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Abstract

In the canonical network model, the connections model, only three specific net-

work structures are generically efficient: complete, empty, and star networks.

This renders many plausible network structures inefficient. We show that re-

quiring robustness with respect to stochastic transmission failures rehabilitates

incomplete, circular network structures. Specifically, we show that near the “bi-

furcation” where both star and complete network are efficient in the standard

connections model, star and complete network are generally inefficient as trans-

mission failures become possible. As for four-player networks, we additionally

show that the circle network is uniquely efficient and robust near this bifurcation.
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1 Introduction

Most forms of communication take place within networks. This includes direct com-

munication within families and between friends, technical communication between

computers, and impersonal communication such as television and radio. For this rea-

son, communication networks have been analyzed fairly comprehensively, starting

with Jackson and Wolinsky (1996)’s seminal analysis of the “connections model”.

Jackson and Wolinsky showed that in networks with two-way information flow, where

the value of information decays over time, efficient (non-empty) networks are either

star-shaped or complete. The efficiency of stars explains the existence of TV sta-

tions for nation-wide communication, and the efficiency of completeness explains

communication within families. Subsequent research established this dichotomy of

economically efficient communication structures in many related circumstances. For

example, only star or complete networks are efficient if only the link initiator bears

the link costs (Bala and Goyal, 2000a; Hojman and Szeidl, 2008), if players are far-

sighted (Dutta et al., 2005), if link strength is endogenous (Bloch and Dutta, 2009),

if transfer payments between players are possible (Bloch and Jackson, 2007), and in

a slightly weakened form, the result holds true even if link costs are heterogenous

between players (Jackson and Rogers, 2005; Galeotti et al., 2006).

These results seem to assert that intermediate network structures are inefficient,

and in particular that incomplete, circular networks are wasteful. A well-known coun-

terexample to this assertion is the shape of computer networks. Computer networks

need to be “robust” to transmission failure and server downtime, in order to ensure

connectivity even if specific links or nodes disappear temporarily. In computer sci-

ence and combinatorics, this led to the analysis of expander graphs (for a survey, see

Hoory et al., 2006), which trade off robustness and number of links rather effectively,

although not “efficiently” in the economic sense. In general, the resulting networks

tend to be incomplete, which ensures cost efficiency, but also redundant and partially

circular, which ensures existence of alternative communication paths in case specific

links are unavailable temporarily.

In this paper, we argue that efficient friendship networks are redundant, circu-

lar, and incomplete for largely the same reason that computer networks are: com-

plete linking is too costly (i.e. too time-consuming, contrary to say within families),
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Figure 1: Elementary network structures
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but robustness is important as communication between friends is relatively sporadic

(contrary to say TV programs). We set up a simple model of networks with stochastic

information flow and show that redundancy and circularity indeed follow if link costs

are “intermediate”.

Our model extends the connections model by introducing stochastic link failure—

friends meet stochastically. The connections model with decay/discounting remains

included as a special case. The intuition underlying our result is that in the absence of

noise, utilities simply depend on the distances between players. With noise, expected

utilities also depend on the number of alternative paths between players, i.e. on the

degree of redundancy of links in the network. We derive expected utilities in closed

form and analyze welfare in various network structures. We analyze efficiency near

the “bifurcation” where both star and complete network are efficient in the connec-

tions model. In four-player networks, the circle becomes uniquely efficient near this

bifurcation as noise sets in, and for the case of more than four players, we show that

neither star nor complete network are efficient. Then, circular, redundant networks

such as the “wheel” (see Figure 4 below) improve welfare.

To our knowledge, the present paper is the first to analyze a network with two-
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way information flow exhibiting both noise and decay. This extends the existing

literature, which has established efficiency of redundant, circular network structures

only in networks without decay, i.e. with perfectly patient players. In models of two-

way information flow, redundancy is efficient if communication is noisy (Bala and

Goyal, 2000b; Haller and Sarangi, 2005) or if link strength is endogenous (Deroïan,

2009; Bloch and Dutta, 2009). Circular structures also obtain in networks with one-

way information flow (Bala and Goyal, 2000a, and Kim and Wong, 2007). Another

difference to the earlier stochastic models is that Bala and Goyal (2000b) and Haller

and Sarangi (2005) analyze networks where links may fail to exist globally with a cer-

tain probability and agents maximize a utility function based on the expected number

of persons they will be connected to in the resulting network, whereas we explicitly

analyze information flow. Similarly to the aforementioned papers, we abstain from

modeling costs of information acquisition (Kannan et al., 2007), from discussing non-

cooperative implementation (Haller et al., 2007; Harrison and Muñoz, 2008) aside

from a brief discussion in the conclusion, and from modeling heterogeneous players

(Galeotti, 2006; Billand et al., 2008).

Section 2 introduces notation and elementary terms. Section 3 introduces our

model of stochastic information flow. Sections 4 and 5 analyze the four-player and

n-player networks. Section 6 concludes.

2 Basic notation and definitions

The set of network nodes (players) is denoted as N = {1,2, . . . ,n}, with 0 < n < ∞,

and players are denoted as i, j ∈ N. The existence of a link between players i, j ∈ N is

indicated through gi j ∈ {0,1}, where gi j = g ji = 1 indicates existence and gi j = g ji =

0 indicates non-existence. All links are undirected. The link matrix G = (gi j)i, j∈N

defines the “network” and G denotes the set of such networks. We write G ⊆ G′ if

gi j ≤ g′i j for all i, j ∈ N, and G ⊂ G′ if additionally G 6= G′. The network resulting by

adding the link i j (if not already existent) to network G is denoted as G∪{i j}.

The degree di(G) = ∑ j 6=i gi j of i ∈ N is the number of links in G involving i.

A node with degree d bears costs C(d) ∈ R. Costs are increasing in d and satisfy

C(0) = 0. For all G ∈ G , ui(G) ∈ R is i’s expected utility in G. Utility less costs is

ui(G)−C(di(G)), and a network is efficient if it maximizes the welfare ∑i∈N

[

ui(G)−
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C(di(G))
]

over all G ∈ G .

