + δ (a− d)]−
¡
1− δ2

¢
(d− c) ≥ δ (a− d) + (1− δ) [(b− a)− (d− c)]⇒

0 ≥ (1− δ) (b− a)

which is not true. Hence, @α0 > α such that α0(1−q(α0))
1−α0q(α0) ≤ α which means if α0 > α

then α0(1−q(α0))
1−α0q(α0) > α.

Next consider: if α1 > α then limt→∞ αt = α. By Bayes rule,

αt+1 = αt
µ
1− qt

1− αtqt

¶
⇒ αt+1 ≤ αt.

By part (i) of this theorem, if α1 > α then α is a lower bound of the sequence {αt}.
Hence, {αt} has a limit and it is sufficient to show that α is the infimum of {αt}.
Suppose not, and let α0 > α be the infimum of {αt}. Then as αt → α0, αt+1 → αt,
which indicates qt → 0. As qt → 0, V (αt+1)→ d

1−δ . But we know from the proof of
Theorem 1 that the payoff to D is the same as the payoff from C iff αt → α, which
contradicts αt → α0 and α0 > α. Therefore, limt→∞ αt = α, for α1 > α.

That α1 > α implies q
¡
αt
¢
> 0 ∀t immediately follows from αt > α ∀t and

Theorem 1.
Next let us show that limα↓α q (α) = 0 when α > 0. It has already been proven:

if α1 > α then limt→∞ αt = α. Therefore,

lim
α↓α

α (1− q (α))

1− αq (α)
= α (> 0) ,

which implies limα↓α q (α) = 0.
Finally, it is easy to prove limt→∞ αtq

¡
αt
¢
= 0. If α1 ≤ α then q

¡
αt
¢
= 0∀t

and therefore limt→∞ αtq
¡
αt
¢
= 0. If α1 > α > 0 then, by the other results of

Theorem 2, limt→∞ αt = α and limα↓α q (α) = 0 which implies limt→∞ αtq
¡
αt
¢
= 0.

If α1 > α = 0 then limt→∞ αt = 0 which implies limt→∞ αtq
¡
αt
¢
= 0.
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Proof of Theorem 4. Re-arranging (7), an equilibrium q (·) is defined by

αq [(b− a)− (d− c)] + (1− α)
δ (a− d)

1− δ
+ (d− c) + δ (1− α) (d− c) (24)

= δ (1− αq)

∙
a

1− δ
− V

µ
α (1− q)

1− αq

¶¸
Conjecturing that the value function is linear in α,

V (α) = x+ yα, (25)

substitute (25) into (24).

αq [(b− a)− (d− c)] + (1− α)
δ (a− d)

1− δ
+ (d− c) + δ (1− α) (d− c) (26)

= δ (1− αq)

∙
a

1− δ
− x− y

µ
α (1− q)

1− αq

¶¸
⇒

αq = α

∙
δ (a− d) + δ (1− δ) (d− c− y)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
(27)

+
δa− δ (1− δ)x− δ (a− d)−

¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

Thus, αq is affine in α if the value function is affine in α. As a player is indifferent
between playing C and D, the value can be given by the payoff to choosing C for
sure:

V (α) = αq (a− c) +
αδ (a− d)

1− δ
+ c+

δd

1− δ
− δ (1− α) (d− c) .

The value function is affine in αq and, since αq is affine in α, V (α) is affine in α.
The next step is to show that there exist unique values for x and y. Using the

payoff to playing C, in equilibrium the value function equals:

V (α) = αq (a− c) + c+
αδ (a− d)

1− δ
+

δd

1− δ
− δ (1− α) (d− c)

= α

∙
δ (a− d) + δ (1− δ) (d− c− y)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
(a− c)

+

"
δa− δ (1− δ)x− δ (a− d)−

¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

#
(a− c)

+c+
αδ (a− d)

1− δ
+

δd

1− δ
− δ (1− α) (d− c)
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= α

∙
δ (a− c) [(a− d) + (1− δ) (d− c− y)]

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
+ (28)

δ (a− d)

1− δ
+ δ (d− c)

+ (a− c)

"
δa− δ (1− δ)x− δ (a− d)−

¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

#

+c+
δd

1− δ
− δ (d− c)

Equating coefficients between (25) and (28), we have

x = (a− c)

"
δa− δ (1− δ)x− δ (a− d)−

¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

#
(29)

+c+
δd

1− δ
− δ (d− c)

y =
δ (a− c) [(a− d) + (1− δ) (d− c− y)]

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
+

δ (a− d)

1− δ
+ δ (d− c) (30)

To show that there is a unique solution to (29)-(30), define z ≡ x + y and note
that:

z = x+ y = V (1) =WC(1) = Q(a− c) +
δ (a− d)

1− δ
+ c+

δd

1− δ
,

where Q = q(1). Simplifying the preceding equation gives:

z = Q(a− c) +
δa

1− δ
+ c. (31)

If we can show that there exists a unique Q ∈ (0, 1) satisfying the equilibrium condi-
tion (26) when α = 1, then z = x+ y = V (1) is unique.

