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Abstract

This paper demonstrates that intermediate goods should not be taxed even in the presence of

dividend payments to households, thus clarifying previous results. We also �nd that optimal

government policy in a second best world may include stockpiles of output � private supply

exceeds private demand, and the government purchases the surplus. This may provide a

possible explanation for some agricultural policies.
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1 Introduction

Diamond and Mirrlees (1971) show that when the government sets tax rates optimally,

equilibrium is characterized by production e¢ ciency: transactions between �rms should be

free from distortionary taxation. The present paper asks if the production e¢ ciency result

continues to hold when �rms distribute economic pro�ts to households, a feature that was

absent from Diamond and Mirrlees. Since dividends provide a direct link from �rms to

households, the government may wish to impose distortionary taxes on �rms in order to

manipulate pro�ts and thereby a¤ect households�incomes in a socially desirable way.

This use of distortionary taxation can be avoided if a pro�ts tax may be imposed di-

rectly.1 Indeed, Hahn (1973), Mirrlees (1972), and Sadka (1977) allow �rm-speci�c taxation

of economic pro�ts. With this instrument, the government can control each �rm�s level of

dividend payments � e.g., any increase in a �rm�s pre-tax pro�ts can be neutralized with an

increase in the pro�ts tax (and conversely). As a consequence, we can separate the e¤ects of

producer prices from consumer prices. Based on the work of these authors, the conventional

wisdom has been that the production e¢ ciency theorem remains valid even in the presence

of pure pro�ts. However, the literature has gaps. There are some technical obstacles that

make it quite di¢ cult to provide a complete proof of the theorem. This raises concerns about

the validity of the result, and it calls into question the conventional wisdom. The need for a

correct proof seems clear, and this is provided in section 4. The proof introduces some novel

features that allow equilibrium dividend payments to adjust continuously in response to

changes in commodity tax rates. Thus, the clever insights of Hahn, Mirrlees, and Sadka are

con�rmed, and one of the most signi�cant results in public economics is �rmly established.2

Even with the production e¢ ciency theorem intact, there still may be unexpected conse-

quences from optimal taxation in the presence of dividends.3 In the process of proving the

production e¢ ciency theorem, we �nd that optimality may include government stockpiles

� e.g., agricultural surplus. That is, optimal tax policy may in�uence prices in such a way

that private aggregate supply exceeds private aggregate demand. The government then pur-

chases the surplus and places it in a stockpile, generating utility for no one. By comparison,

in standard general equilibrium theory without government, if supply exceeds demand in a

1Besley and Persson (2009) observe that �when powers to tax are su¢ cient, it is always optimal : : : to
maximize national income and use the tax system to redistribute it�(page 1228).

2Murty (2010) has also addressed this issue, taking a di¤erent approach.
3�Unexpected� in the sense that second best optima may have properties that appear counter-intuitive

to an observer who uses �rst best intuition (Lipsey and Lancaster 1956-1957).
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market, the price must be zero. This is no longer true when government is present and taxes

are distortionary. Conditions may arise in which optimal policy creates intentional waste

through the hoarding or stockpiling of output even while production is carried out e¢ ciently.

In the absence of optimal lump sum transfers, this may be a second best method for getting

income into the hands of some agents, particularly those who are favored by the social wel-

fare function. Section 5 provides an example with optimal excess supply. One may ask why

the government does not simply give away the surplus. The answer is that a giveaway would

lower the price for the good in question, thus hurting some in�uential agents (farmers, in the

case of agricultural stockpiles). Also, a giveaway may have unwanted general equilibrium

repercussions via income e¤ects.

The government�s purchases of surplus may seem rather Keynesian in nature since they

have no direct e¤ect on the utility of any household. But recall that the optimal tax policy

leads to production e¢ ciency, with or without excess supply. Hence the purchases are not

Keynesian in the traditional sense � they are not undertaken to correct an ine¢ ciency.

Instead they are motivated by distributional objectives.

1.1 Background

This section presents in general terms the gap in the literature�s proofs of the production

e¢ ciency theorem for economies with pro�ts. Appendix A provides the �ne detail.

The proof of the production e¢ ciency theorem uses the contrapositive: given any initial

tax equilibrium that is productively ine¢ cient, we can �nd a new tax equilibrium that is

welfare-superior to the initial one. Thus production ine¢ ciency cannot be optimal.

The problems in the literature can be illustrated, at least in general terms, with diagrams.

The two dimensions of the page cannot tell the whole story, but the basic idea should follow.

Consider an initial productively ine¢ cient equilibrium A illustrated in �gure 1. The curve in

the �rst panel is �rm 1�s production e¢ ciency frontier. This �rm is producing at point A1 on

its frontier, generating positive pro�ts; similarly for �rm 2 in the second panel. The economy

as a whole is represented in the third panel. The aggregate production frontier is labeled

�aggregate.� The consumer�s o¤er curve is also shown. By adjusting tax rates, and hence

consumer prices, the government can move the consumer anywhere along the o¤er curve.

In this particular equilibrium, the third panel shows aggregate production and consumption

at point A which is the sum of A1 and A2. Production and consumption are required to

coincide since previous proofs have not permitted excess supply. (Though see footnote 7.)

While each �rm individually is operating on its e¢ ciency frontier, aggregate production is

2



�

input

6output

�rm 1

tA1
�

input

6output

�rm 2

tA2

�

input

6outputaggregate

o¤er curve

tA

Figure 1: Initial equilibrium. Firm 1 produces at A1; �rm 2 at A2. The sum of these points is
at A in the third panel. Aggregate production is ine¢ cient.

ine¢ cient since �rm 1�s marginal product exceeds �rm 2�s.

The proof now identi�es a new equilibrium B that is welfare-superior to A. This new

equilibrium may be found by slightly reducing a tax rate from where it was in A. If consumers

dislike this tax (and we should always be able to �nd a tax they do not like) welfare rises.

The small tax change induces a small movement along the o¤er curve to point B in the third

panel of �gure 2. Since point A was in the interior of the aggregate production possibilities

set, and since B is very close to A, B will be productively feasible � it will lie on or below the

aggregate frontier. Since B is productively feasible it must be possible to divide up production

between the two �rms with the sum equal to B. Furthermore, since B is very close to A,

the allocation of production across �rms can be done so that each �rm�s production is very

close to where it was in the initial equilibrium. Now here is where the argument runs into

di¢ culty: since production for each �rm has not moved very far, neither have pro�ts. And

any slight change in pro�ts can be o¤set with a slight change in the tax rates on pro�ts to

leave net dividends una¤ected. But this may not be the case. Instead, it may be that the

only way to allocate the aggregate production point B across �rms is as illustrated in the

�rst two panels of �gure 2. Firm 1�s production point has moved only slightly from A1 to

B1, and similarly for �rm 2. Nonetheless, pro�ts have moved discretely from positive to zero.