A path between i and j (i 6= j) in G is p = (p1, p2, . . . , pk) such that p1 = i,

pk = j, pl ∈ N for all l ≤ k, gpl ,pl+1
= 1 for all l < k, and pl′ 6= pl′′ if l′ 6= l′′ for all

l′, l′′ < k. The set of paths between i and j in G is Pi j(G), and for all p ∈ Pi j(G), the

length of p is l(p). The distance li, j(G) between i and j is the length of the shortest

path connecting them in G, i.e. li, j(G) = ∞ if Pi j = /0, and li, j(G) = minp∈Pi j(G) l(p)

otherwise. A network G is connected if li, j(G)< ∞ for all i 6= j.

Figure 1 reviews the elementary network structures in case n = 5. If the number

of players is n > 5, the structures generalize as follows. A network G is empty if

gi j = 0 for all i, j ∈ N. It is complete if gi j = 1 for all i 6= j. The network is a star

if there exists k ∈ N such that gi j = 1 if and only if either i = k or j = k. It is linear

if there exists a bijection o : N → N such that gi j = 1 if and only if |o(i)−o( j)|= 1.

It is called circle if there exists a bijection o : N → N such that gi j = 1 if and only

if o(i)− o( j) ≡ 1 (mod n) or o(i)− o( j) ≡ −1 (mod n). Finally, it is called quasi-

circle if it is incomplete and contains a circle.

3 A model of stochastic information flow

Definition

Consider a model of information flow where players communicate via emails. They

read and send emails in rounds (e.g. at night), they send them stochastically to a

selection of their contacts, and the emails sent contain all information that they have.

The choice whether any given contact is sent an email on a given day is random and

i.i.d. across contacts.

Definition 1 (Email model). The interaction proceeds in rounds. In round t = 0, a

random, non-empty selection of nodes N′⊂N is provided with a piece of information.

For all N′ ⊂ N, Pr(N′) denotes the probability that the information originates in N′.

In each round t ≥ 1, any i 6= j exchange information with probability gi j ·α, with α ∈

(0,1], and if they do, they exchange all information they possessed at the beginning

of the round. The value of the information that reaches i ∈ N in round t ≥ 0 is vi(t).

Define πi

(

t|N′,G
)

, i ∈ N and t ≥ 0, as the probability that it takes exactly t
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rounds until the information reaches i in network G. For example, πi(0|N
′) = 1 if

i ∈ N′, πi(0|N
′) = 0 if i ∈ N \N′, and πi(t|N

′) = 0 for all t if di(G) = 0 and i ∈ N \N′.

The expected value of information that originated in N′ ⊂ N is for any i ∈ N

ui(G|N′) = ∑
t≥0

πi(t|N
′,G) · vi(t), (1)

and overall i’s expected utility in G (not considering link costs) is

Eui(G) = ∑
N′⊂N
N′ 6= /0

Pr
(

N′
)

·ui(G|N′). (2)

The email model contains the connections model (Jackson and Wolinsky, 1996) as a

special case.

Example 2 (Connections model). Given some a > 0, the expected utility in the con-

nections model is ui(G) = a ·∑ j 6=i vi

(

li, j(G)
)

. This corresponds with the email model

if α = 1 and Pr(N′) = 1/n for all singletons N′, Pr(N′) = 0 otherwise.

In relation to the connections model, the email model therefore allows for the

probability of communication between connected players to be smaller than one.

Within either email or connections model, one may consider exponential discount-

ing, vi(t) = δt , δ ∈ [0,1], hyperbolic discounting, vi(t) = κ/(κ+ t), κ > 0, quasi-

linear discounting, vi(t) = max{0,1− t/η}, η > 0, or any other value function. After

establishing a few basic properties, we will focus on exponential discounting.

The email model is not the only way to model stochastic information flow in

networks. As an alternative, let us mention a “telephone model” where players meet

sequentially (in random order) and exchange all information they accumulated up to

the respective point in time. This telephone model does not contain the connections

model as a special case, however, and we are interested especially in the robustness

of efficienct structures as noise is added to the connections model.

Basic properties

Figure 2 defines two three-player networks that allow us to illustrate the basic prop-

erties. We look at these networks from the perspective of player 1, assuming he dis-
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counts exponentially, vi(t) = δt , and that links cost c = 0. Fix α ∈ (0,1] and assume

that the piece of information is initially known by either of the three players (deter-

mined by a uniform draw). In the star network NS, player 1 knows the information in

t = 0 with probability 1/3, and otherwise (if any other player learns the information

in t = 0) he learns it in t > 0 with probability α(1−α)t−1
. In aggregate, 1’s expected

utility in the star network NS is

ui(NS) =

(

1 ·δ0 +2 ·
∞

∑
t=1

α(1−α)t−1 δt

)

/3 =
(3α−1) δ+1

3 ((α−1) δ+1)
. (3)

In the eyes of player 1, NC adds a seemingly redundant link between 2 and 3 to the star,

but if players communicate stochastically, this link establishes an alternative route for

the information to reach 1. Thus, it increases 1’s expected utility in relation to the

star. The expected utility of 1 in NC is

ui(NC) =
δ0

3
+

2

3

(

αδ+
∞

∑
t=2

δt
(

(1−α)2 t−3 α
(

2α−α2
)

(t −1)+(1−α)2 t−2 α
)

)

,

=
αδ
(

(α−1)
(

α2 −3α+1
)

δ+1
)

(

(α−1)2 δ−1
)2

. (4)

The utilities are equivalent only if α = 0 or α = 1, i.e. when players exchange infor-

mation each round with probability 1 (as in the connections model) or not at all. If

α ∈ (0,1), in turn, the link between 2 and 3 induces a positive externality for player

1, and this externality, albeit low in magnitude (see Figure 2c), will prove relevant.

Lemma 4 generalizes this observation and shows that links in the email model in-

duce positive externalities in general (i.e. under Assumption 3). Note the contrast to

the connections model (α = 1), where a link provides a positive externality to third

players only if it shortens the shortest path (“distance”) to or between them.

