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Abstract

We consider the optimal control of inequality under uncertainty,
with a particular focus on income inequality. For an economy experi-
encing economic growth and random shocks, we show how a simple loss
and ‘bequest’ function may be combined to guide the expected level of
inequality towards a pre-defined target within a finite planning hori-
zon. Closed form solutions show that, the stronger the shocks to the
income distribution, the more aggressive is policy. We discuss the re-
sults in the context of recent applied and policy literature on social

inequality, globalisation and economic instability.
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1 Introduction

This paper presents a dynamic, stochastic, model of the optimal control of
inequality in the presence of economic growth and uncertainty, focusing, in
particular, on the role played by shocks to the income distribution. We
consider a policy maker who chooses the level of a mean-preserving control
variable to influence the rate of change of an index of inequality and who
incurs losses associated with both the instantaneous level of inequality and
the strength of policy. The inequality index we choose to work with is the
coefficient of variation. This has many desirable properties, key among which
is that it assists derivation of a closed form solution for the optimal policy
rule. Though the focus is on income, the framework is general and can be
applied to any time-varying random variable whose distribution is subject to
shocks.

The research is timely for a number of reasons. Firstly, there now exists
a large body of evidence suggesting that many countries are experiencing
economic growth accompanied by increasing income inequality. The OECD
(2008) reports ‘moderate but significant growth’ in the gap between rich and
poor in around three-quarters of its member countries over the last twenty
to thirty years. Using its latest data, for the years 1975 to 2008, Figures 1(a)
and (b) contrast the increasing real, average, disposable incomes of four of
its member states (Canada, Germany, the United Kingdom and the United
States) with changes in income inequality, as measured by the square of the
coefficient of variation. Average incomes and inequality follow an upward
trend for all four countries. Using a wider group of countries, the recent
‘World of Work’ reports of the International Institute for Labour Studies
(2008, 2010) report a similar picture. Between 1990 and 2000, approximately
two-thirds of the 85 countries reviewed (including those in Asia, the Pacific,
Eastern Europe, the former USSR, the Middle East and North and Sub-
Saharan Africa) experienced an increase in income inequality as measured
by the Gini index. For the 44 countries for which data is available through
to 2005, two-thirds experienced an increase in income inequality.

Secondly, survey evidence taken over the last decade suggests growing
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Figure 1: Trends in: (a) real mean disposable incomes (country currencies) and (b) squared coefficients
of variation for Canada, Germany, the United Kingdom and the United States, 1975 to 2008 (Source
http://stats.oecd.org/Index.aspx?Queryld=26067, accessed 5 March, 2012)



dissatisfaction with the way that nations are handling issues concerning
inequality and poverty. In the recent Eurobarometer survey (TNS Opin-
ion & Social, 2010), 62% of those asked felt that the way inequalities and
poverty were addressed in their country was bad (31% felt that it was good),
38% felt that the situation had worsened in the last five years (11% felt
that there had been an improvement) and 51% felt that there would be no
change during the forthcoming year (12% felt that there would be an im-
provement). Using slightly older data for 23 countries, the World Values
Survey (www.worldvaluessurvey.org) shows similar results, the index of
tolerance of large income inequalities falling from 6.5 (survey of 1988-1993)
to 5.4 (1999-2004), where a decline suggests increasing intolerance (Interna-
tional Institute for Labor Studies, 2008).

Thirdly, there is a growing body of literature linking high levels of in-
equality to political instability. Dutt and Mitra (2008) found empirical ev-
idence to support the theoretical work of Acemoglu and Robinson (2000,
2001) suggesting that unequal societies are more likely to fluctuate into and
out of democracy, as the elite in a democracy have an incentive to seize
power so as to avoid redistributive policies, while the poor have an incentive
to overthrow dictatorships in order to reassert redistributive policies. Dutt
and Mitra found that inequality significantly exacerbates political instabil-
ity, with the causal direction running from inequality to political instability,
rather than the other way round. Similar results have been reported in the
work of Muller and Seligson (1987) and Alesina and Perotti (1996).