The �rms�new production points lie below their frontiers so they cannot be maximizers with

positive pro�ts.4 This discrete change in pro�ts causes a discrete change in the consumer�s

4This simple approach with diagrams has its limitations. In �gure 1 the slope at A1 di¤ers from the slope
at A2. By linear independence of the tangent lines, we should be able to �nd small movements along the
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Figure 2: The proposed new equilibrium is labeled with Bs. The initial equilibrium is reproduced
and is still labeled with As. New aggregate production and consumption are to be at B in the
third panel. In order for production by the individual �rms to sum to B, �rm 1 produces at B1 in
the �rst panel and �rm 2 produces at B2 in the second panel. (The �rm with the large marginal
product expands and the �rm with the small marginal product contracts.)

dividend income which cannot be o¤set with changes in the tax rates on pro�ts. The result

is then a shift in the o¤er curve (not illustrated) which is not accounted for by the proof in

the literature. When the o¤er curve shifts, aggregate demand moves with it and demand no

longer equals supply � the economy is no longer in equilibrium. There lies the problem.

The way I solve the problem is to allow for the possibility of excess supply. Then aggregate

production can lie to the northeast of aggregate consumption. This is illustrated in �gure 3.

In the third panel, aggregate consumption stays at the same welfare-superior point B as in

the previous �gure 2. Production points for the �true�new equilibrium are labeled with Cs.

In the �rst panel, �rm 1 is now generating positive pro�ts at C1 on its e¢ ciency frontier

to the northeast of B1. Since C1 is close to B1, and since B1 was close to A1, the pro�ts

at C1 are close to the pro�ts at A1. A small change in �rm 1�s pro�ts tax will leave net

dividends exactly as they were in the initial equilibrium A; similarly for �rm 2. Since the

consumer�s income from dividends has not changed, the o¤er curve remains in place, unlike

the proposed construction with the Bs. In the third panel the aggregate production point is

now at C, the sum of C1 and C2. This welfare-superior equilibrium as illustrated has excess

supply.

�rms�frontiers that add up to B. So we can maintain positive pro�ts. However, in the more relevant case
with many �rms and many commodities this does not generalize.
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Figure 3: The true new equilibrium still has aggregate consumption at B in the third panel.
Production moves to points labeled with Cs. In the �rst panel, �rm 1 produces at C1 on its
frontier to the northeast of B1. Similarly, �rm 2 produces at C2. In the third panel, C is the sum
of C1 and C2. It lies to the northeast of B, on or below the aggregate frontier.

Section 2 describes the model. Section 3 provides some preliminaries that are used to

prove the main production e¢ ciency result in section 4. Section 5 presents an example with

optimal excess supply. The idea behind the example is as follows. One of the �rms produces

output in excess of consumer demand. The surplus could be eliminated if the �rm simply

produced less output from the same inputs. However, it is optimal for the �rm to produce on

its e¢ ciency frontier since this generates positive pro�ts which are distributed to households

in a way that enhances social welfare. Section 6 contains concluding remarks.

2 Model

The model here is quite standard. After a brief description, notation and other details follow.

Consumers are utility maximizing price takers. All consumers face the same prices. Taxes

and subsidies are not modeled explicitly. Rather, they follow implicitly from the di¤erence

between consumer prices and producer prices.5 Furthermore, di¤erent producers may face

di¤erent prices. This allows for taxes and subsidies on intermediate goods � e.g., when the

price paid by a retailer di¤ers from the price received by a wholesaler, the di¤erence is the

5It may be more appropriate to use buyer prices and seller prices rather than consumer prices and producer
prices. However the use of the latter is completely standard in the literature. The two approaches are not
equivalent. E.g., in a pure exchange economy there are no producer prices yet taxes may be imposed. One
di¢ culty with the use of buyer prices and seller prices is the kink in consumers�budget sets.
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tax or subsidy. It also allows for �rm-speci�c tax rates on pro�ts. Firms act in the interests

of their shareholders, who can see through the corporate veil. Hence �rms choose production

levels to maximize after-tax pro�ts. It follows that gross of tax prices have no bearing on

�rms�decisions, so in this paper any reference to producer prices will be net of all taxes.

Production e¢ ciency occurs when all �rms face identical price ratios, or equivalently, when

all �rms face price vectors lying on the same line. This can be implemented by setting zero

taxes on intermediate goods, while still permitting �rm-speci�c tax rates on pro�ts. Thus,

when the production e¢ ciency theorem applies, an optimizing government will choose not

to tax intermediates even if it has the ability to do so.

Households are labeled h = 1; : : : ; H. Household h has consumption set Xh � IRn (net
of endowment), utility function Uh, and lump sum incomeMh. All households face the same

vector of prices q � 0.6 Utility maximization results in net demand functions xh(q;Mh),

de�ned on the domain where the maximum � which is assumed to be unique � exists.

Aggregate net demand is x(q;M) :=
P

h xh(q;Mh), de�ned on the domain where all of the

xhs are de�ned.

Firms are labeled f = 0; : : : ; F . Firm f has convex net production set Yf � IRn. The

aggregate production set is Y :=
P

f�0 Yf . Firm 0 is the production unit for the public

sector. Firms f � 1 are privately owned, pro�t maximizing, price takers. Producer prices

are given by pf and pro�ts by �f , both of which are net of producer taxes and taxes on

pro�ts. Assume 0 2 Yf for f � 1, in which case �f � 0. For each f � 1 de�ne Y +f to

consist of all those production points that are capable of generating strictly positive pro�ts.

Speci�cally,

Y +f := fyf 2 Yf j 9 p 2 IRn with p � yf > 0 & p � yf � p � y 8 y 2 Yfg:

If we take a point in Y +f and scale its supporting price vector up or down we can achieve

any level of positive pro�ts, as large or as small as we like. The process of scaling the price

vector may be interpreted as an adjustment to the tax rate on pro�ts. If we adjust too far

we may get a rather impractical negative tax on pro�ts, but this can always be avoided by

re-normalizing the prices. The set Y +f does not necessarily coincide with the boundary of

Yf . For instance, consider �rms that have constant returns to scale.