Assumption 3. α ∈ (0,1], G is connected, and for all i ∈ N : Pr
(

{i}
)

> 0 and vi(t) is

decreasing in t.

Lemma 4 (Positive externality). If α ∈ (0,1), then G ⊂ G′ ⇒ ui(G)< ui(G
′).

Proof. Fix any G ⊂ G′, define j′, j′′ ∈ N : j′ 6= j′′ such that g j′ j′′ = 0 and g′j′ j′′ = 1,

and define G′′ := G∪{ j′ j′′}. As Pr
(

{ j′}
)

> 0, this implies ui(G
′′|{ j′})> ui(G|{ j′}).
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Figure 2: The two connected three-player networks
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Since ui(G
′′|N′) ≥ ui(G|N′) follows for all N′ ⊆ N by stochastic dominance, this

yields ui(G)< ui(G
′′) and by induction ui(G)< ui(G

′).

Now pick any network G satisfying Assumption 3 and consider the expected

number of rounds that it takes until a piece of information that originated in N′ = { j}

reaches i. Let Et(i, j,G) :=∑t≥0 t ·πi

(

t|{ j},G
)

denote this expectation. If α= 1, then

Et(i, j,G) = li, j(G); the duration has zero variance and it is independent of any link in

the network but those on the shortest path between i and j. In case α∈ (0,1), however,

Et(i, j,G) depends on all links in G, as implied by Lemma 4. Specifically, for any

α > 0, Et(i, j,G) is bounded above by α−1 · li, j(G), which results if there is only one

path between i and j (e.g. if G is linear), and it is bounded below by li, j(G), which

results if there are infinitely many paths between i and j. The following lemma shows

that the expected value of information originating in { j} is bounded correspondingly.

Thus, given α, the upper bound of utility over all email networks G is equal to the

utility in the connections model, while the lower bound illustrates the range of utilities

that may result by varying G even when li, j(G) is held constant. Thus, the difference

between these bounds is the maximal value of redundancy given the distance li, j(G).
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Lemma 5 (Bounds). For all l > 0 and α ∈ (0,1], the expected value of information

in all G ∈ G satisfying li, j(G) = l satisfies

∑
t≥l

(

l −1

t −1

)

αt(1−α)t−l · vi(t)≤ ui(G|{ j})≤ vi(l), (5)

and both bounds are tight.

Proof. By Lemma 4, the lower bound obtains in any minimal network G where i

and j have distance l (i.e. in any G such that ∄G′ ⊂ G : li, j(G
′) = l). Any such

minimal network G is “linear” in the sense that Pi j(G) is a singleton, and i’s expected

utility in G is equal to the lower bound above. Also by Lemma 4, the upper bound is

approximated in any maximal network G where i and j have distance l (i.e. in any G

such that ∄G′ ⊃ G : li, j(G
′) = l), as the number of nodes n tends to infinity. For any

n < ∞, any maximal network G with li, j(G) = l has the following structure. There

exists a mapping o from N onto {1,2, . . . , l−1} such that for all k /∈ {i, j} : gik = 1 iff

o(k) = 1 and g jk = 1 iff o(k) = l − 1, and such that for all k,k′ /∈ {i, j} : gkk′ = 1 iff

|o(k)−o(k′)|= 1. It is easy to verify that any network violating this structure is either

not maximal or does not satisfy li, j(G) = l, and that any network with this structure

satisfies li, j(G) = l. The supremum of the expected utility is the limit of ui(G|{ j}) in

such networks as n tends to infinity and is equal to the claimed bound.

Lower and upper bound equate in case α = 1, i.e. in the connections model. In

all other cases, the network structure matters beyond mere distances li, j(G), which

will be shown to affect network efficiency in the next section.

4 Efficiency in four-player networks

From now on, we assume for simplicity that all players are equally likely to origi-

nate information, and that only single players may originate new information. This

assumption is standard in the sense that any i ∈ N thus weighs all opponents j 6= i

equally. In conjunction with standard linearity and symmetry assumptions, this im-

plies the utility assumed by Jackson and Wolinsky (1996) if we set α = 1.

Assumption 6. Pr(N′) = 1/n for all singleton sets N′ ⊆ N and Pr(N′) = 0 otherwise.
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Costs are linear, C(d) = c ·d with c ∈R+, and value functions are symmetric between

players, vi = v j for all i 6= j.

Note that we normalize utilities differently than Jackson and Wolinsky do. We

consider expected utilities, which essentially normalizes them by dividing through

1/n. If n= 4, this implies that the costs thresholds discussed below are 1/4 of Jackson

and Wolinsky’s. Now, recall the general result for the symmetric connections model.

Proposition 7 (Jackson and Wolinsky, 1996). If α = 1, the efficient network is either

empty, complete, or star for almost all c ∈ R+.

Both star and complete network are efficient if c = v(1)− v(2), i.e. if the gain

from abbreviating an indirect connection through establishing a direct one equates

with the costs of this connection. At this “bifurcation”, actually all networks with

diameter one or two are efficient. Besides stars and complete networks, this contains

circles and quasi-circles (Figure 1) in the four-player case. In this section, we derive

the expected utilities of the players in all these networks, see Figure 3 for a first glance

at the results, and then we evaluate efficiency in case α ≈ 1. Near the bifurcation,

the circle will be uniquely efficient, and since it does not extend the star by adding

connections, this shows that qualitatively different structures emerge if robustness

with respect to even infinitesimal noise is required.

Proposition 8 (Four players). Fix n = 4, δ > 1/6, and vi(t) = δt for all i. If costs c

are such that complete network and star network induce the same welfare at α = 1,

then there exists α < 1 such that the circle is uniquely efficient for all α ∈
(

α,1).