Evaluating (26) at α = 1, we have:

Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)

∙
a

1− δ
− x− y

µ
1−Q

1−Q

¶¸
Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)

∙
a

1− δ
− z

¸
Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)

∙
a

1− δ
−
µ
Q(a− c) +

δa

1− δ
+ c

¶¸
Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)2 (a− c) ,

and re-arranging gives us

δ (a− c)Q2 − [2δ (a− c) + (b− a)− (d− c)]Q+ [δ (a− c)− (d− c)] = 0.

This quadratic has two solutions:

Q =
2δ (a− c) + (b− a)− (d− c)±

√
Ω

2δ (a− c)
,
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where

Ω ≡ [2δ (a− c) + (b− a)− (d− c)]2 − 4δ (a− c) [δ (a− c)− (d− c)] (32)

= 4δ2 (a− c)2 + [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)]

−4δ2 (a− c)2 + 4δ (a− c) (d− c)

= [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c)

> 0

since a > c, d ≥ c and b + c ≥ a + d; and recall that the assumption b > a implies
d = c and b + c = a + d cannot both hold. Hence, the two solutions are real. Next
note that the bigger root exceeds one:

Qb = 1 +
(b− a)− (d− c) +

√
Ω

2δ (a− c)
> 1.

Thus, we only need to show that the smaller root falls in (0, 1).

Qs = 1 +
(b− a)− (d− c)−

√
Ω

2δ (a− c)
< 1

if and only if

(b− a)− (d− c) <
√
Ω⇔ [(b− a)− (d− c)]2 < Ω⇔

[(b− a)− (d− c)]2 < [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c) ,

which is equivalent to

4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c) > 0,

and, therefore, Qs < 1. Qs > 0 if and only if

2δ (a− c) + (b− a)− (d− c) >
√
Ω

[2δ (a− c) + (b− a)− (d− c)]2 > Ω.

From (32), the preceding condition is equivalent to

4δ (a− c) [δ (a− c)− (d− c)] > 0,

which holds since

δ (a− c)− (d− c) > 0⇔ δ >
d− c

a− c
.

The last property follows from δ > b−a
b−d ≥

d−c
a−c .
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There then exists a unique Q ∈ (0, 1), and z = x+ y = V (1) is unique since it is
linear in Q. In addition, plugging Qs in (31) gives

z =
2δ (a− c) + (b− a)− (d− c)−

√
Ω

2δ
+

δa

1− δ
+ c

=
a

1− δ
+
(b− a)− (d− c)−

√
Ω

2δ

=
2aδ + (1− δ)

h
(b− a)− (d− c)−

√
Ω
i

2δ (1− δ)
.

To close the model, use the initial condition

V (α) =
d

1− δ
,

which takes the form:

x =
d

1− δ
− y

¡
1− δ2

¢
(d− c)

δ [(1− δ) (a− c) + δ (a− d)]
.

x∗ is then the unique solution to

x∗ =
d

1− δ
− (z − x∗)

¡
1− δ2

¢
(d− c)

δ [(1− δ) (a− c) + δ (a− d)]
,

and y∗ is the unique solution to: y∗ = z − x∗. This completes the proof that there is
a unique affine MPBE. Finally, solving for q from (27) gives us (13).

Proof of Theorem 5. Since the equilibrium probability of choosing C is

αq (α) = α

∙
δ (a− d) + δ (1− δ) (d− c− y)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
+

"
δa− δ (1− δ)x− δ (a− d)−

¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

#
then αq (α) is increasing in α iff

δ (a− d) + δ (1− δ) (d− c− y)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
> 0. (33)

By assumption
(b− a)− (d− c) ≥ 0,

and V (1) < a
1−δ implies

a

1− δ
− (x+ y) > 0. (34)

Thus, (33) is true iff the numerator is positive:

(a− d) + (1− δ) (d− c− y) > 0

(a− d)

1− δ
+ (d− c) > y. (35)
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Suppose (35) was not true. From (30), we have

y =
δ (a− c) [(a− d) + (1− δ) (d− c− y)]

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
+

δ (a− d)

1− δ
+ δ (d− c) . (36)

If (35) is not true then the first term of (36) is non-positive, but then (36) implies

y ≤ δ

∙
(a− d)

1− δ
+ (d− c)

¸
<
(a− d)

1− δ
+ (d− c)

which contradicts the supposition that (35) is not true. From this contradiction, we
conclude (35) and thus αq (α) is increasing in α.

To show that V (α) is increasing in α, recall that

V (α) = αq (α) (a− c) +
αδ (a− d)

1− δ
+ c+

δd

1− δ
− δ (1− α) (d− c) .

That αq (α) is increasing in α delivers the result.