Finally, despite large bodies of applied work documenting the changes
in, and correlates of, income inequality over time (recent examples include
Lundberg and Squire (2003), Jenkins and van Kerm (2006) and Heathcote
et al. (2010)), we are not aware of any theoretical work which has addressed
directly the problem set out in this paper.

The major contributions are as follows. The parsimonious set up of the
model allows us to derive a closed form solution for the optimal policy rule to
control inequality. The rule is independent of the starting level of inequality
and, the more uncertain is the world in which the policy-maker operates, the

more aggressive is optimal policy. The policy-maker can choose to target



a particular reduction in the expected level of inequality over a finite time
horizon by means of a penalty, or bequest, function. The optimal policy rule
is nonlinear in the time remaining in the planning horizon and, under par-
ticular conditions, it can be optimal for the policy maker to allow inequality
to increase over time. The results suggest that policy rules which ignore un-
certainty arising from shocks to the income distribution can result in targets
for inequality reduction being missed.

The paper is organised as follows. Section 2 presents the model, with its
main results laid out in two sections. The first presents a simple micro-level
description of inequality in an economy in which individual incomes follow
a random walk with drift. This gives some theoretical underpinning to the
story of Figures 1(a) and (b) - economic growth accompanied by increas-
ing inequality - and introduces the coefficient of variation as our measure
of inequality. The second section formulates and solves the policy-maker’s
optimisation problem using the material from the first. Section 3 discusses

the results, the limitations of the model, and concludes.

2 Analysis

2.1 The model

A policy maker (henceforth PM) wishes to choose an optimal rule to control
income inequality in an economy between year ¢t = 0 and ¢ = T', where ¢ is
an integer and 7T is finite. The PM seeks to hit a target level of inequality
at T'. Define Y; as a continuous random variable denoting the incomes in the
population. Assume that the inequality index of interest is the coefficient of
variation, defined as x; = oy, /uy,, where oy, > 0 is the standard deviation
of Y; and py, > 0 is its mean.

Given Yj, we assume that Y evolves according to the following first order

stochastic difference equation:

}/t—i-l:(l—i_at)}/t—i_eta t:O,...,T, (1)



where «; and ¢; are random variables with the (time-invariant) expected val-
ues i, > 0 and p. = 0 and variances 02 and o2, respectively, together with
covariance G,e = pac0a0e, Where p,. is the correlation coefficient. Given
the assumption about pu,, it is to be expected that average income in the
population is increasing over time. The following proposition describes the

evolution of inequality over time.

Proposition 1. Under the individual income growth process of Eq. (1),
inequality is unambiguously increasing over time, that is, xyr1 > xy, for all

non-degenerate income distributions.
All proofs are presented in the Appendix.

Proposition 1 is in the spirit of the results of earlier work by Eden (1980) and
Deaton and Paxson (1994), which were based on a simple random walk. We
introduce positive drift for consistency with the story told by Figures 1(a)
and (b). The result in Proposition 1 is used to define the level of growth of

py relative to oy in the PM’s optimisation problem, to which we now turn.

2.2 The policy maker’s optimisation problem

Although ¢ was an integer for Proposition 1, here we assume that it is contin-
uous, to allow us to use the tools of stochastic calculus to solve the problem.
The PM assumes that the following system describes the evolution of py (¢)
and oy (t):

py(t) = rupy(t), py(0) = py,, (2a)
ov(t) = [L—®aoy(t), ov(0) =0y, Ve [0,T],  (2b)

where r > 0 and a > 0 are exogenous growth rates. y(¢) is a mean preserving
variable under the control of the PM which alters the rate of change of
the standard deviation of the income distribution, while leaving the rate of

change of mean income untouched (for example, v could describe the extent



of a mean-preserving reallocation of income from rich to poor). We impose
the restriction (¢) > 0 for all £, to rule out the scenario in which the PM
actively seeks to increase the standard deviation of the income distribution.
Hence the optimisation takes place on the set S = {(z,v) : * > 0,7 > 0}.
Following Proposition 1, we assume that, in the absence of policy intervention
(7(t) = 0 for all t), inequality is unambiguously increasing with time (that
is, a > ).

