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Abstra
tWe 
onsider the optimal 
ontrol of inequality under un
ertainty,with a parti
ular fo
us on in
ome inequality. For an e
onomy experi-en
ing e
onomi
 growth and random sho
ks, we show how a simple lossand `bequest' fun
tion may be 
ombined to guide the expe
ted level ofinequality towards a pre-de�ned target within a �nite planning hori-zon. Closed form solutions show that, the stronger the sho
ks to thein
ome distribution, the more aggressive is poli
y. We dis
uss the re-sults in the 
ontext of re
ent applied and poli
y literature on so
ialinequality, globalisation and e
onomi
 instability.JEL 
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1 Introdu
tionThis paper presents a dynami
, sto
hasti
, model of the optimal 
ontrol ofinequality in the presen
e of e
onomi
 growth and un
ertainty, fo
using, inparti
ular, on the role played by sho
ks to the in
ome distribution. We
onsider a poli
y maker who 
hooses the level of a mean-preserving 
ontrolvariable to in�uen
e the rate of 
hange of an index of inequality and whoin
urs losses asso
iated with both the instantaneous level of inequality andthe strength of poli
y. The inequality index we 
hoose to work with is the
oe�
ient of variation. This has many desirable properties, key among whi
his that it assists derivation of a 
losed form solution for the optimal poli
yrule. Though the fo
us is on in
ome, the framework is general and 
an beapplied to any time-varying random variable whose distribution is subje
t tosho
ks.The resear
h is timely for a number of reasons. Firstly, there now existsa large body of eviden
e suggesting that many 
ountries are experien
inge
onomi
 growth a

ompanied by in
reasing in
ome inequality. The OECD(2008) reports `moderate but signi�
ant growth' in the gap between ri
h andpoor in around three-quarters of its member 
ountries over the last twentyto thirty years. Using its latest data, for the years 1975 to 2008, Figures 1(a)and (b) 
ontrast the in
reasing real, average, disposable in
omes of four ofits member states (Canada, Germany, the United Kingdom and the UnitedStates) with 
hanges in in
ome inequality, as measured by the square of the
oe�
ient of variation. Average in
omes and inequality follow an upwardtrend for all four 
ountries. Using a wider group of 
ountries, the re
ent`World of Work' reports of the International Institute for Labour Studies(2008, 2010) report a similar pi
ture. Between 1990 and 2000, approximatelytwo-thirds of the 85 
ountries reviewed (in
luding those in Asia, the Pa
i�
,Eastern Europe, the former USSR, the Middle East and North and Sub-Saharan Afri
a) experien
ed an in
rease in in
ome inequality as measuredby the Gini index. For the 44 
ountries for whi
h data is available throughto 2005, two-thirds experien
ed an in
rease in in
ome inequality.Se
ondly, survey eviden
e taken over the last de
ade suggests growing2
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dissatisfa
tion with the way that nations are handling issues 
on
erninginequality and poverty. In the re
ent Eurobarometer survey (TNS Opin-ion & So
ial, 2010), 62% of those asked felt that the way inequalities andpoverty were addressed in their 
ountry was bad (31% felt that it was good),38% felt that the situation had worsened in the last �ve years (11% feltthat there had been an improvement) and 51% felt that there would be no
hange during the forth
oming year (12% felt that there would be an im-provement). Using slightly older data for 23 
ountries, the World ValuesSurvey (www.worldvaluessurvey.org) shows similar results, the index oftoleran
e of large in
ome inequalities falling from 6.5 (survey of 1988-1993)to 5.4 (1999-2004), where a de
line suggests in
reasing intoleran
e (Interna-tional Institute for Labor Studies, 2008).Thirdly, there is a growing body of literature linking high levels of in-equality to politi
al instability. Dutt and Mitra (2008) found empiri
al ev-iden
e to support the theoreti
al work of A
emoglu and Robinson (2000,2001) suggesting that unequal so
ieties are more likely to �u
tuate into andout of demo
ra
y, as the elite in a demo
ra
y have an in
entive to seizepower so as to avoid redistributive poli
ies, while the poor have an in
entiveto overthrow di
tatorships in order to reassert redistributive poli
ies. Duttand Mitra found that inequality signi�
antly exa
erbates politi
al instabil-ity, with the 
ausal dire
tion running from inequality to politi
al instability,rather than the other way round. Similar results have been reported in thework of Muller and Seligson (1987) and Alesina and Perotti (1996).Finally, despite large bodies of applied work do
umenting the 
hangesin, and 
orrelates of, in
ome inequality over time (re
ent examples in
ludeLundberg and Squire (2003), Jenkins and van Kerm (2006) and Heath
oteet al. (2010)), we are not aware of any theoreti
al work whi
h has addresseddire
tly the problem set out in this paper.The major 
ontributions are as follows. The parsimonious set up of themodel allows us to derive a 
losed form solution for the optimal poli
y rule to
ontrol inequality. The rule is independent of the starting level of inequalityand, the more un
ertain is the world in whi
h the poli
y-maker operates, themore aggressive is optimal poli
y. The poli
y-maker 
an 
hoose to target4