Proposition 8 is proved through a sequence of lemmas that characterize welfare

in the various candidate networks and by a subsequent analysis of the neighborhood

of α = 1 to obtain. The four networks relevant in the efficiency analysis are the star

network (Fig. 1d), the circular network (Fig. 1c), the quasi-circular network (Fig. 1e),

and the complete network (Fig. 1f). It is straightforward to show that the only remain-

ing network that can be efficient (in case n = 4) is the empty network, in which the

aggregate expected utility is 1. We start with the star (briefly allowing for any n ≥ 4,

which will be useful in the next section) and the complete network. The proofs of

these lemmas are straightforward but tedious, due to the large number of case distinc-

tions and indefinite sums to be evaluated, and therefore relegated to the appendix.
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Figure 3: Regions of efficiency

(a) Regions of efficiency in case δ = 0.9
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(b) Regions of efficiency in case δ = 0.6
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Note: The lines mark the boundaries of the (α,c)-regions where specific network structures are effi-

cient. Above the upmost line, the empty network is efficient, between upmost and second line, the star

is efficient, and subsequently, circle, quasi-circle, and complete network are efficient (in this order).
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Lemma 9. In the n-player star network Sn, the expected utility of the central player

is un(S
n) and that of any peripheral player i 6= n is ui(S

n) as defined next.

un(S
n) =

δ (αn−1)+1

((α−1) δ+1) n
ui(S

n) =
δ2
(

α2 n−3α+1
)

+(3α−2) δ+1

((α−1) δ+1)2
n

Lemma 10. In the four-player complete network C4, the expected utility of i ∈ N is

ui(C
4) =

(α−1)4 (4α6−24α5+60α4−74α3+36α2−9α+1)δ3+

(α−1)(2α6−10α5+35α4−71α3+67α2−23α+3)δ2+(α4−6α3+12α2−13α+3)δ−1

4
(

(α−1)3 δ+1
)2(

(α−1)4 δ−1
)

.

Now let us compare the social welfares of these two networks. If δ > 1/2 and

we decrease α starting at the bifurcation where star and complete network are equally

efficient, the welfare of the complete network starts to exceed that of the star.

d ∑i∈N ui(C
4)

dα
−

d ∑i∈N ui(S
4)

dα

∣

∣

∣

∣

α=1

=
3 (δ−1) δ (2δ−1)

2
<

δ>1/2
0. (6)

That is, the aggregate utility in the complete network decreases more slowly than that

in the star network if δ > 1/2. This is surprising, as network links lose in value (in

absolute terms) as α decreases, and yet the complete network gains in efficiency on

the star. Thus, the welfare gain of adding links is not generally increasing in α, nor is

it generally decreasing in α, as can be checked easily for δ < 1/2.

Corollary 11. G′ ⊂ G′′ does not imply that ∑i∈N ui(G
′)−∑i∈N ui(G

′′) is monotonic

in α.

This kind of non-monotonicity obstructs general analyses substantially. Further,

Eq. (6) may also suggest that the complete network (for δ > 1/2) also induces higher

welfare than any other incomplete network as we decrease α starting in the bifurca-

tion. This would imply that the complete network is uniquely efficient in this neigh-

borhood. This is not the case, however, as we show by looking at the quasi-circle.

Lemma 12. In the four-player quasi-circular network Q4, the expected utilities of the
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degree-3 players is u1(Q
4) and those of the degree-2 players is u2(Q

4), with

u1(Q
4) =

(α−1)6 (4α5−20α4+38α3−26α2+8α−1)δ4−(α−1)3 (2α6−16α5+60α4−107α3+86α2−30α+4)δ3−

(α−1)(2α5−17α4+55α3−73α2+36α−6)δ2−(3α3−10α2+14α−4)δ−1

4
(

(α−1)2 δ−1
)(

(α−1)3 δ+1
)3

u2(Q
4) =

(α−1)5 (4α5−20α4+36α3−22α2+7α−1)δ4−2(α−1)2 (2α6−13α5+39α4−58α3+41α2−14α+2)δ3+

(α6−10α5+41α4−84α3+83α2−36α+6)δ2+2(α3−4α2+6α−2)δ+1

4
(

(α−1)2 δ−1
)2(

(α−1)3 δ+1
)2

.

Again, look at the derivatives of the aggregate utilities.

d ∑i∈N ui(Q
4)

dα
−

d ∑i∈N ui(C
4)

dα

∣

∣

∣

∣

α=1

=
(δ−1) δ

2
< 0. (7)

For all δ, decreasing α increases the aggregate utility in the quasi-circular network

in relation to that of the complete network. Thus, the efficient network in the neigh-

borhood is incomplete. In conjunction with the above result that the welfare gain of

adding all links in C4 \S4 to the star is decreasing in α, this implies that the last link’s

value is increasing in α, while the other links’ values are decreasing in α.

Corollary 13. G′⊂G′′ with g′i j = g′′i j = 0 does not imply ∑i∈N ui

(

G′∪{i j}
)

−∑i∈N ui(G
′)>

∑i∈N ui

(

G′′∪{i j}
)

−∑i∈N ui(G
′′) or vice versa.

Hence, network links are complementary in terms of the value they create. An

additional link may be welfare improving only if specific other links are present. This

is intuitive, but it poses another obstacle to general analyses, as it shows that the

aggregate structure needs to be analyzed as a whole. To conclude our analysis, let us

now look at the circle.

Lemma 14. In the four-player circular network O4, the expected utility of i ∈ N is

ui(O
4)=

(α−1)2 (4α4−16α3+14α2−6α+1)δ3−(2α4−18α3+30α2−16α+3)δ2+(3α2−8α+3)δ−1

4((α−1)2 δ−1)
3

.

Now, the derivatives of the aggregate utilities are

d ∑i∈N ui(O
4)

dα
−

d ∑i∈N ui(Q
4)

dα

∣

∣

∣

∣

α=1

=
(δ−1) δ

2
< 0. (8)
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In relation to Eq. (7), this shows that both diagonal links are equally useful at α ≈ 1.

For all δ ∈ (0,1), the circle therefore becomes more efficient relative to the quasi-

circle as α decreases. Since the costs remain constant, this implies that the circle

induces higher welfare than the quasi-circle near the bifurcation. The following con-

cludes the proof of the proposition.