The coefficient of variation, z(t) = oy (t)/uy(t), is assumed to be sub-
ject to random shocks, reflecting uncertainty in either Eq. (2a), or (2b), or
both. By differentiating x(¢) with respect to time, substituting in Eqgs. (2a)
and (2b) and adding exogenous, independently distributed Gaussian shocks

scaled by z(t), we obtain the controlled stochastic differential equation:

=[(1 =~(t)a —r]dt + oxdW (t), z(0) = zg = oy, /11y, (3)
vt € (0,17,

where dW () = Z(t)V/dt, Z(t) ~ N(0,1), is the increment of a Wiener pro-

cess and ox is the variance parameter, such that when ox = 0 we have the

case of no uncertainty. In the event of the PM choosing a constant level of ~y

for all ¢, which we shall call 7, Eq. (3) has the analytical solution:

((1—a)a—r—%)t+axwu)

z(t) = xoe , (4)
so that :
Elz(t)] = xoe1=7e and
var(z(t)) = a2e2((-Ment(eokt _ 1),

x(t) has a log-normal distribution such that, in the absence of policy inter-
vention (7 = 0) and making the assumption, from Proposition 1, that a > r,
both the expected level and variance of inequality increase with time. When
the PM intervenes, the greater is y(t), the stronger is the policy taken to
reduce the expected rate of growth of inequality. However, a positive value

of v does not necessarily imply a reduction in the expected level of inequality;



this will only be the case when v > 1 —r/a (see Eq. (3)).

The PM wishes to choose an optimal policy rule for v so as to minimise a
performance criterion, defined as the expectation of the sum of the discounted
integral of a loss function over the planning horizon, and a function which

penalises the level of inequality remaining at 7™

Eq [ / U (), 1 (1) dt + GPIT, 2(T)] | | (5)

The loss function ¢ is assumed to be of class C%? and is increasing and
convex in each of its arguments, penalising deviations from perfect equality
(z(t) = 0) and the strength of the control policy v(¢). The penalty function
P is assumed to be of class C1'? and is increasing and convex in the level of
inequality remaining at the end of the planning horizon, (7). ¢ > 0 is a
weight attached to the level of inequality remaining at 7', such that ¢ = 0
implies that no penalty is incurred; different values of ¢ allow the PM to
target different levels of x(7T"). Ey is the conditional expectation operator
at ¢ = 0 given an initial level of inequality, . p > 0 is the discount rate.
The minimisation takes place subject to Eq. (3) and its associated boundary
conditions.

We restrict attention to the set U of admissable controls, that is, controls
in S which lead to a finite expectation in Eq. (5). Define the value function

as:

V(t,z) = min E, [/T e P00z (s),v(s))ds + ¢P[T, z(T)] |, (6)
{r(s) et} t

subject to Eq. (3), where E; is the conditional expectation operator at ¢
given that x(t) = x.

The following proposition shows that the simple value function V' (¢, x) =
e P(0.5) A(t)[z(¢)]?, where A(t) may be determined, is associated with a ver-
sion of a quadratic loss function with an interaction between x(t) and ~(t)
and a simple penalty function which yield a closed-form solution for the op-
timal choice of v(t). We shall denote this as v}(¢), where the subscript s

denotes the stochastic version of the model (we shall use the subscript d for



the deterministic version).

Proposition 2. For all non-degenerate income distributions and assum-
ing the following value function belonging to the Generalised Entropy family

of inequality indices:'

e MA() [z ()]
5 :

Vt,z) =

there exist the following loss and penalty functions:

(z(t),7(t) = and (8a)
e =(T)]”

) = (8b)

such that: (a) the optimal level of the control policy is as follows:

7 (t) = 1 <2(a — 1) — p+ox®+ tanh <@

" 2 2

- arctanh (2 da®+2(r T/%—l- P+ —0X2)) \/M) | )

where M = [2(a—7)—p+0%]>+4a?, tanh(z) = (exp(z) —exp(—=z))/(exp(z)+
exp(—z)) is the hyperbolic tangent function and arctanh(z) = (0.5)(log(1 +

z) — log(1 — 2)) its inverse; and (b) the optimal policy rule for control of
income inequality s more aggressive in the stochastic version of the model
than the deterministic version, that is, vi(t) > ~5(t), for all t € [0,T7].