a parti
ular redu
tion in the expe
ted level of inequality over a �nite timehorizon by means of a penalty, or bequest, fun
tion. The optimal poli
y ruleis nonlinear in the time remaining in the planning horizon and, under par-ti
ular 
onditions, it 
an be optimal for the poli
y maker to allow inequalityto in
rease over time. The results suggest that poli
y rules whi
h ignore un-
ertainty arising from sho
ks to the in
ome distribution 
an result in targetsfor inequality redu
tion being missed.The paper is organised as follows. Se
tion 2 presents the model, with itsmain results laid out in two se
tions. The �rst presents a simple mi
ro-leveldes
ription of inequality in an e
onomy in whi
h individual in
omes followa random walk with drift. This gives some theoreti
al underpinning to thestory of Figures 1(a) and (b) - e
onomi
 growth a

ompanied by in
reas-ing inequality - and introdu
es the 
oe�
ient of variation as our measureof inequality. The se
ond se
tion formulates and solves the poli
y-maker'soptimisation problem using the material from the �rst. Se
tion 3 dis
ussesthe results, the limitations of the model, and 
on
ludes.2 Analysis2.1 The modelA poli
y maker (hen
eforth PM) wishes to 
hoose an optimal rule to 
ontrolin
ome inequality in an e
onomy between year t = 0 and t = T , where t isan integer and T is �nite. The PM seeks to hit a target level of inequalityat T . De�ne Yt as a 
ontinuous random variable denoting the in
omes in thepopulation. Assume that the inequality index of interest is the 
oe�
ient ofvariation, de�ned as xt = σYt
/µYt

, where σYt
> 0 is the standard deviationof Yt and µYt

> 0 is its mean.Given Y0, we assume that Y evolves a

ording to the following �rst ordersto
hasti
 di�eren
e equation:
Yt+1 = (1 + αt)Yt + ǫt, t = 0, . . . , T, (1)5



where αt and ǫt are random variables with the (time-invariant) expe
ted val-ues µα > 0 and µǫ = 0 and varian
es σ2
α and σ2

ǫ , respe
tively, together with
ovarian
e σαǫ = ραǫσασǫ, where ραǫ is the 
orrelation 
oe�
ient. Giventhe assumption about µα, it is to be expe
ted that average in
ome in thepopulation is in
reasing over time. The following proposition des
ribes theevolution of inequality over time.Proposition 1. Under the individual in
ome growth pro
ess of Eq. (1),inequality is unambiguously in
reasing over time, that is, xt+1 > xt, for allnon-degenerate in
ome distributions.All proofs are presented in the Appendix.Proposition 1 is in the spirit of the results of earlier work by Eden (1980) andDeaton and Paxson (1994), whi
h were based on a simple random walk. Weintrodu
e positive drift for 
onsisten
y with the story told by Figures 1(a)and (b). The result in Proposition 1 is used to de�ne the level of growth of
µY relative to σY in the PM's optimisation problem, to whi
h we now turn.2.2 The poli
y maker's optimisation problemAlthough t was an integer for Proposition 1, here we assume that it is 
ontin-uous, to allow us to use the tools of sto
hasti
 
al
ulus to solve the problem.The PM assumes that the following system des
ribes the evolution of µY (t)and σY (t):

µ̇Y (t) = rµY (t), µY (0) = µY0
, (2a)

σ̇Y (t) = [1− γ(t)]aσY (t), σY (0) = σY0
, ∀t ∈ [0, T ], (2b)where r > 0 and a > 0 are exogenous growth rates. γ(t) is a mean preservingvariable under the 
ontrol of the PM whi
h alters the rate of 
hange ofthe standard deviation of the in
ome distribution, while leaving the rate of
hange of mean in
ome untou
hed (for example, γ 
ould des
ribe the extent6