Proof of Proposition 8. Social welfares in star and complete networks are equal at

α = 1 if c = (1−δ) δ/4. Using these costs and α = 1, the social welfare in all

considered networks (i.e. in all four-player networks with diameter 1 or 2) is 3δ2 +

1. Since the expected utilities in all cases are continuous in α, the welfare in all

considered networks remains greater than 1 in the neighborhood of c = (1−δ) δ/4

and α = 1. Since the empty network generally induces welfare 1, it is therefore

not efficient in any such neighborhood. Further, as shown above, Eq. (8), the circle

is more efficient than the quasi-circular network in the neighborhood of α = 1 for

all δ ∈ (0,1). By Eq. (7) and transitivity, this applies with respect to the complete

network as well, and the relation to the star is

d ∑i∈N ui(O
4)

dα
−

d ∑i∈N ui(S
4)

dα

∣

∣

∣

∣

α=1

=
(δ−1) δ (6δ−1)

2
<

δ<1/6
0. (9)

Thus, the circle is the efficient network for all δ ≥ 1/6.

Thus, structures differing qualitatively from star and complete networks emerge

if we require robustness to communication failures in the connections model. The

following section shows that this result obtains similarly in n-player networks.

5 Efficiency in large networks

In networks with n > 4 players, the circular network is not generally efficient any-

more. To see this, recall that at the bifurcation discussed above, all networks with

diameter 1 or 2 are efficient, while the circle has a diameter of at least 3 if n > 5.

Further, many relevant intermediate network structures exist for general n, i.e. many

plausible networks on the transition from star to complete network. We obtain a gen-

eral result, however, by showing that a full wheel (Figure 4) is more efficient than

both star and complete network near the bifurcation, which obviously implies that

14



Figure 4: Two “Wheel” networks

(a) A sparse wheel
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(b) The full wheel
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neither star nor complete network are efficient. Note that we use the term wheel to

refer to a circle with “spokes” while the literature following Bala and Goyal (2000a)

refers to directed circles as wheels.

Definition 15 (Wheels). A network G is called wheel if there exists k ∈ N such that

the network on N \{k} is a circle and gik = 1 for at least one i 6= k. It is a full wheel

if gik = gki = 1 for all i 6= k.

Proposition 16. Fix n > 4 and δ > 1/3. There exist α ≈ 1 and c ≈ δ(1− δ)/n such

that the full wheel induces a strictly higher welfare than both star and complete net-

work.

Proposition 16 implies that incomplete, redundant structures generally emerge if

robustness with respect to noise is required, i.e. not just in case n = 4. Its proof differs

from the proof of Proposition 8 in that closed-form representations of the expected

utilities for general numbers of players n > 4 and arbitrary probabilities α ∈ (0,1)

are not available. These payoffs can be characterized by Taylor expansion in the

neighborhood of α = 1, however, which we exploit. The expected utilities in stars

have already been derived in Lemma 9. We proceed by characterizing the payoffs in

complete networks (for arbitrary n).
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Lemma 17. Let ui(C
n) denote the expected utility of i ∈ N in the n-player complete

network Cn. For any n > 3 and any ε ≥ 0 there exists ε′ ≥ 0 such that

∣

∣ui(C
n)− ũi(C

n)
∣

∣≤ ε and
∣

∣dui(C
n)/dα−dũi(C

n)/dα
∣

∣≤ ε

for all α ∈ [1− ε′,1], with

ũi(C
n) =

(

(1−α) α2n−3 δ2 +αδ
)

(n−1)+1

n
.

Essentially, Lemma 17 exactly characterizes the expected utility, in terms of

value and first derivative with respect to α, in α = 1. In relation to the expected

utilities in the n-player star network, provided by Lemma 9, it implies that the obser-

vation in Eq. (6) that the star is inferior to the complete network (if δ > 1/2) in the

neighborhood of the bifurcation generalizes to n > 4.

d ∑i∈N ui(C
n)

dα
−

d ∑i∈N ui(S
n)

dα

∣

∣

∣

∣

α=1

=
(δ−1) δ (2δ−1) (n−2) (n−1)

n
<

δ>1/2
0 (10)

The next lemma provides a similar characterization for the payoffs in the full

wheel. Here, we focus on the expected payoffs in wheels of at least eight players. For,

a large number of alternative paths along which the information can spread through

the wheel have to be distinguished, and in case n ≥ 8, all such paths can be analyzed

in a unified manner. The cases n = 5,6,7 can be analogously to n ≥ 8, but the case

distinctions need to be adapted. We verified that the results reported for n≥ 8 continue

to hold similarly if n = 5,6,7 (details are available from the authors).

Lemma 18. Let ui(W
n) denote the expected utility of i ∈ N in the n-player full wheel.

For any n ≥ 8 and any ε ≥ 0 there exists ε′ ≥ 0 such that

∣

∣ui(W
n)− ũi(W

n)
∣

∣≤ ε and
∣

∣dui(W
n)/dα−dũi(W

n)/dα
∣

∣≤ ε

for all α ∈ [1− ε′,1], with

ũi(W
n) =

−
[

(α−1)α2 δ3 (n−1)(α4 n−3α3 n+3α2 n+n−2α6+10α5−26α4+34α3−20α2−8)
−α2 δ2 (n−1)(n−2α4+8α3−12α2+2)−n−4αδ(n−1)

]

/n2
.
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Now, if we look at the derivatives of the aggregate utilities,

d ∑i∈N ui(C
n)

dα
−

d ∑i∈N ui(W
n)

dα

∣

∣

∣

∣

α=1

=
(δ−1) δ (n−1) ((2δ−1) n−4 (3δ−1))

n
,

we find that the difference is not generally positive or negative. The sign depends on

(2δ−1) n ≷ 4 (3δ−1). If n is large, then (2δ−1) n > 4 (3δ−1), the difference is

negative, and thus complete networks gain on wheels as α decreases (i.e. if α < 1 and

c held constant). In turn, if n is small or δ intermediate, e.g. δ = 0.5, then the term

is positive and the wheel gains on the complete network if α decreases. Since social

welfare induced in wheels and complete networks equate at the bifurcation (for α =

1), the effect of decreasing α thus requires further analysis. By additionally taking

cost variations into account, we can show that there are (α,c) near the bifurcation

such that the wheel improves upon both complete network and star.

