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Abstract

Standard game theory assumes that the structure of the game is common knowledge among

players. We relax this assumption by considering extensivegames where agents may be unaware of

the complete structure of the game. In particular, they may not be aware of moves that they and other

agents can make. We show how such games can be represented; the key idea is to describe the game

from the point of view of every agent at every node of the game tree. We provide a generalization

of Nash equilibrium and show that every game with awareness has a generalized Nash equilibrium.

Finally, we extend these results to games withawareness of unawareness, where a playeri may be

aware that a playerj can make moves thati is not aware of, and tosubjective games, where payers

may have no common knowledge regarding the actual game and their beliefs are incompatible with

a common prior.

keywords: Economic Theory, Foundations of Game Theory, Awareness, Solution Concepts.

1 Introduction

Standard game theory models implicitly assume that all significant aspects of the game (payoffs, moves

available, etc.) are common knowledge among the players. While such common knowledge may seem

unreasonable, there are well-known techniques going back to Harsanyi [12] for transforming a game

where some aspects are not common knowledge to one where theyare common knowledge. All these

techniques assume that players are at leastawareof all possible moves in the game. However, this is

not always a reasonable assumption. For example, sleazy companies assume that consumers are not

aware that they can lodge complaints if there are problems; in a war setting, having technology that an

enemy is unaware of (and thus being able to make moves that theenemy is unaware of) can be critical;

in financial markets, some investors may not be aware of certain investment strategies (complicated

hedging strategies, for example, or tax-avoidance strategies).
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In a standard game, a set of strategies is a Nash equilibrium if each agent’s strategy is a best re-

sponse to the other agents’ strategies, so each agenti would continue playing its strategy even ifi knew

what strategies the other agents were using. To understand the relevance of adding the possibility of

unawareness to the analysis of games, consider the game shown in Figure 1. One Nash equilibrium of

this game hasA playing acrossA andB playing downB . However, suppose thatA is not aware thatB

can play downB . In that case, ifA is rational,A will play downA. Therefore, Nash equilibrium does

not seem to be the appropriate solution concept here. AlthoughA would play acrossA if A knew thatB

were going to play downB , A cannot even contemplate this possibility, let alone know it.

Figure 1: A simple game.

Our goal is to find appropriate solution concepts for extensive games with possibly unaware players,

and more generally, to find ways of representing multiagent systems where some agents may not be

aware of features of the system. To do this, we must first find anappropriate representation for such

games. The first step in doing so is to explicitly represent what players are aware of at each node. We do

this by using what we call anaugmented game. An augmented game describes how awareness changes

over time. For example, perhapsA playing acrossA will result in B becoming aware of the possibility

of playing downB . In financial settings, one effect of players using certain investment strategies is that
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other players become aware of the possibility of using that strategy. Strategic thinking in such games

must involve taking this possibility into account.

We cannot in general represent what is going on using only oneaugmented game. The standard

representation of a game implicitly assumes that (it is common knowledge that) the modeler and the

players all understand the game the same way. This is no longer true once we allow for the possibility of

unawareness, since a player’s description of the game can now involve only those aspects of the game

that he is aware of. Thus, the full description of the game with awareness is given by a set of augmented

games, one for the modeler and one for each game that at least one of the agents thinks might be the

true game in some situation.

Continuing with the game in Figure 1, the augmented game fromthe point of view of the type ofB

that is unaware of the possibility of playing downB would just includeA’s moves downA and acrossA

and the move acrossB . In that augmented game, playerA is also unaware of the move downB . By way

of contrast, the augmented game from the point of view of the type ofB that is aware of downB would

include the move downB , but may also allow for the possibility thatA is not aware thatB is aware of

this move.

The standard notion of Nash equilibrium consists of a collection of strategies, one for each player.

Our generalization consists of a collection of strategies,one for each pair(i,Γ′), whereΓ′ is a game

that agenti considers to be the true game in some situation. Intuitively, the strategy for a playeri atΓ′

is the strategyi would play in situations wherei believes that the true game isΓ′. To understand why

we may need to consider different strategies consider, for example, the game of Figure 1.B would play

differently depending on whether or not he was aware of downB . Roughly speaking, a set of strategies,

one for each pair(i,Γ′), is ageneralized Nash equilibriumif the strategy for(i,Γ′) is a best response
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for playeri if the true game isΓ′, given the strategies being used by the other players inΓ′.

We argue that this notion of equilibrium correctly capturesour intuitions. We then show that every

game with awareness has a generalized Nash equilibrium by associating with a game with awareness

a standard game (where agents are aware of all moves) such that there is a one-to-one correspondence

between generalized Nash equilibria of the game with awareness and Nash equilibria of the standard

game.

For ease of exposition, for most of the paper we focus on gameswhere agents are not aware of

their lack of awareness. That is, we do not consider games where one player might be aware that there

are moves that another player (or even she herself) might be able to make, although she is not aware

of what they are. Such awareness of unawareness can be quite relevant in practice. For example, in

the war setting described above, even if one side cannot conceive of a new technology available to the

enemy, they might believe that there is some move available to the enemy without understanding what

that particular move is. This, in turn, may encourage peace overtures. To take another example, an

agent might delay making a decision because she considers itpossible that she might learn about more

possible moves, even if she is not aware of what these moves are.

If we interpret “lack of awareness” as “unable to compute” (cf. [2]), then awareness of unawareness

becomes even more significant. Consider a chess game. Although all players understand in principle

all the moves that can be made, they are certainly not aware ofall consequences of all moves. A more

accurate representation of chess would model this computational unawareness explicitly. We provide

such a representation.

Roughly speaking, we capture the fact that playeri is aware that, at a nodeh in the game tree,

there is a move thatj can make she (i) is not aware by havingi’s subjective representation of the game
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include a “virtual” move forj at nodeh. Sincei might have only an incomplete understanding of what

can happen after this move,

i simply describes what she believes will be the game after thevirtual move, to the extent that she

can. For example, if she has no idea what will happen after thevirtual move, then she can describe her

beliefs regarding the payoffs of the game. Thus, our representation can be viewed as a generalization

of how chess programs analyze chess games. They explore the game tree up to a certain point, and then

evaluate the board position at that point. We can think of thepayoffs following a virtual move byj in

i’s subjective representation of a chess game as describing the evaluation of the board fromi’s point of

view. This seems like a much more reasonable representationof the game than the standard complete

game tree!

Our framework is flexible enough to deal with games where there is lack of common knowledge

about what is the game being played. In particular, we can deal with lack of common knowledge re-

garding the utilities, who moves next, the structure of other players’ information sets, and the probability

of nature’s moves (even in cases where there is no common prior compatible with the players’ beliefs

regarding nature).

Recently, Feinberg [3, 4] also studied games with awareness. Feinberg [4] gives a definition of

extended Nash equilibrium in normal-form games. Although his definition stems from much the same

intuitions as ours (although some details are different—see Section 6), it is expressed syntactically.

Each player is characterized by a complete description of what moves and players he is aware of, what

moves and players he is aware that each other player is aware of, and so on through all levels of iterated

awareness. Feinberg [3] deals with extensive-form games and defines solution concepts only indirectly,

via a syntactic epistemic characterization. His approach lacks a more direct semantic framework, which
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our model provides. He also does not deal with awareness of unawareness.

The rest of this paper is organized as follows. In Section 2, we describe how we represent different

awareness levels in a game. In Section 3, we use our representation to define a generalized notion of

Nash equilibrium, and we prove its existence in games with awareness. In Section 4, we describe how

we can extend our approach to deal with awareness of unawareness. In Section 5, we describe how to

extend our framework to deal with games where there is lack ofcommon knowledge, even if awareness

is not an issue. We compare our work to others in the literature, particularly Feinberg’s, in Section 6,

and conclude in Section 7.

2 Modeling awareness

The first step in dealing with awareness is modeling it. To this end, we consideraugmented games. We

start with a standard game, described by a game treeΓ (as in Figure 1). An augmented gameΓ+ based

onΓ essentially augmentsΓ by describing each agent’sawareness levelat each node, where playeri’s

awareness level at a nodeh is essentially the set of runs (complete histories) inΓ that i is aware of at

nodeh. A player’s awareness level may change over time, as the player becomes aware of more moves.

Our formal definition of augmented game is based on the definition of extensive game given by

Osborne and Rubinstein [22]. We start by briefly reviewing Osborne and Rubinstein’s definition.

A (finite) extensive gameis a tuple(N,M,H,P, fc, {Ii : i ∈ N}, {ui : i ∈ N}), where

• N is a finite set consisting of the players of the game.