The proportion of �rm f � 1 owned by household h is �hf � 0. Thus
P

h �hf = 1 for

each f � 1. Let � be the H � F matrix with �hf in row h and column f . The government
6Notation for vector inequalities: x � y if and only if all components of x � y are non-negative; x � y

if and only if all components of x� y are strictly positive.
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imposes a head tax T (subsidy if negative). Therefore,Mh =
P

f�1 �hf�f�T , or equivalently,
M = �� � T1.
The government has a Bergson�Samuelson social welfare function W . Indirect social

welfare is V (q;M) :=W
h
: : : ; Uh

�
xh(q;Mh)

�
; : : :

i
, which has the same domain as x.

2.1 De�nition. An equilibrium is a vector (q;M;y0; : : : ;yF ;p1; : : : ;pF ;�; T ) that satis�es:

(a) yf 2 Yf for each f � 0,

(b) �f = pf � yf = maxfpf � y jy 2 Yfg for each f � 1,

(c) x(q;M) �
P

f�0 yf ,

(d) M = �� � T1.

Note the weak inequality in (c). This permits excess supply, which will be the focus of

section 5. With regard to terminology, �excess supply� here is equivalent to �non-tight�

equilibria in Guesnerie (1977). It also bears resemblance to the possibility of a government

budget surplus in Berliant and Page (2001). In order to prove the results in sections 3 and

4 below, the weak inequality turns out to be crucial. The papers cited in appendix A do not

permit excess supply and this leads to problems as outlined in section 1.1.7

If all households exhaust all their income then the government must satisfy its budget

constraint with equality. This is just Walras�Law. In symbols, q�x+HT =
P

f�1 pf �yf . An
interpretation is that the government buys all output from private sector �rms at producer

prices then sells x to consumers at consumer prices, with added revenue e¤ects from the

head tax. Of course, this interpretation is excessively interventionist since the market can

facilitate most transactions. However, the government does intervene directly to purchase the

surplus,
P

f�0 yf � x. (Technically, any part of the surplus that the public sector produces
using Y0 is not �purchased.�Rather, the inputs used to produce this output are purchased.)

In this paper, excess supply refers to these residual purchases by the government.

7To be precise, Hahn (1973) on page 99 de�nes YF (x) to permit excess supply. Yet the remainder of the
paper does not seem to distinguish between aggregate net supply and aggregate net demand. Dixit (1987)
on page 144 addresses the relationship between aggregate production ine¢ ciency, excess supply, and free
disposal. This relationship will be discussed further in section 5 below.
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3 Almost production e¢ ciency

If the production e¢ ciency result holds, it can be stated in contrapositive form: For any

equilibrium in which aggregate net output satis�es y 2 int(Y ), there exists another equilib-
rium with higher social welfare.8 This section proves a weaker result (corollary 3.2). The

condition y 2 int(Y ) is replaced with y 2 int( �Y ) for a set �Y � Y (not the closure of Y ).

This result will then be used in section 4 to prove the full production e¢ ciency theorem.

Each equilibrium yields its own �Y . So consider an equilibrium, denoted by bars over

variables. Then �Y will consist of those aggregate production points that are capable of

generating the same vector of pro�ts as ��. To construct �Y , �rst de�ne �Yf for each f � 1 as
follows. If ��f = 0 then set �Yf := Yf . If ��f > 0 then set �Yf := Y +f . Thus all points in �Yf can

preserve the sign of ��f , and hence by scaling pf , can preserve the value of ��f . Note that

scaling pf is equivalent to changing the pro�ts tax rate for �rm f . By construction, �yf 2 �Yf
for all f � 1. Now de�ne �Y := Y0 +

P
f�1

�Yf .

3.1 Theorem. Assume x is a continuous function of q, and V is a locally non-satiated

function of q. Consider an equilibrium denoted by bars over variables. For this equilibrium,

de�ne �Y as above. If x(�q; �M) 2 int( �Y �IRn+) then there exists another equilibrium � denoted

by hats � with V (q̂; M̂) > V (�q; �M).9

Proof. This is an application of familiar results (e.g., Mirrlees 1972). The hypotheses guaran-

tee the existence of q̂ such that V (q̂; �M) > V (�q; �M) and x(q̂; �M) 2 �Y�IRn+, i.e., x(q̂; �M) � ŷ
for some point ŷ 2 �Y . The new equilibrium will have M̂ = �M; hence, x̂ = x(q̂; �M) and

V̂ = V (q̂; �M). Aggregate production will be at the point ŷ 2 �Y just above. Also, the new

head tax will be T̂ = �T . The proof will be complete if it is possible to allocate the aggregate

production ŷ 2 �Y across �rms so that every private sector �rm in the hat equilibrium gener-
ates the same after-tax pro�ts as in the bar equilibrium. Then M̂h equals income from pro�t

shares minus the head tax, as required by part (d) of de�nition 2.1 (equilibrium). From the

de�nition of �Y , it is indeed possible to allocate production in this way. (Though if ��f = 0,

it may be necessary to take p̂f = 0: 100 percent taxation of pro�ts.)

3.2 Corollary. Assume x is a continuous function of q, and V is a locally non-satiated

function of q. Consider an equilibrium denoted by bars over variables. For this equilibrium,
8That is, if production ine¢ ciency is present then tax reform can lead to a welfare improvement. See

Hammond and Sempere (1995) for a contribution to, and a review of, the tax/tari¤ reform literature.
9The Weymark condition (Diewert et al. 1989, Dixit 1987, Weymark 1979) is su¢ cient to guarantee that

V is a locally non-satiated function of q. That condition characterizes Pareto improving local changes in
consumer prices.
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de�ne �Y as above. If
P

f�0 �yf 2 int( �Y ) then there exists another equilibrium � denoted by

hats � with V (q̂; M̂) > V (�q; �M).

Proof. Since
P

f�0 �yf 2 int( �Y ) it follows that x(�q; �M) 2 int( �Y )� IRn+ � int( �Y � IRn+). Now
apply theorem 3.1.

For an economy in which �Y = Y corollary 3.2 yields full production e¢ ciency. The

Dasgupta�Stiglitz (1972) and Diamond�Mirrlees (1971) economies satisfy this condition.10

4 Smooth (enough) production frontiers

Corollary 4.5 below proves the claimmade by Hahn (1973), Mirrlees (1972), and Sadka (1977)

regarding the desirability of production e¢ ciency. Speci�cally, if all private sector �rms have

smooth production frontiers, then any optimal tax equilibriummust be productively e¢ cient.

Assumption 4.1 formalizes the notion of a smooth (enough) production frontier.

4.1 Assumption. If f � 1 and if y 2 Y +f then there exists � > 0 such that Yf \ B�(y) �
Y +f � IRn+ where B�(y) is the open ball of radius � centered at y.