Proof of Proposition 16. At α = 1 and c = δ(1− δ)/n, all networks with diameter

no more than 2 induce the same social welfare. Their welfare is also strictly greater

than 1, which is the welfare induced by the empty network. As expected utilities are

continuous in α and c, all networks with diameter 1 or 2 thus induce strictly greater

welfare than the empty network in the neighborhood of α = 1 and c = δ(1− δ)/n.

It remains to show that there is a trajectory (dα,dc) along which the differences in

welfare between wheel and star, on the one hand, and between wheel and complete

network, on the other, increases. Using

kW,S =−
d ∑i∈N

(

ui(W
n)−ui(S

n)
)

/dα

d ∑i∈N

(

ui(W n)−ui(Sn)
)

/dc
=

(δ−1) δ (4δ−1)

n

kW,C =−
d ∑i∈N

(

ui(W
n)−ui(C

n)
)

/dα

d ∑i∈N

(

ui(W n)−ui(Cn)
)

/dc
=

(δ−1) δ ((2δ−1) n−4 (3δ−1))

(n−4) n
,

the proposition follows from

kW,C − kW,S =
2 (1−δ) δ2 (n−2)

(n−4) n
> 0. (11)

For, along the trajectory (dα,dc) = (−1,−k) both welfare differences (wheel in

relation to star and wheel in relation to complete network) increase for any k ∈
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(kW,S,kW,C), and by Eq. (11) the interval (kW,S,kW,C) is generally not empty.

6 Conclusion

The paper analyzed efficiency of networks with stochastic information transmission.

We set up a simple model that contains the connections model (Jackson and Wolin-

sky, 1996) as a special case and evaluated network efficiency as noise is small. We

found that the standard result that either star or complete networks are efficient, if

links are formed at all, no longer holds true even for small levels of noise in meet-

ing/transmission stochastics. Instead, incomplete, redundant networks become effi-

cient. Figures 3 and 5 illustrate that these results generalize directly to case with

substantial noise and to alternative valuation functions. Our analysis thus rehabili-

tates efficiency of a variety of intermediate network structures between the minimal

star and the maximal complete network on which the existing literature has focused.

We derived expected utilities in networks with stochastic temporary link unavail-

ability based on exact analyses of arrival times and information flow in the network.

Previous work of Bala and Goyal (2000b) and Haller and Sarangi (2005) analyzed

connectivity in networks with stochastic, but permanent node unavailability. We did

not touch strategic stability, but for the circle in four-player networks, as an example,

pairwise stability follows immediately. Cutting a link in the circle yields a linear net-

work, which has diameter 3 and is therefore not stable near the bifurcation. In turn,

adding a link yields a quasi-circle (see Figure 1), which was shown to reduce welfare,

and by the existence of positive externalities of additional links (Lemma 4), this im-

plies that the players adding the link suffer. Hence, there are no gains from pairwise

deviations.

The approach underlying our analysis, the analysis of stochastic information

flow, can be applied similarly to networks with large numbers of players and links, at

the very least by Monte Carlo simulation. We have seen that link complementarities

obtain (see e.g. Cor. 13), which is intuitive and strongly suggests that the set of ef-

ficient network structures will adhere to certain regularities. A better understanding

of these complementarities may thus yield a precise characterization of the “interme-

diate” network structures that are efficient in the presence of noise even if n is large,

which seems to be an interesting task for future research.
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Figure 5: Efficient structures for various unavailability rates α

Note: The valuation vi(t) is the value of information that is learned after t rounds, α is the probability that

a link is unavailable in a given round (i.i.d. across links and across rounds), and c are the costs of link

formation. The expected utilities of the players are given next to their nodes.
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(b) Hyperbolic utility vi(t) = κ/(κ+ t) with κ = 4
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(c) Quasi-linear utility vi(t) = max{0,1− t/η} with η = 7
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A Relegated proofs

Throughout this section, let ui( j) denote i’s expected utility in a given network G if

only j currently has the information, and let πi(t| j) denote the probability that the

information reaches i in round t. Further, define the random variable Di( j), for all

i, j ∈ N, as the number of rounds it takes until the information, originally known by

j, reaches i.

Proof of Lemma 9 (Star, n nodes) Let player n be the central player and players

1, . . . ,n−1 be the peripheral players. Thus, the expected utility of n if only i 6= n has

the information is

un(i) = α
∞

∑
t=1

(1−α)t−1 δt =
αδ

1− (1−α) δ
.

Using un =
(

1+(n−1)un(i)
)

/n and rearranging terms yields the claimed expression.

Second, for all i 6= n, ui is defined as ui =
(

1+ ui(n) + (n− 2)ui( j)
)

/n, with j ∈

N \{i,n}, where ui(n)≡ un(i) and

ui( j) = α2
∞

∑
t=1

(1−α)t−2 δt (t −1) =
α2 δ2

(αδ−δ+1)2
.

Proof of Lemma 10 (Complete, 4 nodes) The expected utility is derived by distin-

guishing four cases. Case A: Di( j)≤ Dk( j) for all i 6= j, i 6= k, j 6= k.

ui( j|A) = α
∞

∑
t=1

(1−α)3 t−3 δt =
αδ

(α−1)3 δ+1
.

Case B: Dk( j)< Di( j) for exactly one k 6= i, j (i.e. one player other than i learns the

information before i). The probability that i learns it in t ≥ 2 is

πi(t| j,Case B) = α
(

1− (1−α)2
) t−1

∑
d=1

(1−α)4 t−d−5 =
(1−α)3 t (α−2) α

(

α+(1−α)t −1
)

(1−α)5
,
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and i expected utility conditional on case B is

ui( j|B) =
∞

∑
t=2

πi(t| j,Case B) ·δt =
(α−2) (α−1)2 α2 δ2

(

(α−1)3 δ+1
) (

(α−1)4 δ−1
) .