• M is a finite set whose elements are the moves (or actions) available to players (and nature) during

the game.1

1Osborne and Rubinstein did not makeM explicit in their definition of an extensive game; we find it convenient to make
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• H is a finite set of finite sequences of moves (elements ofM ) that is closed under prefixes, so that

if h ∈ H andh′ is a prefix ofH, thenh′ ∈ H. Intuitively, each member ofH is ahistory. We

can identify the nodes in a game tree with the histories inH. Each noden is characterized by the

sequence of moves needed to reachn. A run inH is a terminal history, one that is not a strict prefix

of any other history inH. LetZ denote the set of runs ofH. LetMh = {m ∈ M : h · 〈m〉 ∈ H}

(where we use· to denote concatenation of sequences);Mh is the set of moves that can be made

after historyh.

• P : (H − Z) → N ∪ {c} is a function that assigns to each nonterminal historyh a member of

N ∪{c}. (We can think ofc as representing nature.) IfP (h) = i, then playeri moves after history

h; if P (h) = c, then nature moves afterh. Let Hi = {h : P (h) = i} be the set of all histories

after which playeri moves.

• fc is a function that associates with every history for whichP (h) = c a probability measure

fc(· | h) onMh. Intuitively, fc(· | h) describes the probability of nature’s moves once historyh

is reached.

• Ii is a partition ofHi with the property that ifh andh′ are in the same cell of the partition then

Mh = Mh′ , i.e., the same set of moves is available at every history in acell of the partition.

Intuitively, if h andh′ are in the same cell ofIi, thenh andh′ are indistinguishable fromi’s point

of view; i considers historyh′ possible if the actual history ish, and vice versa. A cellI ∈ Ii is

called an (i-)information set.

• ui : Z → R is a payoff function for playeri, assigning a real number (i’s payoff) to each run of

the game.

it explicit here.
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In the game of Figure 1,

• N = {A,B}, H = {〈 〉, 〈downA〉, 〈acrossA, downB〉, 〈acrossA, acrossB〉},

• P (〈 〉) = A, P (〈acrossA〉) = B,

• IA = {〈 〉}, IB = {〈acrossA〉},

• uA(〈downA〉) = uB(〈downA〉) = 1,

• uA(〈acrossA, acrossB〉) = 0, and

• uB(〈acrossA, acrossB〉) = 2.

In this paper, as in most work in game theory, we further assume that players haveperfect recall:

they remember all the actions that they have performed and the information sets they passed through.

Formally, we require that

• if h andh′ are in the samei-information set andh1 is a prefix ofh such thatP (h1) = i, then

there is a prefixh′1 of h′ such thath1 andh′1 are in the same information set; moreover, ifh1 · 〈m〉

is a prefix ofh (so thatm was the action performed whenh1 was reached inh) thenh′1 · 〈m〉 is a

prefix ofh′.

An augmented gameis defined much like an extensive game; the only essential difference is that at

each nonterminal history we not only determine the player moving but also her awareness level. Since

the awareness level is a set of runs in a gameΓ, we say thatΓ+ = (N+,M+,H+, P+, f+
c , {I+

i : i ∈

N+}, {u+i : i ∈ N+}, {A+
i : i ∈ N+}) is anaugmented game based on the (standard) extensive game

Γ = (N,M,H,P, fc, {Ii : i ∈ N}, {ui : i ∈ N}) if the following conditions are satisfied:
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A1. (N+,M+,H+, P+, f+
c , {I+

i : i ∈ N+}, {u+i : i ∈ N+}) is a (standard) finite extensive game

where players have perfect recall.

A2. A+
i : H+

i → 2H describesi’s awareness level at each nonterminal history after which player

i moves. For eachh ∈ H+
i , A+

i (h) consists of a set of histories inH and all their prefixes.

Intuitively, A+
i (h) describes the set of histories ofΓ that i is aware of at historyh ∈ H+

i . (Hav-

ing A+
i (h) consist of histories rather than just runs makes it easier todeal with awareness of

unawareness.)

A3. N+ ⊆ N .

A4. If P+(h) ∈ N+, thenP+(h) = P (h), whereh is the subsequence ofh consisting of all the

moves inh that are also inM , andM+
h ⊆ M

h
. Intuitively, all the moves available toi ath must

also be available toi in the underlying gameΓ.

A5. If P+(h) = c, then eitherP (h) = c andM+
h ⊆ M

h
, orM+

h ∩M = ∅. The moves inM+
h in the

case whereM+
h ∩M = ∅ intuitively capture uncertainty regarding a player’s awareness level.

A6. If h andh′ are in the same information set inI+
i , thenA+

i (h) = A+
i (h

′). Intuitively, i’s awareness

level depends only on the information thati has.

A7. If h is a prefix ofh′ andP+(h) = P+(h′), thenA+
i (h) ⊆ A+

i (h
′). This is a perfect recall

requirement; players do not forget histories that they wereaware of.

A8. If h andh′ are in the same information set inΓ+, thenh andh
′
are in the same information set

in Γ.

A9. If h andh′ are histories in bothΓ+ andΓ, andh andh
′
are in the same information set inΓ, then

h andh′ are in the same information set inΓ+.
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A10. For alli ∈ N+ andh ∈ H+
i , if h′, h′′ ∈ Ai(h), h′ andh′′ are in the same information set inΓ,

thenh′ · 〈m〉 ∈ Ai(h) iff h′′ · 〈m〉 ∈ Ai(h).

A11. {z : z ∈ Z+} ⊆ Z; moreover, for alli ∈ N+, h ∈ H+
i , if z is a terminal history inA+

i (h) (i.e., if

z ∈ A+
i (h) andz is not a strict prefix of another element ofA+

i (h)), thenz ⊆ Z. Thus, the runs

in Z+ correspond to runs inZ, and players understand this fact.

A12. For all i ∈ N+ and runsz in Z+, if z ∈ Z, thenu+i (z) = ui(z). Thus, a player’s utility just

depends on the moves made in the underlying game. (By A11, we havez ∈ Z. We have included

the clause “ifz ∈ Z” so that A12 is applicable when we consider awareness of unawareness,

where we drop A11.)

Conditions A1–A12 are intended to capture our intuitions regarding information sets, awareness,

and common knowledge. To allow us to focus on issues directlyrelated to awareness, we have implicitly

assumed that there is common knowledge of (1) who moves at histories in the underlying game (this

is captured by the fact thatP+(h) = P (h) unlessP+(h) = c andM+
h ∩ M = ∅ —either the same

player or nature moves at bothh andh unless nature makes an “awareness” move ath), (2) what the

payoffs are in the underlying game (sinceu+(z) = u(z)), and (3) what the information sets are in the

underlying game (see A8–A10). Our approach is flexible enough to allow us to drop these assumptions;

see Section 5.

To understand A8–A10, we must first discuss our view of information sets. As pointed out by

Halpern [7], special attention must be given to the interpretation of information sets in game trees. This

issue requires even more care in games with awareness. The standard intuition for information sets is

that a player considers all the histories in his informationset possible. But this intuition does not apply

in augmented games. In an augmented game, there may be some histories in ani-information set thati
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is not aware of; playeri cannot consider these histories possible. For example, consider finitely repeated

prisoners dilemma where Alice and Bob each move twice beforetheir moves are revealed. Even if Bob

is not aware of defection, his information set after Alice’sfirst move in the modeler’s game will still

contain the history where Alice defects.

We interpret ani-information set to be the set of all histories where playeri has the samelocal state.

Intuitively, this local states encodes all the informationthat i has about the moves he can make, what

moves have been made, the other players in the game, his strategy, and so on. We assume that playeri’s

local state is characterized by the sequence of signals thatthati has received in the course of the game.

Therefore,h andh′ are in the samei-information set inΓ iff i received the same sequence of signals in

both histories.

In standard extensive games, the sequence of signals a player receives after every historyh is as-

sumed to be common knowledge. (This assumption is implicit in the assumption that the game, is

common knowledge, and hence so are the information sets.) Aswe said, we continue to assume this

in games with awareness (although we show how the assumptioncan be dropped in Section 5). That is

why we require in A8 that ifh andh′ are in the samei-information in an augmented game, thenh and

h
′
must be in the samei-information set in the underlying game. The converse of A8 does not neces-

sarily hold. It could well be the case thath andh
′
are in the samei-information set, but sincei receives

different signals from nature,h andh′ are not in the same information set. On the other hand, if all the

moves inh andh′ are already in the underlying game, then ifh andh′ are in the same information set

of Γ, they should be in the same information set ofΓ+. This is the content of A9. Since, the signals

received by a player determine the moves he has available, ifplayeri is aware of two histories in the

same information set inΓ, he must be aware of the same set of moves available at both of these histories.

A10 captures that intuition.
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For the remainder of the paper, we use the following notation: for a (standard or augmented) game

Γs, we denote the components ofΓs with the same superscripts, so that we haveM s, Hs, and so on.

Thus, from here on we do not explicitly describe the components of a game.