Assumption 4.1 states that if a production point is su¢ ciently close to Y +f , there is a way

to increase it (in the sense of IRn+) and enter Y
+
f . The �rst two panels of �gure 3 previously

illustrated the �increase�� each �rm was able to move its production point northeast to its

frontier where it was able to generate positive pro�ts. Roughly, the assumption requires that

if a �rm�s production frontier has any kinks, they must occur away from the outer edges of

Y +f . Thus, the private sector production frontiers do not have to be perfectly smooth, only

smooth enough.

The example of production ine¢ ciency on page 107 of Mirrlees (1972) violates assump-

tion 4.1. The essence of that example is illustrated in �gure 4. Firm 1�s constant returns to

scale production frontier lies everywhere above �rm 2�s kinked production frontier. The kink

violates assumption 4.1. Since �rm 2�s technology is dominated by �rm 1�s, it is productively

ine¢ cient for �rm 2 to operate. However, �rm 2 can generate pro�ts while �rm 1 cannot.

Assume the economy has a household that needs dividends from these pro�ts to survive.

Then a utilitarian government will use taxes to keep �rm 2 in operation with a price ratio

10The proof of theorem 3.1 made use of the possibility of excess supply � the possibility that condition (c)
in de�nition 2.1 (equilibrium) holds with inequality. But even when excess supply is prohibited, as in much
of the literature, corollary 3.2 remains true. With

P
f�0 �yf = x(�q;

�M), a minor modi�cation to the proof of
theorem 3.1 will prove corollary 3.2 directly.
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Figure 4: Production ine¢ ciency. Firm 2 is less e¢ cient than �rm 1. But only �rm 2 can generate
positive pro�ts.

that induces the �rm, via pro�t maximization, to operate right at the kink point. Since

the �rm is ine¢ cient we want it to be as small as possible, but with positive pro�ts so the

household survives. The kink does this for us � it establishes a smallest scale of operations

for which pro�ts are positive.

Mirrlees also considers an alternative case where �rm 2 has a smooth and strictly concave

production function (still dominated by �rm 1), which would now satisfy assumption 4.1.

In this case, if �rm 2 produces any positive level of output, one could cut the scale of

operations in half, say, and still generate positive pro�ts. So no optimal tax equilibrium

would exist: each equilibrium could be improved upon by price changes that cut ine¢ cient

�rm 2�s output in half and increase e¢ cient �rm 1�s output correspondingly. The upshot

is that the smoothness assumption guarantees any optimal tax equilibrium is productively

e¢ cient, but it does not guarantee the existence of an optimum.

If a solution to the optimal tax problem fails to exist, the government would then have

to choose tax rates that are almost optimal. The equilibrium would not in general be pro-

ductively e¢ cient but we might want to know if it is almost productively e¢ cient. Mirrlees

states conditions which would apply to this case: �[A]ll producers either operate under con-

stant returns, or obtain positive pro�t for any non-zero production under non-zero prices�

(page 108). In this way, if a �rm is kept in operation solely because its pro�ts are socially

desirable, the �rm may be shrunk to an arbitrarily small size (hence, an arbitrarily small

ine¢ ciency) while still generating positive pro�ts. These peculiarities arise out of situations

10



where dividend income is an indispensable part of redistribution. Since this is unlikely to be

particularly important in practice, we shall move on.

Returning to assumption 4.1, we may �nd that it is di¢ cult to verify in any given

situation. However, in the more common case where �rms�production sets are de�ned using

continuously di¤erentiable production functions, the assumption will be satis�ed:

4.2 Theorem. Let Yf = f(yof ;yif ) 2 IRn jGf (yof ;yif ) � 0; yif � 0g. The superscript o is
for output, and i for input. Assume that Gf has a convex domain on which it is contin-

uous, quasi-convex (convexity of Yf ), monotone non-decreasing (free disposal), and locally

non-satiated. On Y +f , assume that Gf is continuously di¤erentiable
11 with non-vanishing

gradient. Then Yf satis�es assumption 4.1.

This theorem is proved in appendix B. Local non-satiation of Gf implies that the boundary of

Yf contains f(yof ;yif ) 2 Yf jGf (yof ;yif ) = 0g. The partition between yo and yi is illustrated in
the following example � the �rm speci�c subscript f is omitted: G(yo; yi1; y

i
2) := y

o� (�yi1)�

where 0 < � � 1. This �rm uses yi1 as an input to produce y
o, and it has no involvement in

the market for the other input yi2. When � < 1, Y
+ is the subset where G = 0 and yo > 0.

The corollary to the following theorem will give the main production e¢ ciency result.

4.3 Theorem. Assume x is a continuous function of q, and V is a locally non-satiated

function of q. Consider an equilibrium denoted by bars over variables. If assumption 4.1 is

satis�ed and if x(�q; �M) 2 int(Y � IRn+) then there exists another equilibrium � denoted by

hats � with V (q̂; M̂) > V (�q; �M).

The proof of this theorem draws on the following result (which does not require assump-

tion 4.1). It extends corollary 3(a) of Hahn (1973).

4.4 Lemma. Let ~yf 2 Yf for f � 0. Set ~y :=
P

f�0 ~yf . For any � � 0 de�ne K(�) :=

Y0 +
P

f�1

�
Yf \ B�f (~yf )

�
. Note that ~y 2 K(�). Let ~x � ~y. If ~x is a boundary point of

K(�)� IRn+ then ~x is also a boundary point of Y � IRn+.

This lemma is proved in appendix C by adapting Hahn�s argument. Observe that the

notation K(�) suppresses the dependence of this set on the particular production allocation.

When this notation is used in the proof of theorem 4.3 below, it will refer to the production

allocation in the bar equilibrium.

11That is, each point of Y +f has a neighborhood on which Gf is continuously di¤erentiable.
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Proof of theorem 4.3. Apply the contrapositive of lemma 4.4 to the bar equilibrium in the

statement of theorem 4.3. It follows that for any � � 0, x(�q; �M) 2 int
�
K(�) � IRn+

�
. For

present purposes, a particular choice of �, denoted ��, is required. To this end, for each f � 1
choose ��f > 0 as follows. If ��f > 0 then �yf 2 Y +f . Hence choose ��f as provided for in
assumption 4.1. If ��f = 0 then set ��f := 1.