Proof of Theorem 6. For α ≤ α, q (α) = 0, so it is non-decreasing in α for
α ∈ [0, α]. From hereon, suppose α > α so that

q (α) =
δ (a− d) + δ (1− δ) (d− c− y)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

+

µ
1

α

¶"
δa− δ (1− δ)x− δ (a− d)−

¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

#
Thus, q (α) is increasing in α iff"

δa− δ (1− δ)x− δ (a− d)−
¡
1− δ2

¢
(d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

#
< 0 (37)

The denominator of the LHS of (37) is positive because b− a ≥ d− c by assumption
and

a

1− δ
> x+ y

as shown in (34). Thus, (37) is true iff the numerator is negative:

δa− δ (1− δ)x− δ (a− d)−
¡
1− δ2

¢
(d− c) < 0. (38)

Suppose (38) was not true. From (29), we would then have

x ≥ c+
δd

1− δ
− δ (d− c)

which implies

δa− δ (1− δ)x− δ (a− d)−
¡
1− δ2

¢
(d− c) (39)

≤ δa− δ (1− δ) (c+
δd

1− δ
− δ (d− c))− δ (a− d)−

¡
1− δ2

¢
(d− c)
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By rearranging terms, the RHS of (39) is equivalent to

− (1− δ) (1− δ2)(d− c) (40)

which is negative iff d > c. Hence, the LHS of (38) is negative for d > c, which
contradicts the supposition that (38) is not true. From this contradiction, we conclude
(38) is true for d > c. Namely, q (α) is increasing in α for d > c.

If d = c, (40) implies

δa− δ (1− δ)x− δ (a− d)−
¡
1− δ2

¢
(d− c) = 0⇒ ∂q (α)

∂α
= 0.

Proof of Theorem 7. First note that if α1 ≤ α then qt = 0 ∀t in which case
QT = 1. From hereon, assume α1 ∈ (α, 1) . If d > c then, with the affine MPBE,

q (α) = A+B

µ
1

α

¶
for some A and B where B < 0 and A+B < 1. Then

αt =
αt−1

¡
1− qt−1

¢
1− αt−1qt−1

=
αt−1

¡
1−A− B

αt−1
¢

1− αt−1
¡
A+ B

αt−1
¢

qt = A+B

µ
1

αt

¶
= A+B

Ã
1− αt−1

¡
A+ B

αt−1
¢

αt−1
¡
1−A− B

αt−1
¢! (41)

Since B 6= 0, we can invert

qt−1 = A+B

µ
1

αt−1

¶
to derive

αt−1 =
B

qt−1 −A
.

Insert this expression in (41),

qt = A+B

⎛⎜⎜⎝1−
³

B
qt−1−A

´µ
A+ B

B
qt−1−A

¶
³

B
qt−1−A

´µ
1−A− B

B
qt−1−A

¶
⎞⎟⎟⎠ = qt−1

µ
1−A−B

1− qt−1

¶
(42)

By B < 0 and αt < 1, we have

A+B > A+B

µ
1

αt

¶
= qt, ∀ t.
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By B < 0 and that αt decreasing over time, we have that qt decreasing over time.
Hence,

1− q1 ≤ 1− qt−1, ∀ t > 2,

Therefore,

qt ≤
µ
1−A−B

1− q1

¶
qt−1.

As this holds for all t, it implies

qt ≤
µ
1−A−B

1− q1

¶t−1
q1 = νt−1q,

where ν ≡
³
1−A−B
1−q1

´
∈ (0, 1). Hence,

TY
t=1

¡
1− qt

¢2
>

"
TY
t=1

¡
1− νt−1q

¢#2
.

To prove this theorem, it is then sufficient to show

lim
T→∞

TY
t=1

¡
1− νt−1q

¢
> 0,

which is equivalent to

lim
T→∞

TY
t=1

¡
1− νtq

¢
> 0,

which, because q ∈ (0, 1), is true if

lim
T→∞

TY
t=1

¡
1− νt

¢
> 0,

which is equivalent to
∞X
t=1

log
¡
1− νt

¢
> −∞.

Since ν ∈ (0, 1) then

∞X
t=1

log
¡
1− νt

¢
= −

∙µ
ν +

ν2

2
+

ν3

3
+ ...

¶
+

µ
ν2 +

ν4

2
+

ν6

3
+ ...

¶
+ ...+

µ
νt +

ν2t

2
+

ν3t

3
+ ...

¶
+ ...

¸
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Some manipulation yields the desired result:

−
∙µ

ν +
ν2

2
+

ν3

3
+ ...

¶
+

µ
ν2 +

ν4

2
+

ν6

3
+ ...

¶
+ ...+

µ
νt +

ν2t

2
+

ν3t

3
+ ...

¶
+ ...

¸
= −

∙¡
ν + ν2 + ν3 + ...

¢
+
1

2

¡
ν2 + ν4 + ν6 + ...

¢
+
1

3

¡
ν3 + ν6 + ν9 + ...

¢
+ ...

¸
= −

µ
ν

1− ν
+
1

2

ν2

1− ν2
+
1

3

ν3

1− ν3
+ ...

¶
= − ν

1− ν

µ
1 +

1

2

ν

1 + ν
+
1

3

ν2

1 + ν + ν2
+ ...

¶
≥ − ν

1− ν

¡
1 + ν + ν2 + ...

¢
= − ν

(1− ν)2
> −∞
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