!The Generalised Entropy family of inequality indices have the form:

() ) s

where « is real and not equal to zero or one. This expression equals the term in our value
and loss function when o = 2. Shorrocks (1980) developed these indices, which are the
only measures for which relative inequality can be decomposed additively across population
subgroups, a property which has found many uses; see Jenkins and van Kerm (2009) for
a recent survey. Hence the value function in Proposition 2 is additively decomposable.
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Figure 2: Dependence of: (a) optimal policy rule v and (b) optimal expected path of z on choice of ¢



Eq.(9) shows that the optimal policy rule is independent of xy and is a
nonlinear function of the time remaining in the DM’s planning horizon, 7'—t.
Conditional upon a particular choice of T, comparative static results for the
other parameters in the model are difficult to establish in closed form, but
differentiating Eq. (9) with respect to p, a and r and evaluating at a range
of parameter values suggests that 0v!(¢)/0dp < 0 (an increase in the rate of
time preference makes optimal policy less aggressive), 077 (t)/0a (the greater
the rate of growth in the standard deviation of the income distribution, the
more aggressive is optimal policy) and 0v%(t)/0r < 0 (the greater the rate
of growth of mean income, the less aggressive is optimal policy). These are
intuitively agreeable results.

The remaining parameter in the expression for the optimal control is
¢, the weight applied to the penalty function. Repeating the numerical
comparative static analysis shows that 0v*(¢t)/0¢ > 0, implying that, the
greater the weight attached to the level of inequality remaining at 7', the
more aggressive is optimal policy. The effect of changing the level of ¢ on
~¥(t) and the optimal expected path of x(t) may be seen in Figures 2(a) and
(b), where we run numerical simulations with the parameters 7' = 10,a =
1/40,r = 7/1000, p = 1/50,0x = 1/4, and ¢ = 1, varying ¢. The higher is
the value of ¢, the more aggressive is the policy, and, consequently, the lower

is the level of inequality remaining at 7.

3 Discussion

Proposition 2 shows that a PM seeking to reduce inequality to a particular
target level within a finite planning horizon should account for both the ex-
pected response of x to the policy variable and the strength of the shocks.
Failure to account for the latter can lead to targets being missed, on aver-
age. This is an important result, given that many developed economies are
currently experiencing sluggish growth and intensified economic instability,
and are implementing wide-ranging austerity policies.

Proposition 2 also suggests a simple mechanism by which a PM may

choose to target an expected level of inequality reduction by use of the weight

11
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Figure 3: ‘Missing the target’, by failing to account for the shocks to the
income distribution

¢ attached to the penalty function. However, policy makers seeking to force
the expected level of inequality to fall throughout the planning horizon must
choose a value of ¢ which penalises sufficiently the level of inequality remain-
ing at T' (see Figures 2(a) and (b)). Figure 2(b) shows that the optimal
expected path of x can be non-linear in ¢, meaning that, for a range of values
of ¢, the level of expected inequality can be increasing when following an
optimal policy.

These ideas are illustrated in Figure 3, which contrasts the stochastic
and deterministic policy rules for a PM seeking to reduce the coefficient of
variation by 10%, from a starting value xy = 1, over a ten-year period and
using the parameter values from the previous numerical example. We see
from Figure 2(a) that this requires that ¢ ~ 30. Figure 3 compares the
resulting optimal paths of 7¥ (ox = 1/4) and 7} (ox = 0), and also shows
the expected trajectories of x. It shows that failure to set a policy rule which
accounts for the shocks to the income distribution, that is, setting the policy

rule assuming that ox = 0, leads to the PM implementing a more benign

12



policy, with the result that there is an expected decline in the coefficient of
variation of 3.5% rather than the 10% achieved by ~Z.