An augmented game describes either the modeler’s view of thegame or the subjective view of the

game of one of the players, and includes both moves of the underlying game and moves of nature that

change awareness. For example, consider again the game shown in Figure 1 and suppose that

• playersA andB are aware of all histories of the game;

• playerA is uncertain as to whether playerB is aware of run〈acrossA, downB〉 and believes that

he is unaware of it with probabilityp; and

• the type of playerB that is aware of the run〈acrossA, downB〉 is aware that playerA is aware of

all histories, and he knowsA is uncertain about his awareness level and knows the probability p.

BecauseA andB are actually aware of all histories of the underlying game, from the point of view of

the modeler, the augmented game is essentially identical tothe game described in Figure 1, with the

awareness level of both playersA andB consisting of all histories of the underlying game. However,

whenA moves at the node labeledA in the modeler’s game, she believes that the actual augmented

game isΓA, as described in Figure 2. InΓA, nature’s initial move capturesA’s uncertainty aboutB’s

awareness level. At the information set labeledA.1, A is aware of all the runs of the underlying game.

Moreover, at this information set,A believes that the true game isΓA.

At the node labeledB.1, B is aware of all the runs of the underlying game and believes that the true

game is the modeler’s game; but at the node labeledB.2, B is not aware that he can play downB , and so

believes that the true game is the augmented gameΓB described in Figure 3. At the nodes labeledA.3
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andB.3 in the gameΓB , neitherA norB is aware of the move downB . Moreover, both players think

the true game isΓB .

Figure 2: The augmented gameΓA.

Figure 3: The augmented gameΓB.

As this example should make clear, to model a game with possibly unaware players, we need to

consider not just one augmented game, but a collection of them. Moreover, we need to describe, at each

history in an augmented game, which augmented game the player playing at that history believes is the
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actual augmented game being played.

To capture these intuitions, we define agame with awareness based onΓ = (N,M,H,P, fc, {Ii :

i ∈ N}, {ui : i ∈ N}) to be a tupleΓ∗ = (G,Γm,F), where

• G is a countable set of augmented games based onΓ, of which one isΓm;

• F maps an augmented gameΓ+ ∈ G and a historyh in Γ+ such thatP+(h) = i to a pair(Γh, I),

whereΓh ∈ G andI is ani-information set in gameΓh.

Intuitively, Γm is the game from the point of view of an omniscient modeler. Ifplayer i moves ath

in gameΓ+ ∈ G andF(Γ+, h) = (Γh, I), thenΓh is the game thati believes to be the true game

when the history ish, andI consists of the set of histories inΓh he currently considers possible. For

example, in the examples described in Figures 2 and 3, takingΓm to be the augmented game in Fig-

ure 1, we haveF(Γm, 〈 〉) = (ΓA, I), whereI is the information set labeledA.1 in Figure 2, and

F(ΓA, 〈unaware,acrossA〉) = (ΓB , {〈acrossA〉}).

It may seem that by makingF a function we cannot capture a player’s uncertainty about the game

being played. However, we can capture such uncertainty by folding it into nature’s move. For example,

we captureA’s uncertainty about whetherB is aware of being able to move downB in the augmented

gameΓA illustrated in Figure 2 by having nature decide this at the first step. It should be clear that this

gives a general approach to capturing such uncertainty.

The augmented gameΓm and the mappingF must satisfy a number of consistency conditions. The

first set of conditions applies toΓm. Since the modeler is presumed to be omniscient, the conditions say

that the modeler is aware of all the players and moves of the underlying game.

M1. Nm = N .
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M2. M ⊆ Mm and{z : z ∈ Zm} = Z.

M3. If Pm(h) ∈ N , thenMm
h = M

h
. If Pm(h) = c, then eitherMm

h ∩M = ∅ or Mm
h = M

h
and

fm
c (· | h) = fc(· | h).

M1, M2 and M3 enforce the intuition that the modeler understands the underlying game. He knows

all the players and possible moves, and understands how nature’s moves work in the underlying gameΓ.

It may seem somewhat surprising that there is no analogue of the second part of M3 (i.e., the constraint

of fm
c ) for all augmented games. While it makes sense to have such ananalogue if nature’s moves are

in some sense objective, it seems like an unreasonable requirement that all player’s should agree on

these probabilities in general. This is especially so in thecase that a player suddenly becomes aware of

some moves of nature that he was not aware of before. It does not seem reasonable to assume that this

awareness should come along with an understanding of the probabilities of these moves. Of course, we

could require such an analogue of M3. Since the set of games that have such a requirement is a subset

of the games we consider, all our results apply without change if such a requirement is imposed.

Although the modeler understands the underlying gameΓ, Γm is not uniquely determined byΓ.

There may be many modeler’s games based onΓ, where the players have different awareness levels and

the awareness changes in different ways.

The gameΓm can be thought of as a description of “reality”; it describesthe effect of moves in

the underlying game and how players’ awareness levels change. The other games inG describe a

player’s subjective view of the situation. The constraintson the mappingF that we now describe

capture desirable properties of awareness.

Consider the following constraints, whereΓ+ ∈ G, h ∈ H+, P+(h) = i, A+
i (h) = a, and

F(Γ+, h) = (Γh, I).
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C1. {h : h ∈ Hh} = a.

C2. If h′ ∈ Hh andP h(h′) = j, thenAh
j (h

′) ⊆ a andM
h
′ ∩ {m : h

′
· 〈m〉 ∈ a} = Mh

h′ .

C3. If h′ andh are in the same information set inΓ+ andh
′
∈ a, then there existsh′′ ∈ I such that

h
′′
= h

′
.

C4. If h′ ∈ I, thenAh
i (h

′) = a andF(Γh, h′) = (Γh, I).

C5. If h′ ∈ H+, P+(h′) = i, A+
i (h

′) = a, then ifh andh′ are in the same information set ofΓ+,

thenF(Γ+, h′) = (Γh, I), while if h is a prefix or a suffix ofh′, thenF(Γ+, h′) = (Γh, I ′) for

somei-information setI ′.

C6. If h′ ∈ I, thenh andh
′
are in the same information set inΓ;

C7. If Γh = Γ+, thenh′ ∈ I iff h andh′ are in the samei-information set inΓ+.

C8. For all historiesh′ ∈ I, there exists a prefixh′1 of h′ such thatP h(h′1) = i andF(Γh, h′1) =

(Γ′, I ′) iff there exists a prefixh1 of h such thatP+(h1) = i andF(Γ+, h1) = (Γ′, I ′). Moreover,

h′1 · 〈m〉 is a prefix ofh′ iff h1 · 〈m〉 is a prefix ofh.

C9. There exists a historyh′ ∈ I such that for every prefixh′′ · 〈m〉 of h′, if P h(h′′) = j ∈ Nh and

F(Γh, h′′) = (Γ′, I ′), then for allh1 ∈ I ′, h1 · 〈m〉 ∈ H ′.

C10. If h′ andh′′ are histories in bothΓ+ andΓh, thenh′ andh′′ are in the samei-information set in

Γ+ iff h′ andh′′ are in the samei-information set inΓh.

Suppose thatF(Γ+, h) = (Γh, I). Playeri moving at historyh in Γ+ thinks the actual game isΓh.

Moreover,i thinks he is in the information set ofI of Γh. C1 guarantees that the set of histories of the

underlying game playeri is aware of is exactly the set of histories of the underlying game that appear
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in Γh. C2 states that no player inΓh can be aware of histories not ina. The second part of C2 implies

that the set of moves available to playerj ath′ is just the set of moves that playeri is aware of that are

available toj ath
′
in the underlying game. C3 guarantees that for all historiesh′ indistinguishable from

h that playeri is aware of, there exists some historyh′′ ∈ I differing fromh′ at most in some moves of

nature that change awareness levels. C4 says that at all histories inI playeri indeed thinks the game is

Γh and that the information set isI. C5 says that playeri’s subjective view of the game changes only

if i becomes aware of more moves and is the same at histories inH+ that i cannot distinguish. C6

captures the assumption that at all historiesi considers possible, he must have gotten the same signals

as he does in the actual history.

C7 says that if while moving at historyh playeri thinks thatΓ+ is the actual game, then he considers

possible all and only histories in the information set containing h. C8 is a consequence of the perfect

recall assumption. C8 says that if, at historyh, i considersh′ possible, then for every prefixh′1 of

h′ there is a corresponding prefix ofh wherei considers himself to be playing the same game, and

similarly, for every prefix ofh there is a prefix ofh′ wherei considers himself to be playing the same

game. Moreover,i makes the same move at these prefixes.

The intuition behind condition C9 is that playeri knows that playerj only make moves thatj is

aware of. Therefore, playeri must consider at least one historyh′ where he believes that every playerj

made a move thatj was aware of. It follows from A11, C1, C2, and C9 that there is arun going through

I where every playerj makes a move that playeri believes thatj is aware of.