Case C: Dk( j) = Dk′( j) < Di( j) for k 6= k′ and both different from i and j. The

expected utility in this case is

ui( j|C) =
(

1− (1−α)3
)

α2
∞

∑
t=2

(1−α)3 t−5 δt (t −1) =
(1−α) α3

(

α2 −3α+3
)

δ2

(

(α−1)3 δ+1
)2

.

Case D: Dk( j)< Dk′( j)< Di( j). The probability that i learns it in t ≥ 3 this way is

πi(t| j,Case D) =
(

1− (1−α)2
) (

1− (1−α)3
)

α
t−2

∑
d1=1

t−1

∑
d2=d1+1

(1−α)3 t+d2−d1−6

=
(1−α)3 t (α−2) α

(

α2 −3α+3
) (

(α−1) α t −α2 − (1−α)t +1
)

(α−1)6

and consequently the expected utility in case D is

ui( j|D) =
∞

∑
t=3

πi(t| j,Case D) ·δt =
(α−2) (α−1)4 α3

(

α2 −3α+3
)

δ3

(

(α−1)3 δ+1
)2 (

(α−1)4 δ−1
)

.

Overall, i’s utility is ui =
{

1+(n−1)
[

ui( j|A)+2ui( j|B)+ui( j|C)+2ui( j|D)
]}

/n.

Proof of Lemma 12 (Quasi-circle, 4 nodes) Label players similar to Figure 1e, i.e.

players 1 and 3 have degree 3, players 2 and 4 have degree 2. We begin with deter-

mining the expected utility of 1 if the information is initially with 2 (or symmetrically

4). Three cases are distinguished here. Case A: D1(2)≤ D3(2).

u1(2|A) = α
∞

∑
t=1

(1−α)2 t−2 δt =−
αδ

(α−1)2 δ−1
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Case B: D3(2)< D1(2)≤ D4(2), i.e. 3 learns it before 1 (and may therefore tell him),

but 4 does not.

u1(2|B) =
(

1− (1−α)2
)

α
∞

∑
t=2

δt
t−1

∑
d=1

(1−α)3 t−d−4

=−
(α−2) (α−1) α2 δ2

(

(α−1)2 δ−1
) (

(α−1)3 δ+1
)

Case C: D3(2)< D4(2)< D1(2), i.e. both 3 and 4 learn it before 1 and may tell him.

u1(2|C) =
(

1− (1−α)3
)

α2
∞

∑
t=3

δt
t−2

∑
d3=1

(1−α)3 t−d3−5 (t −d3 −1)

=
(α−1)3 α3

(

α2 −3α+3
)

δ3

(

(α−1)2 δ−1
) (

(α−1)3 δ+1
)2

In aggregate, the expected utility of 1 if 2 gets the information first is the sum of the

expected utilities in these basic cases, and rearranging a little, this yields

u1(2)=
αδ
(

(α−1)3
(

α4 −5α3 +9α2 −5α+1
)

δ2 − (α−1)
(

3α2 −6α+2
)

δ−1
)

(

(α−1)2 δ−1
) (

(α−1)3 δ+1
)2

.

The expected utility of 1 conditional on 3 getting the information first is determined

similarly. Three cases are distinguished implicitly, namely (i) D1 ≤ D2,D4, (ii) D2 <

D1 ≤ D4 or D4 < D1 ≤ D2, (iii) D2,D4 < D1, and in aggregate, the following results.

u1(3) = α
∞

∑
t=1

(1−α)3 t−3 δt +2α
(

1− (1−α)2
) ∞

∑
t=2

(1−α)3 t−4 δt (t −1)

+
(

1− (1−α)3
)

α2
∞

∑
t=2

(1−α)3 t−5 δt (t −1)2

=
αδ
(

(α−1)4
(

α4 −5α3 +10α2 −6α+1
)

δ2 − (α−1)
(

α4 −α3 −5α2 +8α−2
)

δ+1
)

(

(α−1)3 δ+1
)3

Aggregate over all three cases, the expected utility of 1 is u1 =
[

1+2u1(2)+u1(3)
]

/n,

and rearranging a little, the claimed term results.
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Next, let us consider the expected utility of 2 (symmetrically that of 4). First,

assume 1 gets the information first, and as before, distinguish three cases, A, B, and

C. Case A: D2 ≤ D3. Conditional on A, the probability that 2 learns it in t ≥ 1 is

π2(t|1,A) = (1−α)3 t−4 α2 (t −1)+(1−α)3 t−3 α.

Case B: D3 ≤ D4 and D3 < D2. The probability of t ≥ 2 conditional on B is

π2(t|1,B)=α
(

1− (1−α)2
) t−1

∑
d3=1

(1−α)2 t+d3−4 =
(1−α)2 t (α−2) α

(

α+(1−α)t −1
)

(α−1)4
.

Case C: D4 < D3 < D2. The probability of t ≥ 3 conditional on C is

π2(t|1,C) =
(

1− (1−α)2
)2

α
t−1

∑
d3=2

(1−α)2 t+d3−5 (d3 −1)

=
(1−α)2 t (α−2)2 α

(

(1−α)t α t −α2 −2
(

(1−α)t −1
)

α+(1−α)t −1
)

(α−1)5

Now, aggregating over these three cases, the expected utility of 2 if 1 gets the infor-

mation first is

u2(1) =
∞

∑
t=1

δt π2(t|1,A)+
∞

∑
t=2

δt π2(t|1,B)+
∞

∑
t=3

δt π2(t|1,C)

=
αδ
(

(α−1)3
(

α4 −5α3 +9α2 −5α+1
)

δ2 − (α−1)
(

3α2 −6α+2
)

δ−1
)

(

(α−1)2 δ−1
) (

(α−1)3 δ+1
)2

Finally, we proceed similarly to determine the expected utility of 2 if 4 gets the in-

formation first. Case A: D1 = D3, i.e. they cannot have learned it from one another,

and one of them will tell 2. The probability of the information arriving in round t ≥ 2

conditional on A is

π2(t|4,A) = (1−α)2 t−4 α2
(

2α−α2
)

(t −1) .