As we pointed out in the introduction, the focus in this paper is on
income inequality but the methodology can also be applied to other ran-
dom variables. We have chosen to work with the coefficient of variation,
a well-understood variability measure which is of particular interest in the
measurement of income inequality (see on). Eden (1980) and Deaton and
Paxson (1994) carry out most of their applied analysis using the variance
of logarithms, which has some problems as an inequality measure (involving
the principle of transfers, and enumerated in Foster and Ok, 1999), but they
claim that their result, showing that inequality increases over time when
income follows a random walk, holds for ‘any measure of inequality that pre-
serves the principle of transfers’. It is primarily through our choice of the
coefficient of variation as an inequality index that we have been able to derive
a closed form solution to the problem at hand.

There is a strong sense in which the coefficient of variation is salient for
our model. Using the notation of section 2.1, define z as a variate which
has been scaled to have the same mean, as well as the same Lorenz curve, as
Y;11 in expectation. We may think of z as the ‘mean-and-inequality certainty-
equivalent period 1 income distribution’. A necessary and sufficient condition
for ‘expected inequality’ to have unambiguously increased according to any
inequality index, is that the coefficient of variation of z exceeds that of income
in period ¢.

There are many other possible candidates for inequality measure than
the coefficient of variation in terms of which we have analyzed this prob-
lem. These include the ever-popular Gini coefficient. Further work could
be done in terms of the Gini coefficient, although its non-differentiability in
individual incomes would limit tractability. When the entire Lorenz curve
for income is shifted up/down, every index of relative inequality shows an
decrease/increase, and in such a case the choice of index is immaterial; but
when there are Lorenz curve intersections, different indices respond differ-

ently. In many such cases the coefficient of variation is ‘decisive’, in that its

13



directional change is reflected by other familiar inequality indices.? 3

Our results show that ignoring the uncertainty associated with the growth
equations for average income, the standard deviation of income, or both,
could lead to policies missing their targets (in expectation). Of course, this
has been demonstrated using a parsimonious set-up, with a mean-preserving
control policy, which allowed us to derive a closed form solution. Extensions
of the model in which, for example, the system of differential equations (2a)
and (2b) is coupled, thereby allowing for feedback between the level of average
income and inequality and vice versa (such as in the models of Lundberg and
Squire (2003)) would be an interesting extension. In the present model, the
‘costs’ of policy are reflected in the loss function alone. A model which
relaxes the assumption that the policy is mean preserving - for example, by
incorporating a direct effect of government action on reducing the rate of

growth of average income - might also reveal new insights.

Appendix

Proof of Proposition 1

We show the result for periods ¢ = 0 and ¢t = 1. The same argument may be
used for subsequent periods. Using standard results for conditional means
and variances (Wackerly et al., 2008), the coefficient of variation in period 1,

xq, is:

o7 O 1802+ 200 + 02+ (14 1a)02,

e
YT (1 + f1a) v

(10)

2This result, which follows from Shorrocks and Foster’s (1987) Corollary 1, encom-
passes all ‘transfer-sensitive’ inequality indices. Shorrocks and Foster argue that transfer
sensitivity provides ‘a means of prohibiting eccentric inequality judgements’ (such as at-
taching greater importance to small transfers between millionaires than bigger transfers
to the poor). Many of the generalized entropy indices are transfer sensitive.

3The Gini coefficient is not transfer sensitive, but it does satisfy a criterion called
‘positional transfer sensitivity,” and it is similarly decisive for inequality comparisons using
positionally transfer sensitive inequality indices when Lorenz curves cross once (Zoli, 1999).
None of the positionally transfer sensitive inequality indices are differentiable functions of
individual incomes.