Since we assume that players have (modulo awareness) commonknowledge about information sets,

if Γ+ is the game from the point of view of playerj (or the modeler) and there are historiesh′ andh′′ in

bothΓ+ andΓh, then playerj (or the modeler) knows that playeri gets the same signals in bothh′ and
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h′′ iff he knows that playeri knows that he gets the same signals in those histories. C10 captures that

intuition.

Just asΓm is not uniquely determined byΓ, F(Γ+, h) depends on more than just the awareness

level of the player who moves ath. That is, even ifAi(h) = Ai(h
′), we may haveF(Γ+, h) = (Γh, I)

andF(Γ+, h′) = (Γh′
, I ′) with Γh 6= Γh′

. We do not require that the awareness level determines

the game a player considers possible. This extra flexibilityallows us to model a situation where, for

example, players 2 and 3, who have the same awareness level and agree on the awareness level of player

1, have different beliefs about the game player 1 considers possible.2

A standard extensive gameΓ can be identified with the game({Γm},Γm,F), where (abusing nota-

tion slightly)Γm = (Γ, {Ai : i ∈ N}) and, for all historiesh in ani-information setI in Γ, Ai(h) = H

andF(Γm, h) = (Γm, I). Thus, all players are aware of all the runs inΓ, and agree with each other and

the modeler that the game isΓ. We call this thecanonical representation ofΓ as a game with awareness.

One technical issue: We have assumed that the setG of games in a gameΓ∗ with awareness is

countable. For our purposes, this is without loss of generality. We are ultimately interested in what

happens in the gameΓm, since this is the game actually being played. However, to analyze that, we

need to consider what happens in other games inG. For example, ifh is a history inΓm wherei moves,

we need to understand what happens in the gameΓh such thatF(Γm, h) = (Γh, ·), sinceΓh is the

game thati thinks is being played at historyh in Γm. It is not hard to see that the set of games we need

2If the beliefs of players 2 and 3 regarding 1 are compatible with a common prior, then we can view players 2 and 3 as

considering different information sets in the same game possible. However, if their beliefs are not compatible with a common

prior, for example, if player 2 believes that player 1 believes that, in historyh, Γ1 is the actual game with probability 1, and

player 3 believes that, in historyh, player 1 believes thatΓ2 is the actual game with probability 1, whereΓ1 6= Γ2, then we

cannot view players 2 and 3 as considering the same game possible.
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to consider is the least setG′ such thatΓm ∈ G′ and, for everyΓ′ ∈ G and historyh in Γ′ such that

F(Γ′, h) = (Γ′′, ·), Γ′′ ∈ G′. G′ is guaranteed to be countable, even ifG is not.

3 Local strategies and generalized Nash equilibrium

3.1 Local Strategies

In this section, we generalize the notion of Nash equilibrium to games with awareness. To do that, we

must first define what a strategy is in a game with awareness. Recall that in a standard game, a strategy

for player i is a function fromi-information sets to a move or to a distribution over moves, depend-

ing on whether we are consideringpure (i.e., deterministic) strategies orbehavioral(i.e., randomized)

strategies. The intuition is that playeri’s actions depend on whati knows; the strategy can be viewed as

a universal plan, describing whati will do in every possible situation that can arise. This makes sense

only becausei is presumed to know the game tree, and thus to know in advance all the situations that

can arise.

In games with awareness, this intuition no longer makes sense. For example, playeri cannot plan

in advance for what will happen if he becomes aware of something he is initially unaware of. We must

allow i’s strategy to change if he becomes aware of more moves. LetGi = {Γ′ ∈ G : for someΓ+ ∈

G andh in Γ+, P+(h) = i andF(Γ+, h) = (Γ′, ·)}. Intuitively, Gi consists of the games thati views as

the real game in some history. Thus, rather than consideringa single strategy in a gameΓ∗ = (G,Γm,F)

with awareness, we consider a collection{σi,Γ′ : Γ′ ∈ Gi} of what we calllocal strategies, one for each

augmented game inGi. Intuitively, a local strategyσi,Γ′ for gameΓ′ is the strategy thati would use ifi

were called upon to play andi thought that the true game wasΓ′. Thus, the domain ofσi,Γ′ consists of

pairs(Γ+, h) such thatΓ+ ∈ G, h is a history inΓ+, P+(h) = i, andF(Γ+, h) = (Γ′, I).
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Define an equivalence relation∼i on pairs(Γ′, h) such thatΓ′ ∈ G andh is a history inΓ′ where

i moves such that(Γ1, h1) ∼i (Γ2, h2) if F(Γ1, h1) = F(Γ2, h2). We can think of∼i as defining a

generalized information partitionin Γ∗. It is easy to check that a∼i equivalence class consists of a union

of i-information sets in individual games inG. Moreover, if some element of a∼i equivalence class is

in the domain ofσi,Γ′ , then so is the whole equivalence class. At all pairs(Γ′, h′) in a∼i equivalence

class, ifF(Γ′, h′) = (Γh′
, I), playeri thinks he is actually playing in the information setI of Γh′

. Thus,

we require thatσi,Γ′(Γ1, h1) = σi,Γ′(Γ2, h2) if (Γ1, h1) and(Γ2, h2) are both in the domain ofσi,Γ′ and

(Γ1, h1) ∼i (Γ2, h2).

The following definition summarizes this discussion.

Definition 3.1 Given a game with awarenessΓ∗ = (G, Γm,F), a local strategyσi,Γ′ for agenti is a

function mapping pairs(Γ+, h) such thath is a history wherei moves inΓ+ andF(Γ+, h) = (Γ′, I) to

a probability distribution overM ′
h′ , the moves available at a historyh′ ∈ I, such thatσi,Γ′(Γ1, h1) =

σi,Γ′(Γ2, h2) if (Γ1, h1) ∼i (Γ2, h2).

Note that there may be no relationship between the strategiesσi,Γ′ for different gamesΓ′. Intuitively,

this is because discovering about the possibility of a different move may cause agenti to totally alter his

strategy. We could impose some consistency requirements, but we have not found any that we believe

should hold in all games. We believe that all our results would continue to hold in the presence of

reasonable additional requirements, although we have not explored the space of such requirements.

3.2 Generalized Nash Equilibrium

We want to define a notion of generalized Nash equilibrium so as to capture the intuition that for every

playeri, if i believes he is playing gameΓ′, then his local strategyσi,Γ′ is a best response to the local
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strategies of other players inΓ′.

Define ageneralized strategy profileof Γ∗ = (G,Γm,F) to be a set of local strategies~σ = {σi,Γ′ :

i ∈ N,Γ′ ∈ Gi}. Let EUi,Γ′(~σ) be the expected payoff fori in the gameΓ′ given that strategy profile

~σ is used. Note that the only strategies in~σ that are needed to computeEUi,Γ′(~σ) are the strategies

actually used inΓ′; indeed, all that is needed is the restriction of these strategies to information sets that

arise inΓ′.

A generalized Nash equilibriumof Γ∗ = (G,Γm,F) is a generalized strategy profile~σ such that for

all Γ′ ∈ Gi, the local strategyσi,Γ′ is a best response to~σ−(i,Γ′), where~σ−(i,Γ′) is the set of all local

strategies in~σ exceptσi,Γ′ .

Definition 3.2 A generalized strategy profile~σ∗ is a generalized Nash equilibriumof a gameΓ∗ =

(G,Γm,F) with awareness if, for every playeri, gameΓ′ ∈ Gi, and local strategyσ for i in Γ′,

EUi,Γ′(~σ∗) ≥ EUi,Γ′((~σ∗
−(i,Γ′), σ)).

The standard definition of Nash equilibrium would say that~σ is a Nash equilibrium ifσi is a best

response to~σ−i. This definition implicitly assumes that playeri can choose a whole strategy. This

is inappropriate in our setting. An agent cannot anticipatethat he will become aware of more moves.

Essentially, ifΓ1 6= Γ2, we are treating playeri who considers the true game to beΓ1 to be a different

agent from the version of playeri who considersΓ2 to be the true game. To understand why this is

appropriate, suppose that playeri considersΓ1 to be the true game, and then learns about more moves,

and so considersΓ2 to be the true game. At that point, it is too late for playeri to change the strategy

he was playing when he thought the game wasΓ1. He should just try to play optimally for what he now

considers the true game. Moreover, while playeri thinks that the gameΓ1 is the true game, he never

considers it possible that he will ever be playing a different game, so that he cannot “prepare himself”
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for a change in his subjective view of the game.3 These considerations suggest that our notion of Nash

equilibrium is appropriate.

It is easy to see that~σ is a Nash equilibrium of a standard game iff~σ is a (generalized) Nash

equilibrium of the canonical representation ofΓ as a game with awareness. Thus, our definition of

generalized Nash equilibrium generalizes the standard definition.