Since x(�q; �M) 2 int
�
K(��) � IRn+

�
, if K(��) � IRn+ � �Y � IRn+ then this theorem will

follow from theorem 3.1. Hence we proceed to show K(��) � IRn+ � �Y � IRn+. Recall that
the construction of �Y distinguishes �rms by their pro�ts in the bar equilibrium so let S> :=

ff � 1 j ��f > 0g and S= := ff � 1 j ��f = 0g. Then

K(��)� IRn+ =
h
Y0 +

X
f�1

�
Yf \B��f (�yf )

�i
� IRn+

�
h
Y0 +

X
S>

�
Y +f � IRn+

�
+
X
S=

Yf

i
� IRn+

=
h
Y0 +

X
S>

Y +f +
X
S=

Yf

i
� IRn+

where the second line follows from assumption 4.1 and the choice of ��.

4.5 Corollary. Assume x is a continuous function of q, and V is a locally non-satiated

function of q. Consider an equilibrium denoted by bars over variables. If assumption 4.1 is

satis�ed and if
P

f�0 �yf 2 int(Y ) then there exists another equilibrium � denoted by hats

� with V (q̂; M̂) > V (�q; �M).

Proof. See corollary 3.2.

Again, note that these proofs make use of the weak inequality in part (c) of de�nition 2.1

(equilibrium). Net demand by households can be less than net supply by �rms, with the

excess supply purchased by the government and stockpiled. For instance in theorem 4.3,

aggregate production in the hat equilibrium will lie in the set K(��) while aggregate con-

sumption will lie in K(��) � IRn+. If we change the de�nition and require demand to equal
supply in all markets, it is not clear if the same type of proof could be used. But why require

equality? We do actually observe government stockpiles of some commodities especially

where price supports are in place. Furthermore, if we forbid stockpiles and impose equality

we may cause a reduction in welfare. The next section provides a worked example in which

a commodity is in excess supply at the optimal tax equilibrium.

12



�
input

6
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ryrx

Figure 5: The production set is the region under the solid curve. The set Y � IR2+ also includes the
region under the dashed line. There will be excess supply if net demand occurs at x and production
at y.

5 Excess supply

For any optimal tax equilibrium, theorem 4.3 above proved that aggregate net demand must

lie on the boundary of Y �IRn+. This is essentially the tightest possible result since the actual
prices, quantities, etc depend on the other data that describe the economy: the number of

households, their preferences, their ownership shares, and the social welfare function.12 In

principle, any x 2 @(Y � IRn+) can be supported as an optimum.
The possibility of optimal excess supply thus depends on the shape of Y . Speci�cally, it

requires the existence of

x 2 @(Y � IRn+) and y 2 @Y with x � y 6= x: (1)

Figure 5 provides a crude illustration of this possibility.13 The �gure indicates that optimal

excess supply requires �at segments in @(Y � IRn+). This may be quite plausible when there
are specialized factors of production (example 5.1 below). Flat segments may also appear

when there is uncertainty, as in the technologies considered by Diamond (1967) where one

input today yields several (state contingent) outputs tomorrow.

12The generic size of the set of second best tax equilibria is determined by the number of households
(page 237 of Guesnerie 1995). Its position is determined by preferences (which here subsumes endowments)
and by ownership shares. The social welfare function determines the selection from this set.
13Note, this is distinct from Guesnerie�s (1977) temporary ine¢ ciencies.
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The following example takes a production technology that permits optimal excess supply

and constructs the other ingredients to make this indeed optimal. The key feature of the

example is that the commodity in excess supply does not satisfy the Diamond�Mirrlees condi-

tion. (Hereafter, DM.)14 That is, some households are net suppliers of this commodity while

other households are net demanders. Diamond and Mirrlees (1971) show that production

e¢ ciency is desirable if DM is satis�ed (since DM implies local non-satiation of the indirect

social welfare function). So if some, but not all, commodities have every household on the

same side of the market then production e¢ ciency and excess supply can both be desirable.

Since the good in excess supply does not satisfy DM, lowering its consumer price in an e¤ort

to stimulate demand and reduce the surplus could have undesirable welfare consequences.

Hence, it may be optimal to let the surplus be. This is what drives the example.

5.1 Example. There are four commodities: two types of completely specialized labor/leisure
(` and n), and two consumption goods (x and z). The economy is static. It would be easier

to justify the complete specialization of labor in a dynamic model (e.g., I cannot supply

labor services for time periods before I was born), but that would require a more elaborate

structure. There are four households and two �rms. There is no head tax. A head tax would

give the government an extra degree of freedom that could be used to control households�

incomes.15 In order to limit the extent of this control it is simpler to eliminate the head tax

rather than increase the number of households.

� Household 1 (type ` laborer) has utility function U1(`; x; z) = log `+log x+log z, which
is written here as a function of consumption levels, though it could easily be converted

into a function of net demand as in section 2. This household is endowed with 3/2

units of leisure. It has no ownership shares in either �rm. The utility maximizing

consumption levels satisfy q`` = qxx = qzz = q`=2 and the indirect utility function is

2 log q` � log qx � log qz + constant.

� Household 2 (type n laborer) has utility function U2(n; x; z) = log n + log x + log z.

It is endowed with 3/2 units of leisure and it has no ownership shares. The utility

maximizing consumption levels satisfy qnn = qxx = qzz = qn=2 and the indirect utility

function is 2 log qn � log qx � log qz + constant.
14The DM condition, stated in theorem 4 on page 23 of Diamond and Mirrlees (1971), is the following:

there exists a commodity for which every household is on the same side of the market. So DM is satis�ed if
all households are net suppliers of some commodity. It is also satis�ed if all households are net demanders
of some commodity.
15If the government has full control over all households�incomes, the outcome will be �rst best. And if

preferences are strictly monotone, the �rst best cannot have excess supply.
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� Household 3 (trader) has utility function U3(x; z) = log x + log z, and it is endowed

with 1 unit of good x. It has no ownership shares and it supplies no labor. The

utility maximizing consumption levels satisfy qxx = qzz = qx=2 and the indirect utility

function is log qx � log qz + constant. Note that household 3 receives the consumer
price qx for its net sales of good x, which could di¤er from the producer price px
received by a �rm. We can justify this if px > qx (a subsidy) since it is not practical to

subsidize household to household transactions � it would bankrupt the government.

The example does in fact allow for the possibility that px > qx at the optimum.

� Household 4 (capitalist) has utility function U4(x; z) = log x + log z, and it has no

endowment. It owns both �rms, which yields total pro�ts �. It supplies no labor to

either �rm. The utility maximizing consumption levels satisfy qxx = qzz = �=2 and

the indirect utility function is 2 log � � log qx � log qz + constant.

� The government is not an active producer; Y0 = f0g.