14



Income inequality will rise, fall or stay the same between ¢ = 0 and t = 1

according to:

>
T1 = 20 Oge = —
< & <
2,UY0

(11)
Since pae = Oae/0a0c, Eq. (11) may be written:

=f(N), (12)

> =

T1 E Ty &= —Q,Ungae ; (0'%/0 + lu%’o))\ +

where A = 0,/0c. It follows that f'(A) = (03, 4+ p3,) + 1/A%, which has a

unique minimum at A = \* = ——I—_ Hence:
V CrYo—i-‘uYO

FOO > fO) = 24/0% + i, = 2uyon /22 +1, VA

Returning to Eq. (12):

1
) 2 Ty < =2y, Pae ; (0%, + 13N + X > 2y, /3y, + 1.

but since —2puy,pae € [—2pvy, 20y, ), it follows that z; > xy for all non-
degenerate income distributions undergoing growth as defined by Eq.(1), that
is, expected inequality in income, as measured by the coefficient of variation,

is unambiguously higher in period 1 than in period 0. U

Proof of Proposition 2

The idea is to identify a C'? value function V (¢, x) which satisfies the Hamilton-
Jacobi-Bellman (HJB) equation for the problem, together with the terminal
condition given by the penalty function. This leads to the ‘fundamental
quadratic’ for the problem, the solution to which can be used to establish

the optimal policy rule. The HJB equation is:

—pt LU2(1 + 72)

5 T Vel =v)a—rlz+ (13)

-V, = min{e

yeu

15



0% Vw
2 Y

with terminal condition V (T, z) = ¢P[T,x(T")]. The optimal level of 7 (a
sufficiency condition is needed - see below) is obtained by solving Eq. (13):

t
. Viaef

Vo= (14)

Substituting v = ¥ into Eq. (13) and simplifying gives:

22 et 1/;2612 eptagfxz Vi

—ePty, = ot _ 1
e’V 5 5 Te Vix(a —1)+ 5 (15)
Make the guess that:
“PA(t)z?
Vita) = % (16)
where A(t) is to be determined. This implies that:
e_Ptxz .
Vilt,z) = —5—I[A(t) — pA(®)], (17a)
Ve(t,x) = e PA(t)z and (17b)
Vee(t,x) = e PA(R). (17¢)
By substituting Eq. (17b) into Eq. (14), we note that:
Ve = aA(t). (18)

Finally, substitute Eqs. (17a) to (17¢) into Eq. (15) and cancel terms. We are
left with the following ordinary differential equation in A(t) (the RHS being
the ‘fundamental quadratic’), the solution to which may be used to yield the
optimal 7 (in Eq. (18)) and the optimal expected path of inequality:

A T) = 14+ (AW +2AW0)(r —a) — ?A@) + At p.  (19)

(a) The optimal level of ~}

16



To obtain the optimal level of ~¥, solve Eq. (19) for A(t) and substitute
into Eq. (18) to give Eq. (9).* We use the stochastic maximum principle
proposed by Framstad et al. (2004), to show that the policy rule Eq. (18) is
optimal. Firstly, rewrite Eq. (13) as:

-V, = min{H},

yelu
where H is the stochastic Hamiltonian:

2

o a?q(t)

H 5

+p®)[(1 =7)a—rlz+ (20)

where p(t) and ¢(t) satisfy the adjoint equations for the problem. Theorem
2.1 of Framstad et al. states that, for an admissable set of state and controls,
if H evaluated at the value of the control which minimises H is convex in
x, for all ¢ in [0,77], then the pair (vy,x) comprise an optimal pair for the
problem. H is strictly convex in v since H., = z%¢™*" > 0. The control
which minimises H is given by Eq. (14) and so the minimised Hamiltonian

is:

2 2 2
a0 m(e) = 1/20° (1 EG S ) vt
<(1 B xffpt) “= T) +1/2q0%

which is strictly convex in z, since H,, = e ? + go2 > 0.
(b) Comparison of stochastic and deterministic policy rules
Setting ox = 0 in Eq. (9) does not allow a definitive comparison of the
stochastic and deterministic policy rules, because ox appears in both the
numerator and the denominator of the RHS. To compare the levels of 7 and
v, we use a qualitative approach based on the analysis of the fundamental
quadratic (following the ideas of Ewald and Wang (2011)).