Consider the game with awareness shown in Figures 1 (taking this to beΓm), 2, and 3. We have

GA = {ΓA,ΓB} andGB = {Γm,ΓB}. Takingdom(σi ,Γ ′) to denote the domain of the strategyσi,Γ′ ,

we have

dom(σA,ΓA) = {(Γm , 〈 〉), (ΓA, 〈unaware〉), (ΓA, 〈aware〉)},

dom(σB ,Γm ) = {(Γm , 〈acrossA〉), (ΓA, 〈aware, acrossA〉)},

dom(σA,ΓB ) = {(ΓB , 〈 〉)}, and

dom(σB ,ΓB ) = {(ΓA, 〈unaware,acrossA〉), (ΓB , 〈acrossA〉)}.

Each of these domains consists of a single generalized information set. Ifp < 1/2, then there exists a

generalized Nash equilibrium whereσA,ΓA = acrossA, σA,ΓB = downA, σB,Γm = downB , σB,ΓB =

acrossB . Thus, in the modeler’s game,A plays acrossA, B plays downB , and the resulting payoff vector

is (2, 3). On the other hand, ifp > 1/2, then there exists a generalized Nash equilibrium whereσA,ΓA =

downA, σA,ΓB = downA, σB,Γm = downB , σB,ΓB = acrossB . Thus, in the modeler’s game,A plays

downA, and the payoff vector is(1, 1). Intuitively, even though bothA andB are aware of all the moves

in the modeler’s game,A considers it sufficiently likely thatB is not aware of downB , soA plays

downA. There exists another generalized Nash equilibrium whereσA,ΓA = downA, σA,ΓB = downA,

σB,Γm = acrossB , andσB,ΓB = acrossB that holds for any value ofp. Intuitively, A believesB will

3In games with awareness of unawareness, an agent may consider it possible that he will become aware of more informa-

tion. But this too is incorporated in his view of the game, so he can still do no better than playing optimally in his currentview

of the game.
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play acrossB no matter what he (B) is aware of, and therefore plays downA; given thatA plays downA,

B cannot improve by playing downB even is he is aware of that move.4

We now show that every game with awareness has at least one generalized Nash equilibrium. We

proceed as follows. Given a gameΓ∗ = (G,Γm,F) with awareness, letν be a probability onG that

assigns each game inG positive probability. (Here is where we use the fact thatG is countable.) We

construct a standard extensive gameΓν by essentially “gluing together” all the gamesΓ′ ∈ G, except

that we restrict to the histories inΓ′ that can actually be played according to the players’ awareness

level. Formally, for eachΓ′ ∈ G, we restrict to the histories⌊H ′⌋ = {h ∈ H ′ : for every prefixh1 · 〈m〉

of h, if P ′(h1) = i ∈ N andF(Γ′, h1) = (Γ′′, I), then for allh2 ∈ I, h2 · 〈m〉 ∈ H ′′}. As we shall

see, all the components ofΓν are independent ofν except for nature’s initial move (as encoded byf ν
c ).

In Γν , the set of players is{(i,Γ′) : Γ′ ∈ Gi}. The game tree ofΓν can be viewed as the union of the

pruned game trees ofΓ′ ∈ G. The histories ofΓν have the form〈Γ′〉 · h, whereΓ′ ∈ G andh ∈ ⌊Hh⌋.

The move that a player or nature makes at a history〈Γ′〉 · h of Γν is the same as the move made ath

when viewed as a history ofΓ′. The only move inΓν not determined byΓ∗ is nature’s initial move (at

the history〈 〉), where nature chooses the gameΓ′ ∈ G with probabilityν(Γ′).

Formally, letΓν be a standard game such that

• Nν = {(i,Γ′) : Γ′ ∈ Gi};

• Mν = G ∪Γ′∈G ⌊M ′⌋, where⌊M ′⌋ is the set of moves that occur in⌊H ′⌋;

• Hν = 〈 〉 ∪ {〈Γ′〉 · h : Γ′ ∈ G, h ∈ ⌊H ′⌋};

4We did not discuss this latter equilibrium in the preliminary version of this paper.
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• P ν(〈 〉) = c, and

P ν(〈Γh〉 · h′) =



































(i,Γh′
) if P h(h′) = i ∈ N and

F(Γh, h′) = (Γh′
, ·),

c if P h(h′) = c;

• f ν
c (Γ

′|〈 〉) = ν(Γ′) andf ν
c (·|〈Γ

h〉 · h′) = fh
c (·|h

′) if P h(h′) = c;

• Iν
i,Γ′ is just the∼i relation restricted to histories(Γ′′, h) ∈ Hν wherei moves andF(Γ′′, h) has

the form(Γ′, ·);

• uνi,Γ′(〈Γh〉 · z) =



















uhi (z) if Γh = Γ′,

0 if Γh 6= Γ′.

Theorem 3.1 For all probability measuresν onG

(a) Γν is a standard extensive game with perfect recall; and

(b) if ν gives positive probability to all games inG, then~σ is a Nash equilibrium ofΓν iff ~σ′ is a

generalized Nash equilibrium ofΓ∗, whereσi,Γ′(〈Γh〉 · h′) = σ′
i,Γ′(Γh, h′).

Although a Nash equilibrium does not necessarily exist in games with infinitely many players,Γν

has three special properties: (a) each player has only finitely many information sets, and (b) for each

player(i,Γ′), there exists a finite subsetN(i,Γ′) of Nν such that(i,Γ)’s payoff in Γν depends only

on the strategies of the players inN(i,Γ′), and (c)Γν is a game with perfect recall. This turns out to

be enough to show thatΓν has at least one Nash equilibrium. Thus, we get the followingcorollary to

Theorem 3.1.

Corollary 3.1 Every game with awareness has a generalized Nash equilibrium.
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4 Modeling Awareness of Unawareness

In this section, we describe how to extend our representation of games with awareness to deal with

awareness of unawareness. In an augmented game that represents playeri’s subjective view of the

game, we want to model the fact thati may be aware of the fact thatj can make moves at a historyh

that i is not aware of. We do this by allowingj to make a “virtual move” at historyh. Histories that

contain virtual moves are calledvirtual histories. These virtual histories do not necessarily correspond

to a history in the underlying gameΓ (i.e., i may falsely believe thatj can make a move ath that he is

unaware of), and even if a virtual history does correspond toa history inΓ, the subgame that follows

that virtual history may bear no relationship to the actual subgame that follows the corresponding history

in the underlying gameΓ. Intuitively, the virtual histories describe agenti’s (possibly incomplete and

possibly incorrect) view of what would happen in the game if some move she is unaware of is made by

agentj. Playerj may have several virtual moves available at historyh, and may make virtual moves at

a number of histories in the augmented game.5 Note that agenti’s subjective game may include virtual

moves fori himself;i may believe that he will become aware of more moves (and may take active steps

to try and learn about these moves).

To handle awareness of unawareness, we consider a generalization of the notion of augmented game.

We continue to refer to the generalized notion as an augmented game, using “augmented game without

awareness of unawareness” to refer to the special case we have focused on up to now. Formally,Γ+ =

(N+,M+,H+, P+, f+
c , {I+

i : i ∈ N+}, {u+i : i ∈ N+}, {A+
i : i ∈ N+}) is anaugmented game

5In the preliminary version of the paper, we assumed that all virtual moves were terminal moves. This is appropriate ifi

has no idea at all of what will happen in the game after a virtual move is made. The greater generality we allow here is useful

to model situations where playeri has some partial understanding of the game. For example,i may know that he can move

left afterj’s virtual move, no matter what that virtual move is.
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based on the (standard) finite extensive gameΓ = (N,M,H,P, fc, {Ii : i ∈ N}, {ui : i ∈ N}) if it

satisfies conditions A1–A3, A6–A10 and A12 of augmented games, and variants of A4, A5, and A8.6

Before stating these variants we need to define formally the set of virtual histories ofΓ+. The set of

virtual historiesV + of Γ+ is defined by induction on the length of histories as follows:

1. if m ∈ H+, m ∈ M+ −M , and eitherP+(∅) ∈ N+ or P+(∅) = c = P (∅), thenm ∈ V +;

2. if h · 〈m〉 ∈ H+ andh ∈ V +, thenh · 〈m〉 ∈ V +;

3. if h · 〈m〉 ∈ H+, m ∈ M+ −M , h /∈ V +, and eitherP+(h) ∈ N+ or P+(h) = c = P (h), then

m ∈ V +, where ifh /∈ V +, thenh is the subsequence ofh consisting of all moves inh that are

also inM , and ifh ∈ V +, thenh = h.

We can now state the variants of A4, A5, and A8.

A4′. If P+(h) ∈ N+ andh /∈ V +, thenP+(h) = P (h) andM+
h ⊆ M

h
∪ (M+ −M).

A5′. If P+(h) = c andh /∈ V +, then eitherP (h) = c andM+
h ⊆ M

h
∪ (M+ −M), orP (h) 6= c and

M+
h ∩M = ∅.