� For �rm 1, Y1 = f(L;N;X;Z) jL � 0 ; N = 0 ; X � F (�L) ; Z = 0g. This �rm
produces good x from type ` labor using a strictly increasing, strictly concave, smooth

production function F .

� For �rm 2, Y2 = f(L;N;X;Z) jL = 0 ; N � 0 ; X = 0 ; Z � �N=2g. This �rm
produces good z from type n labor using a linear technology. It generates zero pro�ts.

� The direct social welfare function is W = U1 + U2 + 5U3 + U4.

The government�s problem is to maximize indirect social welfare subject to the weak

inequalities for market clearing for each of the four commodities. If the level of production

for �rm 1 leads to excess supply, then the market clearing conditions for type ` labor and

good x will not bind. Then the government�s problem is to choose q and � to

maximize 2 log q` + 2 log qn + 2 log qx � 8 log qz + 2 log �

subject to q` + qn + qx + � � qz:

The constraint incorporates the market clearing condition for good z, the production con-

straint for �rm 2, and the market clearing condition for type n labor. This problem is

homogeneous of degree zero in (q; �), so normalize qz = 1. Then the solution is q` = qn =

qx = � = 1=4.
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At the optimal prices and pro�ts, the supply of type ` labor is 1 and the aggregate net

demand for good x is 1. To complete the example, choose the production function F for

�rm 1 so that F (1) > 1. Since this �rm pays out positive pro�ts at the optimum, it must

produce on its e¢ ciency frontier. Thus, there will be excess supply equal to F (1)� 1 units
in the market for good x, which the government purchases. Alternatively, there could be

excess supply in the market for type ` labor, which must be paid the wage q` = 1=4 by the

government.

We can say the following about optimal producer prices. Firm 2 with its linear technology

must face the relative price pz=pn = 2, but pz and pn are not determined individually. If

�rm 1 uses one unit of type ` labor to produce F (1) > 1 units of good x at the optimum then

its �rst order condition is pxF 0(1) = p` and its pro�t equation is 1=4 = � = pxF (1)� p`1. So
px = 0:25=[F (1)�F 0(1)]. We can choose the production function so that the producer price
px exceeds the consumer price qx = 1=4 in which case good x is subsidized as was mentioned

above in the description of household 3, the trader.

5.2 Remark. The trader plays an integral role in the example. The other three households
prefer small values for qx. In fact, as qx # 0 their utilities and their consumption of x
explode. Obviously this cannot be consistent with excess supply of x. The trader, on the

other hand, prefers large values of qx. This lack of unanimity allows a range of possible

outcomes (depending on social welfare weights), including excess supply. This is the essence

of the earlier discussion regarding the DM condition.

Observe that the setup for the example satis�es the hypotheses for corollary 4.5. Thus,

the example illustrates a relationship between production e¢ ciency and excess supply. If the

su¢ cient conditions for production e¢ ciency are satis�ed then the market clearing condition

must bind for at least one market. However, it does not have to bind for every market.

It may be possible to eliminate excess supply entirely, without reducing social welfare.

In particular, if the government has free disposal (Y0 � IRn+ � Y0), or if a private �rm with

constant returns has free disposal, then any excess supply can simply be thrown out.16 But

there is no real distinction between excess supply and government free disposal. Nor is there

16Weymark (1981) shows that the aggregate production set is equal to the sum of the boundaries of the
�rms�production sets:

P
f Yf =

P
f @Yf . Thus, it may seem that the presence or absence of a �rm with free

disposal is irrelevant. However, this result does not distinguish between Y +f and @Yf . There may be cases
in which it is possible to re-allocate production so that all �rms produce on their boundaries, but in the
process one �rm�s production vector moves from Y +f to @Yf n Y +f . This could a¤ect pro�ts and dividends,
and hence a¤ect net demand and social welfare.
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any real distinction between private free disposal and public ownership (since price must be

zero). Thus free disposal may e¤ectively re-label, rather than eliminate, excess supply.

6 Conclusion

Production e¢ ciency continues to be a topic of general interest to economists (e.g., Keen and

Wildasin 2004). In this paper I extend the Diamond�Mirrlees (1971) production e¢ ciency

theorem to economies with pure pro�ts. The result requires that small changes in demand

be accommodated by small changes in supply without disrupting the level of dividends paid

to households. Previous analyses have had di¢ culty formalizing this continuity assumption.

The obstacles are addressed here by taking a new approach to de�ne smoothness of the

production frontier. Furthermore, the analysis here allows for the possibility of excess supply,

or, in the terminology of Guesnerie (1977), allows for non-tight equilibria.

Example 5.1 illustrates that excess supply may indeed be optimal. The example is static

and deterministic, but the model of section 2 is general enough to include commodities

indexed by time and state of nature. These generalizations do not alter the key criterion: If

the production set has the necessary shape as described in (1) then excess supply may be

present at an optimal tax equilibrium.

Recall that the government absorbs the excess supply by purchasing it at market prices.

As mentioned at the end of example 5.1, this can be achieved either by buying up inputs

or outputs. Either way, the purchases are not consumed by any household. Rather, they

are stockpiled by the government. Although this sounds particularly ine¢ cient, it may

be optimal given the constraints faced by the government. So it is natural to ask if we

could achieve a better outcome by relaxing those constraints and giving the government

more �exible policy instruments. The answer is yes if those instruments include unrestricted

nonlinear taxation. The idea is to change the shape of the budget set so at least one

household can a¤ord more of the stockpiled commodity, while at the same time all other

markets continue to clear. This eliminates the surplus but without thwarting social welfare

objectives. Appendix D gives a formal statement and proof. Thus the excess supply may

be avoided in principle. However, in practice unrestricted nonlinear taxation is not feasible

due to the information requirements � the government needs to know the amount of each

commodity purchased by each household.

If nonlinear taxation is not the answer perhaps we could consider �rm speci�c lump sum

transfers. After all, the key issue that led to excess supply in �gure 3 was the desire to get
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�rms back on their e¢ ciency frontiers so they could pay out the same level of dividends as

in the initial equilibrium in �gure 1. If we can achieve this directly with lump sum transfers,

there is no need to introduce excess supply. Just give each �rm a transfer that exactly

restores the initial dividends. With this instrument the production e¢ ciency theorem can

be proved without the need for smooth production frontiers (assumption 4.1) and without

the need for excess supply. It might appear that this new instrument is no more di¢ cult to

implement than the model�s �rm speci�c taxation of pro�ts. In fact there is a real world

policy that has been implemented and which has lump sum features: paying farmers not

to farm. But this policy is a notorious magnet for abuse and corruption. The same can be

expected of any subsidy that is unrelated to the level of production: everyone will try to get

a piece of it. Unfortunately this leaves us again with the open question of whether there are

any feasible policy instruments that can eliminate the surplus without reducing welfare.
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Appendix A The literature

This appendix extends section 1.1 and is intended for those who have read the literature and

want to see precisely where the di¢ culties arise. Four papers are of particular signi�cance

� Dasgupta and Stiglitz (1972), Hahn (1973), Mirrlees (1972), and Sadka (1977) � all of

which use models similar to the one described in section 2 above.