Consider Eq. (19) when A = 0 and let A7 and Af be the roots of the

“Maple 14 is used to solve Eq. (19).
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fundamental quadratic (where A; < AT):

20a—1)—p+ox:—vVM

A - = , (21a)
2a— 1) — 24 /M
ar = 2azn) g;g“x VM (21b)

where M = [2(a — 1) — p+ 0%|* + 4a® > 0. It is straightforward to show that
A7 AT = —1/a® < 0, implying that A7 is always negative and Al is always
positive. Let A7 and A} be the roots when ox = 0. Inspection of Egs. (21a)
and (21b) shows that A; < A7 and A} < Af.

The parabola of the fundamental quadratic has its vertex at (Am®, Amir)

where:

2(a—1r)—p+ox?

Amr = 57 , and (22a)
- M

AT = —— . 22b
= M (220)

Let A7 and A%™ be the respective values in the deterministic version of the
model. By setting ox equal to zero in Eq. (22a), it follows that A7™ < A™®
and Az > A" By setting ox equal to zero in Eq. (22b), it follows that
Az > Amin,

Finally, for both the stochastic and deterministic versions, A = —1 when
A=0.

Figure 4 contrasts the parabolas from stochastic and deterministic ver-
sions of the model under the restriction that p < 2(a — r), which places the
vertices of both parabolas to the right of the A(t) axis. The proof requires
that the the parabola for the stochastic version of the model lies to the right
of that for the deterministic version, which is guaranteed regardless of the
value of the rate of time preference relative to a,r and o% given that: 1.
A; > A, and 2. for both parabolas, A= —1 when A =0.

Use Egs. (16) and (8b) to equate the value and penalty functions at 7"

e TAT)[x(T))? _ e " gla(T)]

2 N 2 ’ (23)
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Deterministic

Alsnin :

Figure 4: Phase diagram for stochastic and deterministic solutions to Eq.
(19) under the restriction p < 2(a —r)

hence:
AT)=¢ >0, (24)

which implies we may restrict attention to the orthants for which A(¢) > 0.

The phase diagram shows that both A} and Al are unstable equilibria,
because the quadratic is upward sloping at each root. A(T) = ¢ > 0 may
lie in three regions: [0, AT), [AT, AT) and [AF,00). If AT < ¢ < AT, the
path of A(t) approaches ¢ = A(T) from below in the deterministic model
and from above in the stochastic model. From Eq. (18), the optimal policy
rule for the control is equal to aA(t), so it follows that v (t) > ~4(t) for all
te[0,7].

Now consider 0 < ¢ < A}. The point A(T') = ¢ is approached from above
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by A(t) in both the stochastic and deterministic models (because A(t) < 0,
refer to Figure 4). A simple contradiction may be used to show that it is still
the case that, in this scenario, v (t) > 73 (¢) for all t € [0,T]. Without loss of
generality, fix a value of A,(T) = A4(T) = ¢ > 0 in this interval. We want
to show that As(t) > Ay(t) for all ¢ € [0,T]. Define the function:

g(t) = As(t) — Aa(t) (25)

and let us suppose that there exists t; € [0, 7] such that As(t;) — Aq(t1) < 0
(implying vI(¢1) < v5(t1)). By applying a classical mean value theorem to
Eq. (25), for some t5 € [t1,T7:

[A(T) — Ag(T)] — [As(t1) — Aa(t1)]
T—1t
—[A(t1) — Ag(t1)]
= T—+t

= g(t2)>

— g(tg) > O,

since As(T) = Aq(T) = ¢ and given our assumption that A,(t;)—Aq(t;) < 0.
This is a contradiction, since §(t) = A4(t) — Ag(t) < 0 for all t € [ty, T (vefer
to Figure 4). Hence A4(t) > Aq(t), and so vi(t) > v4(t) by Eq. (18), for all
t € 10,17.

Analogous reasoning can be used for ¢ € [A], 00). O
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