A8′. If h andh′ are in the same information set inΓ+ andh, h′ /∈ V +, thenh andh
′
are in the same

information set inΓ.

A game with awareness of unawareness based onΓ is defined as a tupleΓ∗ = (G,Γm,F) just

as before. The modeler’s extended gameΓm satisfies the same conditions M1-M3 as before, and the

mappingF satisfies C3–C5 and C7–C10 and the following variants of C1, C2, and C6:

C1′. {h : h ∈ Hh, h /∈ V h} = a.

6We could also relax A3 to allow some “virtual players”. We do not do that here for ease of exposition.
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C2′. If h′ ∈ Hh andP h(h′) = j, then (a)Ah
j (h

′) ⊆ a, (b) if h′ /∈ V h, then(M
h
′ ∩ {m : h

′
· 〈m〉 ∈

a}) ∪ (Mh
h′ − M

h
′) = Mh

h′ , and (c) ifF(Γh, h′) = (Γ′, I ′), then for allh′′ ∈ I ′, we have

M ′
h′′ ⊆ Mh

h′ .

C6′. If h′ ∈ I andh, h′ /∈ V h, thenh andh
′
are in the same information set inΓ.

C1′ and C6′ have been weakened so that these restrictions only apply to non-virtual histories ofΓh. Part

(a) of C2′ is the same as the first part of C2; part (b) implies that the setof moves available to player

j at a non-virtual historyh′ is the set of moves that playeri is aware of that are available toj at h
′
in

the underlying game together with some virtual moves. It is not hard to check that in games without

awareness of unawareness, part (c) follows from A4, C1, and C2, so it does not need to be explicitly

stated in C2. However, now that A4 has been weakened to A4′, we must mention it explicitly.

Note thatΓm is an augmented game with no awareness of unawareness; thereare no virtual moves,

since the modeler is indeed aware of all possible moves (and knows it). We can now define local

strategies, generalized strategy profiles, and generalized Nash equilibrium just as we did for games with

awareness. The same technique as that used to show Corollary3.1 can be used to prove the following.

Theorem 4.1 Every game with awareness of unawareness has a generalized Nash equilibrium.

5 Modeling Lack of Common Knowledge

Game theorists have long searched for good approaches to modeling games where there is no common

knowledge among players regarding the game being played. Our approach is flexible enough to handle

such lack of common knowledge. In this section, we discuss the changes needed to handle lack of

common knowledge. We remark that what we do here makes perfect sense even in games where there

is full awareness.
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We can modify our model to accommodate four different aspects of lack of common knowledge.

• Lack of common knowledge regarding who moves.We assumed that every player understands

who moves in each history he is aware of. Although we still need to require that every player

knows when it is his turn to move, we can handle the case where aplayer has false beliefs about

who moves after a history that is not in one of his informationsets. For example, we are interested

in modeling the case where playeri may be confused after some historyh as to whether player

j or playerk moves, but in both casesi still believes that the same moves are available. That is,

playeri knows what could happen next, but he does not know who is goingto do it. (Later we

model uncertainty not only regarding who moves but also regarding what the move is.)

To explain the necessary modifications, we need one more definition. Let Gm,i be the smallest

subset ofG such that if eitherΓ+ = Γm or Γ+ ∈ Gm,i, h ∈ H+, P+(h) = i, andF(Γ+, h) =

(Γ′, ·), thenΓ′ ∈ Gm,i. Intuitively, Gm,i consists of all games playeri considers possible, or

considers possible that he considers possible, and so on, atsome history of the modeler’s game.

We can model lack of common knowledge about who moves by replacing A4 by

A4′′. If P+(h) = i ∈ N+, thenM+
h ⊆ M

h
.

Thus, we no longer require that the player who moves at history h is necessarily the one who

moves ath. However, we do make this requirement for the modeler’s game, since the modeler

is assumed to understand the underlying game. Thus, we must add a requirement M4 for the

modeler’s game that is identical to A4 except that we replaceΓ+ by Γm.

Playeri must also understand that he moves at a historyh iff he moves ath for games inGm,i.

C11. If Γ+ ∈ G, h ∈ H+, P+(h) = i, A+
i (h) = a, F(Γ+, h) = (Γh, I), andh′ ∈ Hh, then if
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Γh ∈ Gm,i andP h(h′) = i, thenP (h
′
) = i. Conversely, ifP (h

′
) = i, then there exists a

prefix or suffixh′′ of h′ such thath
′′
= h

′
andP h(h′′) = i.

We also need to make modifications to A5. Since we want to allowa player to have false beliefs

about when nature moves, we replace A5 with

A5′′. If P+(h) = c, then eitherM+
h ⊆ M

h
, orM+

h ∩M = ∅.

As before, the moves inM+
h in the case whereM+

h ∩ M = ∅ intuitively capture uncertainty

regarding a player’s awareness level. But now it may be the case that a playeri falsely believes

that nature moves after historyh in the underlying game. Just as with A4, we must add a condition

M5 to the modeler’s game that is identical to A5, except thatΓ+ is replaced byΓm.

• Lack of common knowledge about the information sets.We assumed that every player understand

the signals every other player receives in every history he is aware of. We can weaken this as-

sumption by allowing a player to have false beliefs about thesignals received by other players, or

equivalently, by allowing a player to have false beliefs about the information sets of other players.

We can model lack of common knowledge about the information sets by removing conditions

A8–A10. Again, because we assume that the modeler understands the information sets, we would

add analogues of A8–A10 to the conditions on the modeler’s game (replacingΓ+ by Γm, of

course). Similarly, we would require analogues of A8 and A9 to hold in the “C-list” of conditions

for gamesΓh ∈ Gm,i, and we weaken C6 so that it also holds only forΓh ∈ Gm,i. We must

also add an analogue of A10 to the “C-list” for gamesΓh ∈ Gm,i for historiesh′ andh′′ in an

i-information set.

• Lack of common knowledge about payoffs.We assumed that payoffs depended only on moves
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of the underlying game and that they were common knowledge among players. By dropping

condition A12, we remove both of these assumptions. If we want to require that payoffs depend

only on the underlying game, but still want to allow players to have false beliefs about the utilities,

we would add an analogue of A12 in the modeler’s game and use the following weakening of A12:

A12′. If Γ+ ∈ G, z, z′ ∈ Z+, andz = z′, then for alli ∈ N+, u+i (z) = u+i (z
′).

Although the playerj whose view of the game isΓ+ may have false beliefs about the payoffs,

playerj knows that the payoffs depend only on the moves made in the underlying game. A12′

captures that intuition.

• Lack of common knowledge of the underlying game.We assumed players have common knowl-

edge about the structure of the underlying game. Our framework can model a situation where

each player has a completely different conception of what game is actually being played, which

may have very little relationship to the actual underlying game (although we still assume that the

modeler’s game corresponds to the actual game). The key ideais to drop the assumption that all

augmented games are based on the same gameΓ.

To formalize this intuition, we modify A2 so that theA+
i function does not necessarily map

histories of an augmented game to histories of the same gameΓ. Rather,A+(h) is the set of

histories of some gameΓ(h) that, intuitively, i considers to be the true underlying game. Thus,

if h andh′ are two histories inΓ+, thenA+
i (h) andA+

i (h
′) may be histories in two completely

different games. SinceΓ(h) is viewed asi’s subjective view of the true underlying game,

we assume that he understands it perfectly. Thus, we retain A1, A6 and A8–A12 and replace

conditions A3–A5 by M1–M3 (where the set of players is the setof players inΓ(h) and the

projection function maps a historyh to a historyh in Γ(h)). With regard to A7, note that, even
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if a player intuitively has perfect recall, he may realize inthe future that he does not consider

possible a history he considered possible in the past.

In the definition of games with awareness, we allowG to contain augmented games based on

standard games different from the game on whichΓm, the modeler’s game, is based. We continue

to require conditions C1, C3–C5, C7–C9, and C11, but we weaken C2. In C2 we required that

a playeri cannot consider possible a gameΓh where one of the playersj moving inΓh is aware

of more runs thani is. In this setting, we allowi to consider possible a gameΓh where one of

the playersj moving inΓh believes (falsely, fromi’s point of view) that some runs are possible

that i does not consider possible. However, we require that the setof moves thati believes thatj

believes are available to him while moving at historyh′ in Γh is a subset of the movesi believes

are available toj while moving ath′. We thus replace C2 by the following condition C2′′, which

is the analogue of parts (b) and (c) of C2′.

C2′′. If h′ ∈ Hh, P h(h′) = j, andF(Γh, h′) = (Γ′, I ′), then for allh′′ ∈ I ′, M ′
h′′ ⊆ Mh

h′ , and

M
h
′ ∩ {m : h

′
· 〈m〉 ∈ a} = Mh

h′ .