Part (b) of the proof of Hahn�s corollary 3 is not correct. The mapping that takes

production points to supporting prices is not continuous as claimed � it is identically zero

on the interior of the production set. Under stated assumptions, continuity could be achieved

by restricting this mapping to the boundary of the production set.17 But then the result from

part (a) of the proof would not be applicable unless one were willing to assume convexity of

the boundary of the production set � which essentially implies a linear technology. Sadka

makes the same error.

Hahn�s proposition 4 is somewhat misleading. In order to prove feasibility of his Pareto

superior point he should show that if before-tax pro�ts (�f) equal zero then after-tax pro�ts

(nf) equal zero. I.e., a �rm cannot distribute pro�ts that do not exist. However, the proof

only seems to require the converse: �f > 0 implies nf > 0 (the stated restriction against

100% taxation of pro�ts).

As pointed out by Sadka, Mirrlees�s claim on the bottom of page 106 is in error. Mirrlees

proceeds to consider a special case on the top of page 108. There are two types of �rms: (i)

those that are incapable of generating positive pro�ts (�rms with constant returns) and (ii)

those for which Y +f is dense in the boundary of Yf . This is very restrictive since it excludes

production sets like Yf = f(y1; y2; y3) j y1 �
p�y2; y2 � 0; y3 � 0g in which the �rm is not

involved in the market for good 3. Clearly this �rm is not of type (i). Nor is it of type (ii)

since Y +f excludes all of the boundary points where y3 = 0 and y1 <
p�y2 (strict inequality).

In practice, most �rms participate in relatively few markets so it would be desirable to go

beyond the special case considered by Mirrlees. Corollary 4.5 above does this.

Consider now the paper by Dasgupta and Stiglitz. There is one key assumption: pro�ts

are always strictly positive. Formally, each �rm is characterized by a di¤erentiable function

that maps a normalized price vector p to a net supply vector. The assumption is that the

inner product of these two vectors is strictly positive. This is similar to Mirrlees�s special

17One should be careful when referring to the �boundary�and �interior�of the production set. Consider a
�rm for which there exists one commodity that is neither an input nor an output. Then the production set is
contained in a hyperplane, which has no interior. In such a case it may be more appropriate to consider the
relative topology induced by the hyperplane and use the terms �relative boundary�and �relative interior.�
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case. Despite the limitations from using calculus methods, the argument in Dasgupta and

Stiglitz can be made rigorous. This follows from corollary 3.2 above.

Appendix B Proof of theorem 4.2

For ease of notation, omit the �rm subscript f . Let rG denote the gradient of G. In order
to prove the theorem, the following two lemmas will be helpful. The theorem�s hypotheses

also apply to these lemmas.

B.1 Lemma. Let G be di¤erentiable at (�yo; �yi) with G(�yo; �yi) = 0. If G(yo;yi) � 0 then
rG(�yo; �yi) � (�yo; �yi) � rG(�yo; �yi) � (yo;yi).

Lemma B.1 shows that rG can serve as a supporting price vector. A proof is given on
page 780 of Arrow and Enthoven (1961). Lemma B.2 below characterizes all supporting

price vectors at points where rG 6= 0.

B.2 Lemma. Let G be di¤erentiable at (�yo; �yi) with rG(�yo; �yi) 6= 0. If p � (�yo; �yi) �
p � (yo;yi) for all (yo;yi) 2 Y then p = ��rG(�yo; �yi) + (0; ��i) with �� � 0, ��i � 0, and
��i � �yi = 0.

Proof. By hypothesis, (�yo; �yi) is a solution to the following constrained optimization problem:

max
(yo;yi)

p � (yo;yi) subject to G(yo;yi) � 0 and yi � 0:

The Lagrangian for this problem is L = p � (yo;yi)��G(yo;yi)��i �yi. Since monotonicity
of G implies rG(�yo; �yi) � 0, a constraint quali�cation is satis�ed at (�yo; �yi). That is, the
only Lagrange multipliers (�;�i) � 0 that satisfy �rG(�yo; �yi)+(0;�i) = 0 are (�;�i) = 0.
(Recall that rG(�yo; �yi) 6= 0.) Therefore, the Kuhn�Tucker conditions must be satis�ed, and
these conditions correspond to the conclusion of the lemma.

To prove the theorem, let (�yo; �yi) 2 Y +. The task is to �nd � > 0 that satis�es the

condition in assumption 4.1. By de�nition of Y +, lemma B.2 yields rG(�yo; �yi) � (�yo; �yi) > 0.
Since rG � 0, this implies that for some output j, �yoj > 0 and @G(�yo; �yi)=@yoj > 0. Without
loss of generality, j = 1. Also, it follows that G(�yo; �yi) = 0. Otherwise pro�ts could be

raised by increasing yo1.

By the implicit function theorem, there exists a neighborhoodN of (�yo�1; �y
i) and a contin-

uously di¤erentiable function g : N ! IR such that g(�yo�1; �y
i) = �yo1 andG

�
g(yo�1;y

i);yo�1;y
i
�
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� 0 on N . Also, if (yo�1;yi) 2 N then @G=@yo1 remains strictly positive and rG remains

continuous at
�
g(yo�1;y

i);yo�1;y
i
�
.

The mapping (yo�1;y
i) 7! rG(g;yo�1;yi) � (g;yo�1;yi) is continuous on N where g is short

for g(yo�1;y
i). It maps (�yo�1; �y

i) to a strictly positive number. Therefore, for su¢ ciently

small � > 0 the open ball B�(�yo�1; �y
i) gets mapped into IR++. The following lemma now

con�rms that this � satis�es the condition in assumption 4.1.

B.3 Lemma. Y \B�(�yo; �yi) � Y + � IRn+.