Case B: D1 < D2 ≤ D3 or D3 < D2 ≤ D1. The probability of t ≥ 2 conditional on B
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is

π2(t|4,B) = α2
t−1

∑
d=1

(1−α)3 t−d−4 =−
(1−α)2 t α

(

α+(1−α)t −1
)

(α−1)4

Case C: D1,D3 < D2. The probability of t ≥ 3 conditional on C is

π2(t|4,C) =
(

1− (1−α)2
)2

α
t−2

∑
d1=1

t−1

∑
d3=d1+1

(1−α)2 t+d3−d1−5

=
(1−α)2 t (α−2)2 α

(

(α−1) α t −α2 − (1−α)t +1
)

(α−1)5

Aggregating again, we obtain the expected utility of 2 in case 4 gets the information

first.

u2(4) =
∞

∑
t=2

δt π2(t|4,A)+2
∞

∑
t=2

δt π2(t|4,B)+2
∞

∑
t=3

δt π2(t|4,C)

=
α2 δ2

(

(α−1)2
(

α3 −5α2 +8α−2
)

δ−α2 +2
)

(

(α−1)2 δ−1
)2 (

(α−1)3 δ+1
)

Thus, the expected utility of 2 overall is u2 =
[

1+ 2u2(1)+ u2(4)
]

/n, which yields

the claimed term.

Proof of Lemma 14 (Circle, 4 nodes) Consider a circular network similar to Figure

1c, i.e. 1 is linked with 2 and 4, 2 is linked with 1 and 3, and so on. First consider the

expected utility of 1 if the information is initially with 2 (or symmetrically with 4, i.e.

his neighbor).

u1(2) = αδ+(1−α) αδ2 +
∞

∑
t=3

δt
(

(1−α)2 t−3 α2 (t −1)+(1−α)2 t−2 α
)

+α2
(

2α−α2
)

∞

∑
t=3

(1−α)2 t−4 δt

(

t −1

2

)
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Simplifying the sums and rearranging terms, we obtain

u1(2) =
αδ
(

(α−1)2
(

α3 −4α2 +3α−1
)

δ2 +(α−1) (3α−2) δ−1
)

(

(α−1)2 δ−1
)3

.

Next, the expected utility of 1 if 3 (the opposite player) gets the information first is

u1(3) = α2
(

2α−α2
)

∞

∑
t=2

(1−α)2(t−2) δt (t −1)2 +2α2
∞

∑
t=2

(1−α)2 t−3 δt (t −1)

=
α2 δ2

(

(α−1)2
(

α2 −4α+2
)

δ+α2 −2
)

(

(α−1)2 δ−1
)3

,

and the expected utility of 1 results as u1 =
[

1+2∗u1(2)+u1(3)
]

/4. By symmetry,

u1 = ui for all i ∈ N.

Proof of Lemma 17 (Complete, n nodes) Given the continuity of both ui(C
N) and

ũi(C
N) in the neighborhood of α = 1, it suffices to show that

ui(C
n)− ũi(C

n)

∣

∣

∣

∣

α=1

= 0 and
dui(C

n)

dα
−

dũi(C
n)

dα

∣

∣

∣

∣

α=1

= 0. (12)

In general, it is possible to rearrange ui into sums of products of the form

ui =
∞

∑
n=0

(1−α)n fn(α) ũi =
∞

∑
n=0

(1−α)n f̃n(α)

such that no fn(α), n ≥ 0, is still divisible by (1−α), nor any f̃n(α). Eq. (12) holds

for any ũi that satisfies f0 = f̃0 and f1 = f̃1. That is, we have to characterize all paths

of information flow that require 0 or 1 failed meeting in total.

In complete networks, there are exactly two such paths of information flow be-

tween any i and j, i 6= j. On the one hand, with probability α, i meets j in round t,

and on the other hand, with probability (1−α), i and j do not meet in round 1, but

all other possible meetings take place (i.e. i meets every k 6= j, and all of them meet j
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in round 2). Thus,

ũi( j|Cn) = α∗δ+(1−α)αn−2 αn−1 δ2,

and ũi as claimed results as ũi(C
n) =

[

1+(n−1) ũi( j|Cn)
]

/n.

Proof of Lemma 18 (Wheel, n nodes) The basic idea is the same as in the proof

of Lemma 17, i.e. we define ũi such that f0 = f̃0 and f1 = f̃1 as defined above. The

number of paths that require 0 or 1 failed meeting in total is larger than above, how-

ever.

Let n denote the central player and let 1, . . . ,n−1 denote the peripheral players.

First, consider the expected utility of the central player n. There are two relevant paths

from any i 6= n to n, namely the immediate one, with probability α, and the delayed

one, with the possibility of going via either peripheral neighbor of i. There are several

ways of defining a function ũn with the required properties; we choose the following

one.

ũn =
[

1+(n−1)
(

αδ+(1−α)α2 (1− (1−α)3)δ2
)

]

/n

Next, fix any peripheral player i 6= n. First, in case n gets the information first, there

are two relevant paths (either i and n meet in the first round or not), and ũi(n) can be

characterized as follows.

ũi(n) =
(

1− (1−α)3
)

(1−α) α2 δ2 +αδ

Second, in case a peripheral player with distance 1 to i gets the information first, the

expected utility can be characterized as

ũi(1) =
(

1− (1−α)2
)

(1−α) αδ2 +αδ.

Similarly, the expected utilities in the remaining cases, where distances along the
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periphery are 2, 3, or 4+, are characterizable as (in case n ≥ 8)

ũi(2) = 2 (1−α) α2 δ2 +
(

1− (1−α)2
)

α2 δ2

ũi(3) =
((

1− (1−α)2
) (

1− (1−α)3
)

(1−α) α3 +
(

1− (1−α)2
)

(1−α) α3
)

δ3 +α2 δ2

ũi(4+) =
((

1− (1−α)3
)

(1−α) α3 +(1−α) α2
)

δ3 +α2 δ2.

The expected utility overall results as

ũi =
[

ũi(n)+1+2 ũi(1)+2 ũi(2)+2 ũi(3)+(n−8) ũi(4+)
]

/n.
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