Since we allow players to have false beliefs about information sets, we drop conditions C6 and

C10. However, since we have dropped A7 and weakened C2, we nowneed the following condi-

tion, which requires that if a player considers possible a set of histories of the underlying game,

then he cannot believe that in the future he will consider possible a different set of histories.7

C12. If h′ ∈ I, h′′ ∈ Hh, P h(h′′) = i, andh′′ is a suffix ofh′, thenAh
i (h

′) = Ah
i (h

′′).

7Note that this does not rule out a situation where a playeri realizes at historyh′ that his view of the game will change at

a future historyh′′ when he receives some additional information. If this is thecase, then this should already be described in

the set of histories thati considers possible ath′.
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It is easy to see what C12 follows from A7, C2, and C4, which is why we did not list it explicitly

earlier.

This approach of allowing the augmented games inG to be based on different underlying games

actually subsumes our earlier approach and allows us to capture lack of common knowledge

about who moves, what the information sets are, and what the payoffs are. For example, note that

despite the fact that we have replaced A3-5 by M1-3, we can also model games with awareness

using this approach by taking the gameΓ(h) to be the game consisting only of the runs ofΓ

that are inA+(h). (Of course, if we do that, we need to reinstate A7 and replaceC2′′ with

C2.) To capture lack of common knowledge about who moves, we takeΓ(h) to be identical toΓ

except that different agents may move at a given informationset. Similarly, we can model lack of

common knowledge about what the information sets and what the payoffs are by restrictingΓ(h)

appropriately.

Despite all the changes to the conditions, the definitions oflocal strategies and generalized Nash

equilibrium, and the theorems and their proofs remain unchanged. Thus, our techniques can deal with

highly subjective games as well as awareness.

6 Related Work

There have been a number of models for unawareness in the literature (see, for example, [2; 14; 20; 21;

1]). Halpern [8] and Halpern and Rêgo [10] showed that in a precise sense all those models are special

cases of Fagin and Halpern’s [2] approach where they modeledawareness syntactically by introducing

a new modal operator for it. Halpern and Rêgo [11] extended Fagin and Halpern’s logic of awareness

to deal with knowledge of unawareness. All of these papers focused on logic, and did not analyze the
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impact of unawareness in a strategic setting.

Feinberg’s [3, 4] work is most similar work to ours. We discussed the high-level difference be-

tween our work and that of Feinberg in the introduction. Herewe focus on some of the more detailed

differences:

• Feinberg does not model games semantically. He encodes all the information in theF function

syntactically, by describing each player’s awareness level and iterated nested awareness levels

(e.g., what player1 is aware that player2 is aware that player3 is aware of).

• In dealing with extensive games, Feinberg [3] assumes that the runs that a player is aware of

completely determine what game he believes he is playing. Itcannot be the case that there are

two distinct “identities” of a player that have the same awareness level. As we discussed in

Section 2, this assumption limits the applicability of the model.

• Feinberg assumes that if playeri is aware of playerj, theni must be aware of some move of player

j. We do not require such a condition since the analogous condition is not typically assumed in

standard extensive games. For example, in a standard extensive game, a player may get a payoff

even though there is no node where he can move. But it is trivial to add this requirement (as it

would be trivial to drop in Feinberg’s framework), and making it has no impact on the results.

• Feinberg [4] defines payoffs for playeri by using what he calls “default actions” for players that

i is unaware of. He says that this default action will be context dependent. We do not have such

default actions in our setting; the payoff of a player in our framework is independent of the payoff

of the players he is unaware of. The assumption of a default action seems somewhat problematic

to us; it is not clear what the default move should be in general. Moreover, if two different players
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are unaware of playerj, it is not clear why (or whether) they should assume the same default

action.

• In dealing with extensive games, Feinberg [3] defines moves of nature by conditioning on the set

of moves of nature the player is aware of. In our framework, this would amount to the following

requirement:

C13 If Γ+ ∈ G, h ∈ H+, P+(h) = i, A+
i (h) = a, F(Γ+, h) = (Γh, I), h′ ∈ Hh, P h(h′) = c,

andMh
h′ ∩M

h
′ 6= ∅, thenfh

c (m | h′) = fc(m|h
′
)

fc(Mh
h′
|h

′
)

for everym ∈ Mh
h′ andfh

c (m | h′) = 0

if m /∈ Mh
h′ .

As Feinberg did, for that condition to be well defined we require thatfc(m | h) 6= 0 for all

m ∈ M
h

and historiesh. As we discussed in Section 2, while we believe such a requirement

makes sense if nature’s move is interpreted objectively, itdoes not make sense in general so we

do not assume this in every augmented game.

Sadzik [26] considers a logic of awareness, knowledge, and probability based on that of Heifetz,

Meier, and Schipper [14], and uses it to give a definition of Bayesian equilibrium in normal-form

games with awareness. Heifetz, Meier and Schipper [13] alsoconsider a generalized state-space model

with interactive unawareness and probabilistic beliefs and give a definition of Bayesian equilibrium in

normal-form games, without assuming Feinberg’s restriction. Li [17] has also provided a model of un-

awareness in extensive games, based on her earlier work on modeling unawareness [18; 19]. Although

her representation of a game with unawareness is quite similar to ours, her notion of generalized Nash

equilibrium is different from ours. Just as we do, she requires that every playeri make a best response

with respect to his beliefs regarding other player’s strategies in the gameΓi that i considers possible.

However, unlike us, she requires that these beliefs satisfya consistency requirement that implies, for
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example, that if a playeri is aware of the same set of moves for him at both information set I1 in game

Γ1 and information setI2 in Γ2, and these information sets correspond to the same information set in

the underlying gameΓ, then the local strategiesσi,Γ1 andσi,Γ2 must agree at these information sets; that

is, σi,Γ1(I1) = σi,Γ2(I2).

Ozbay [23] proposes a model for games with uncertainty whereplayers may have different aware-

ness levels regarding a move of nature. He assumes that one ofthe players is fully aware, and can tell

the other player about these moves before the second player moves. Although our model can easily

capture this setting, what is interesting about Ozbay’s approach is that the second player’s beliefs about

the probability of these revealed moves of are formed as partof the equilibrium definition. Filiz [5] uses

Ozbay’s model in the context of incomplete contracts in the presence of unforseen contingencies. In this

setting, the insurer is assumed to be fully aware of the contingencies, and to decide strategically which

contingencies to include in a contract, while the insuree may not be aware of all possible contingencies.

Finally, we remark that our notion of a game with awareness asconsisting of the modeler’s game

together with description of which game each agent thinks isthe actual game at each history has much

in common with the intuition behind Gal and Pfeffer’s [6] notion of aNetwork of Influence Diagrams

(NID). Formally, NIDs are a graphical language for representing uncertainty over decision-making mod-

els. A node in a NID (called ablock by Gal and Pfeffer) represents an agent’s subjective beliefabout

the underlying game and what the strategies used by agents depend on. Each node (game) in a NID is

associated with amultiagent influence diagram[15] (MAID), which is a compact representation of a

game. A NID has directed edges between nodes labeled by pairsof the form(i,H), wherei is an agent

and (in our language)H is a set of histories. Intuitively, if there an edges from a node (game)Γ to a

nodeΓ′ in a NID labeled by a pair(i,H), thenH is a set a set of histories inΓ, there is an agentj that

moves at all the histories inH, and in gameΓ, i believes thatj believes thatΓ′ is the true game when
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moving at a historyh ∈ H.

Although Gal and Pfeffer do not try to handle notions of awareness with NIDs, it seems possible to

extend them to handle awareness. To do this appropriately, consistency requirements similar to C1–C10

will need to be imposed.

7 Conclusion

We have generalized the representation of games to take intoaccount agents who may not be aware

of all the moves or all the other agents, but may be aware of their lack of awareness. Moreover,

our representation is also flexible enough to deal with subjective games when there is lack of common

knowledge about the game, even if awareness is not an issue. We have also shown how to define

strategies and Nash equilibrium in such settings. These generalizations greatly increase the applicability

of game-theoretic notions in multiagent systems. In large games involving many agents, agents will

almost certainly not be aware of all agents and may well not beaware of all the moves that agents can

make. Moreover, as we suggested in the introduction, even inwell-understood games like chess, by

giving awareness a more computational interpretation, we can provide a more realistic model of the

game from the agents’ perspective. We remark that although we focus on generalizing extensive-form

games, our framework is able to deal with normal-form games as well, since we can view normal-form

games as a special case of extensive-form games.

There is clearly much more to be done to understand the role ofawareness (and lack of awareness)

in multiagent systems. We list some of the many issues here:

• We have assumed perfect recall here. But in long games, it seems more reasonable to assume that

agents do not have perfect recall. In a long chess game, typical players certainly do not remember
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all the moves that have been played and the order in which theywere played. It is well known

that even in single-agent games, considering agents with imperfect recall leads to a number of

subtleties (c.f. [7; 24]). We suspect that yet more subtleties will arise when combining imperfect

recall with lack of awareness.