Proof. Let (yo;yi) 2 Y \B�(�yo; �yi). If yo1 = g(yo�1;yi) then by de�nition of �, rG(g;yo�1;yi)�
(g;yo�1;y

i) > 0 so by lemma B.1 the proof is complete. Otherwise, the conditions yo1 6=
g(yo�1;y

i) and G(yo;yi) � 0 imply yo1 < g(yo�1;yi) since G is monotone non-decreasing with
@G=@yo1 > 0 at

�
g(yo�1;y

i);yo�1;y
i
�
. Thus (yo;yi) = (g;yo�1;y

i)�(g�yo1;0;0) 2 Y +�IRn+.

B.4 Remark. In some cases we may want to restrict the �rm�s ability to freely dispose
goods that are neither inputs nor outputs. Then it may be more appropriate to consider

production sets of the form Y = f(yo;yi;0) 2 IRn jG(yo;yi) � 0; yi � 0g. Theorem 4.2

also holds for this Y .

Appendix C Proof of lemma 4.4

Since ~x is a boundary point of the convex set K(�)� IRn+, there exists a 6= 0 such that

a � ~x � a � x 8 x 2 K(�)� IRn+: (2)

Since ~x � ~y there exists ~b � 0 such that ~x = ~y � ~b.
Let x be a point in Y � IRn+ and suppose it has a representation x =

P
f�0 yf � b

with yf 2 Yf for each f and with b � 0. For any � 2 (0; 1) let x� := �~x + (1 � �)x =P
f�0

�
�~yf + (1� �)yf

�
�
�
�~b+ (1� �)b

�
2 Y � IRn+. If � is close to 1 then


��~yf + (1� �)yf�� ~yf


 = (1� �)kyf � ~yfk < �f 8 f � 1:

Thus if � is close to 1 then x� 2 K(�) � IRn+, and hence from (2), a � ~x � a � x�. Since
1� � > 0, the de�nition of x� and some simple algebra yields a � ~x � a � x. This is true for
any x 2 Y � IRn+. Since a 6= 0, it follows that ~x is a boundary point of Y � IRn+.
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Appendix D Nonlinear taxation

Nonlinear taxation was discussed brie�y in the conclusion. To formalize this, replace the

linear budget constraint q � xh �
P

f �hf�f � T with the more general constraint Q(xh) �P
f �hf�f where the function Q is a policy choice for the government.

D.1 Theorem. Consider an equilibrium in which there is excess supply of commodity j.

Assume the following: (i) all households exhaust their budgets and one of the households

has strictly greater income than all the others; (ii) the richest household�s utility is strictly

increasing in commodity j; (iii) social welfare is strictly increasing in the utility of the richest

household. Then there exists another equilibrium with strictly greater social welfare.

Proof. Let bars over variables denote the original equilibrium and let �zj be the amount of

excess supply. Suppose household 1 has the strictly largest income in the bar equilibrium.

Let hats over variables denote the welfare superior equilibrium. In this new equilibrium,

production and pro�ts remain as before. The new pricing function Q̂ will coincide with
�Q except at one point: Q̂(�x1 + �zjej) = �Q(�x1) where ej is the unit vector along the jth

axis. By monotonicity of preferences, household 1 will now choose x̂1 = �x1 + �zjej. All other

households will leave their demand unchanged since the new price for �x1+�zjej is una¤ordable.

By de�nition of �zj these demands are feasible, and by the monotonicity assumptions social

welfare has risen.
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Notes

A construction that supports (1) as an optimum. There are 2 households and there is no

head tax/subsidy. Household 1 fully owns all the �rms. All social welfare weight is placed on

household 2. Household 2�s o¤er curve cuts Y �IRn+ at x. I.e., the maximum of household 2�s
utility U2(x2) subject to x2 � rU2(x2) = 0 and x2 2 Y � IRn+ occurs at x. Household 1
has utility function U1(x1) := U2(x1 + x), i.e., the same preferences over consumption as

household 2 but a di¤erent endowment. Thus, when income is M1 = 0 and consumer prices

are proportional to rU2(x), household 1 chooses autarky. The government taxes away all
pro�ts.

If we were willing to give up strict monotonicity, this construction would be trivial with

Leontief preferences. I.e., let household 2�s endowment be !2 with !2+x� 0 and with the

Leontief kinks occurring where consumption has the proportions in !2+x. Let household 1

have the exact same preferences over consumption, with endowment at !1 = !2 + x. The

outcome would be �rst best.

Former theorem 5.3 (which dealt with free disposal) may apply here. Since no pro�ts are

distributed, �Y = Y . And if Y has free disposal then there exists another optimum without

excess supply. Nonetheless, the construction does demonstrate that (1) is su¢ cient to create

the possibility of optimal excess supply. Furthermore, if the production point y does permit

the distribution of positive pro�ts, then other constructions may be possible for which former

theorem 5.3 does not apply.

Buyer prices and seller prices. Consumer budget constraint q � (x�!)+ � p � (! � x)+ � T
where x is gross consumption not net demand.
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Nonlinear taxation. In theorem D.1 consider what would happen if there were a tie for the

largest income. Suppose the tie involves households 1 and 2. Consider Q̂ that coincides

with �Q except as follows: Q̂(�x1 + �1�ziei) = �Q(�x1) and Q̂(�x2 + �2�ziei) = �Q(�x1) where the �s

are non-negative with 0 < �1 + �2 � 1. The goal might be to choose the �s to satisfy the

following self-selection constraints:

U1(�x1 + �1�ziei) � U1(�x2 + �2�ziei) (#)

and

U2(�x2 + �2�ziei) � U2(�x1 + �1�ziei): (�)

The problem is that this might not be possible. E.g., suppose both households were in a

state of indi¤erence in the bar equilibrium, U1(�x1) = U1(�x2) and U2(�x2) = U2(�x1). Suppose

that household 1�s marginal utility from commodity i is much greater at �x2 than at �x1.

Then in order to satisfy (#), �1 > �2. Suppose also that household 2�s marginal utility

from commodity i is much greater at �x1 than at �x2. Then in order to satisfy (�), �2 > �1.
This appears problematic. However, the self-selection constraints will be satis�ed if they

are swapped. I.e., designate household 1 to demand �x2 + �2�ziei and household 2 to demand

�x1 + �1�ziei. In this way, the only change to aggregate demand is an increase in the demand

for commodity i.

The di¢ culty arises when trying to generalize this argument for all possibilities. E.g.,

suppose both households are initially indi¤erent between �x1 and �x2 but that the marginal

utilities have some other arrangement. Or suppose household 1 is indi¤erent between �x1 and

�x2 while household 2 strictly prefers its own bundle to �x1. Etc. Then consider what happens

if three or more households are tied for the largest income. It seems that the bene�t from

working through this problem just isn�t worth the cost.
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