• In a Nash equilibrium of an extensive-form game, it may be thecase that the move made at

an information set is not necessarily a best response if thatinformation set is not reached. For

example, in the game described in Figure 1, even if both players have common knowledge of the

game, the profile whereA moves down andB moves across is a Nash equilibrium. Nevertheless

moving down is not a best response forB if B is actually called upon to play. The only reason that

this is a Nash equilibrium is thatB does not in fact play.Sequential equilibrium[16] is a solution

concept that is arguably more appropriate for an extensive-form game; it refines Nash equilibrium

(in the sense that every sequential equilibrium is a Nash equilibrium) and does not allow solutions

such as (downA, acrossB ). Our representation of games with awareness (of unawareness) allows

for relatively straightforward generalizations of such refinements of Nash equilibrium. However,

there are subtleties involved in showing that generalized versions of these refinements always

exist. For example, we no longer have a one-to-one correspondence between the generalized

sequential equilibria of the gameΓ∗ and the sequential equilibria of the corresponding standard

gameΓν . Nevertheless, we believe that we should be able to use a morerefined construction to

show that a generalized sequential equilibrium exists in every game with awareness.

• We have analyzed situations where agents may be unaware of some moves in the underlying game,

may be aware of their unawareness, and may have completely false beliefs about the underlying

game. Of course, there are other cases of interest where additional properties may hold. For
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example, consider a large geographically-dispersed game where agents interact only with nearby

neighbors. In such a game, an agent may be unaware of exactly who is playing the game (although

she may realize that there are other agents besides her neighbors, and even realize that the moves

made by distant agents may have an indirect effect on her). Tomodel such a situation, we may

want to have virtual moves after which the game does not end, and to allow agents to be aware of

subsequences of histories in the underlying game. We suspect that a straightforward extension of

the ideas in this paper can deal with such situations, but we have not worked out the details.

• There has been a great deal of work on computing Nash equilibria. As we have shown, a gen-

eralized Nash equilibrium of a game with awareness is a Nash equilibrium of a standard game.

However, this standard game can be rather large. Are there efficient computational techniques for

computing generalized Nash equilibrium in interesting special cases?

• If there is little shared knowledge regarding the underlying game, the setG of augmented games

can be quite large, or even infinite. Is it important to consider all the iterated levels of unaware-

ness encoded inG? Halpern and Moses [9] showed that, in analyzing coordinated attack, no

finite level of knowledge suffices; common knowledge is needed for coordination. Stopping at

any finite level has major implications. Rubinstein [25] considered a variant of the coordinated

attack problem with probabilities, and again showed that nofinite level suffices (and significant

qualitative differences arise if only a finite part of hierarchy of knowledge is considered). On the

other hand, Weinstein and Yildiz [28] provide a condition under which the effect of players’kth

order beliefs is exponentially decreasing ink. While we strongly suspect that there are games

in which higher-order unawareness will be quite relevant, just as with the Weinstein-Yildiz re-

sult, there may be conditions under which higher-order awareness becomes less important, and
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a simpler representation may suffice. Moreover, it may be possible to use NIDs to provide a

more compact representation of games of awareness in many cases of interest (just as Bayesian

networks provide a compact representation of probability distributions in many cases of interest),

leading to more efficient techniques for computing generalized Nash equilibrium.

We hope to explore some of these issues in forthcoming work.
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A Proofs

Theorem 3.1: For all probability measuresν onG

(a) Γν is a standard extensive game with perfect recall;

(b) if ν gives positive probability to all games inG, then~σ is a Nash equilibrium ofΓν iff ~σ′ is a

generalized Nash equilibrium ofΓ∗, whereσi,Γ′(〈Γh〉 · h′) = σ′
i,Γ′(Γh, h′).
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Proof: For part (a), suppose that〈Γ′〉 · h′1) and〈Γ′′〉 · h′′1) are in the same(i,Γ+)-information set of

Γν and thath′2 is a prefix ofh′1 such thatP ν(〈Γ′〉h′2)) = (i,Γ+). By definition ofΓν , it must be the

case that there existi-information setsI1 andI2 in Γ+ such thatF(Γ′, h′1) = F(Γ′′, h′′1) = (Γ+, I1)

andF(Γ′, h′2) = (Γ+, I2). If h1 is a history inI1, C8 implies that there exists a prefixh2 of h1 such

thatP+(h2) = i, F(Γ+, h2) = (Γ+, I2) and if h′2 · 〈m〉 is a prefix ofh′1, thenh2 · 〈m〉 is a prefix

of h1. Applying C8 again, it follows that there exists a prefixh′′2 of h′′1 such thatPΓ′′
(h′′2) = i and

F(Γ′′, h′′2) = (Γ+, I2) and if h2 · 〈m〉 is a prefix ofh1, thenh′′2 · 〈m〉 is a prefix ofh′′1 . Therefore, by

definition ofΓν , (Γ′′, h′′2) and(Γ′, h′2) are in the same information set.

Suppose further thath′2 · 〈m〉 is a prefix ofh′1. Thus,h2 · 〈m〉 is a prefix ofh1, which implies that

h′′2 · 〈m〉 is a prefix ofh′′1 . This proves part (a).

For part (b), letPrν~σ be the probability distribution over the runs inΓν induced by the strategy profile

~σ andf ν
c . Prν~σ(z) is the product of the probability of each of the moves inz. (It is easy to define this

formally by induction on the length ofz; we omit details here.) Similarly, letPrh~σ′ be the probability

distribution over the runs inΓh ∈ G induced by the generalized strategy profile~σ′ andfh
c . Note that if

Prh~σ′(z) > 0, thenz ∈ ⌊Hh⌋. Thus,〈Γh〉 · z ∈ Hν .

For all strategy profilesσ and generalized strategy profilesσ′, if σ′
i,Γ′(Γh, h′) = σi,Γ′(〈Γh〉·h′), then

it is easy to see that for allz ∈ Zh such thatPrh~σ′(z) > 0, we have thatPrν~σ(〈Γ
h〉 · z) = ν(Γh)Prh~σ′(z).

And sinceν is a probability measure such thatν(Γh) > 0 for all Γh ∈ G, we have thatPrν~σ(〈Γ
h〉·z) > 0

iff Prh~σ′(z) > 0. Suppose that~σ is a Nash equilibrium ofΓν . Suppose, by way of contradiction, that~σ′

such thatσ′
i,Γ′(Γh, h′) = σi,Γ′(〈Γh〉 · h′) is not a generalized Nash equilibrium ofΓ∗. Thus, there exists

a playeri, a gameΓ+ ∈ Gi, and a local strategys′ for playeri in Γ+ such that
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∑

z∈Z+

Pr+~σ′(z)u
+
i (z) <

∑

z∈Z+

Pr+(~σ′

−(i,Γ+)
,s′)(z)u

+
i (z). (1)

Defines to be a strategy for player(i,Γ+) in Γν such thats(〈Γh〉 ·h′) = s′(Γh, h′). Multiplying (1)

by ν(Γ+) and using the observation in the previous paragraph, it follows that

∑

z∈⌊Z+⌋

Prν~σ(〈Γ
+〉 · z)u+i (z) <

∑

z∈⌊Z+⌋

Prν(~σ
−(i,Γ+),s)

(〈Γ+〉 · z)u+i (z). (2)

By definition ofuνi,Γ′ , (2) holds iff

∑

zν∈Zν

Prν~σ(z
ν)uνi,Γ+(zν) <

∑

zν∈Zν

Prν(~σ
−(i,Γ+),s)

(zν)uνi,Γ+(zν). (3)

Therefore,~σ is not a Nash equilibrium ofΓν , a contradiction. The proof of the converse is similar;

we leave details to the reader.

Corollary 3.1: Every game with awareness has a generalized Nash equilibrium.

Proof: For games with perfect recall, there is a natural isomorphism between mixed strategies and

behavioral strategies, so a Nash equilibrium in behavior strategies can be viewed as a Nash equilibrium

in mixed strategies [22]. Moreover, mixed-strategy Nash equilibria of an extensive-form game are the

same as the mixed-strategy Nash equilibria of its normal-form representation. Salonen [27] showed that

there exists a Nash equilibrium in mixed strategies in a normal form games with an arbitrary setN of

players if, for each playeri, the setSi of pure strategies of playeri is a compact metric space, and

the utility functionsui : S → IR are continuous for alli ∈ N , whereIR is the set of real numbers

andS = Πi∈NSi, the set of pure strategies, is endowed with the product topology. Since inΓν , every

player has a finite number of pure strategies,Si is clearly a compact metric space. Moreover, since each
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player’s utility depends only on the strategies of a finite number of other players, it is easy to see that

ui : S → IR is continuous for each playeri ∈ N . It follows that there exists a Nash equilibrium ofΓν .

Thus, the corollary is immediate from Theorem 3.1.
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