of a mean-preserving reallo
ation of in
ome from ri
h to poor). We imposethe restri
tion γ(t) ≥ 0 for all t, to rule out the s
enario in whi
h the PMa
tively seeks to in
rease the standard deviation of the in
ome distribution.Hen
e the optimisation takes pla
e on the set S = {(x, γ) : x ≥ 0, γ ≥ 0}.Following Proposition 1, we assume that, in the absen
e of poli
y intervention(γ(t) = 0 for all t), inequality is unambiguously in
reasing with time (thatis, a > r).The 
oe�
ient of variation, x(t) = σY (t)/µY (t), is assumed to be sub-je
t to random sho
ks, re�e
ting un
ertainty in either Eq. (2a), or (2b), orboth. By di�erentiating x(t) with respe
t to time, substituting in Eqs. (2a)and (2b) and adding exogenous, independently distributed Gaussian sho
kss
aled by x(t), we obtain the 
ontrolled sto
hasti
 di�erential equation:dx(t)
x(t)

= [(1− γ(t))a− r]dt + σXdW (t), x(0) = x0 ≡ σY0
/µY0

, (3)
∀t ∈ [0, T ],where dW (t) = Z(t)

√dt, Z(t) ∼ N(0, 1), is the in
rement of a Wiener pro-
ess and σX is the varian
e parameter, su
h that when σX = 0 we have the
ase of no un
ertainty. In the event of the PM 
hoosing a 
onstant level of γfor all t, whi
h we shall 
all γ̄, Eq. (3) has the analyti
al solution:
x(t) = x0e

(

(1−γ̄)a−r−
σ
2

X

2

)

t+σXW (t)
, (4)so that :

E[x(t)] = x0e
((1−γ̄)a−r)t andvar(x(t)) = x20e
2((1−γ̄)a−r)t(eσ

2

X
t − 1).

x(t) has a log-normal distribution su
h that, in the absen
e of poli
y inter-vention (γ̄ = 0) and making the assumption, from Proposition 1, that a > r,both the expe
ted level and varian
e of inequality in
rease with time. Whenthe PM intervenes, the greater is γ(t), the stronger is the poli
y taken toredu
e the expe
ted rate of growth of inequality. However, a positive valueof γ does not ne
essarily imply a redu
tion in the expe
ted level of inequality;7



this will only be the 
ase when γ > 1− r/a (see Eq. (3)).The PM wishes to 
hoose an optimal poli
y rule for γ so as to minimise aperforman
e 
riterion, de�ned as the expe
tation of the sum of the dis
ountedintegral of a loss fun
tion over the planning horizon, and a fun
tion whi
hpenalises the level of inequality remaining at T :
E0

[
∫ T

0

e−ρtℓ(x(t), γ(t))dt+ φP [T, x(T )]

]

, (5)The loss fun
tion ℓ is assumed to be of 
lass C 2, 2 and is in
reasing and
onvex in ea
h of its arguments, penalising deviations from perfe
t equality(x(t) = 0) and the strength of the 
ontrol poli
y γ(t). The penalty fun
tion
P is assumed to be of 
lass C 1, 2 and is in
reasing and 
onvex in the level ofinequality remaining at the end of the planning horizon, x(T ). φ > 0 is aweight atta
hed to the level of inequality remaining at T , su
h that φ = 0implies that no penalty is in
urred; di�erent values of φ allow the PM totarget di�erent levels of x(T ). E0 is the 
onditional expe
tation operatorat t = 0 given an initial level of inequality, x0. ρ > 0 is the dis
ount rate.The minimisation takes pla
e subje
t to Eq. (3) and its asso
iated boundary
onditions.We restri
t attention to the set U of admissable 
ontrols, that is, 
ontrolsin S whi
h lead to a �nite expe
tation in Eq. (5). De�ne the value fun
tionas:

V (t, x) = min
{γ(s)∈U}

Et

[
∫ T

t

e−ρ(s−t)ℓ(x(s), γ(s))ds+ φP [T, x(T )]

]

, (6)subje
t to Eq. (3), where Et is the 
onditional expe
tation operator at tgiven that x(t) = x.The following proposition shows that the simple value fun
tion V (t, x) =
e−ρt(0.5)A(t)[x(t)]2, where A(t) may be determined, is asso
iated with a ver-sion of a quadrati
 loss fun
tion with an intera
tion between x(t) and γ(t)and a simple penalty fun
tion whi
h yield a 
losed-form solution for the op-timal 
hoi
e of γ(t). We shall denote this as γ∗s (t), where the subs
ript sdenotes the sto
hasti
 version of the model (we shall use the subs
ript d for8



the deterministi
 version).Proposition 2. For all non-degenerate in
ome distributions and assum-ing the following value fun
tion belonging to the Generalised Entropy familyof inequality indi
es:1
V (t, x) =

e−ρtA(t)[x(t)]2

2
, (7)there exist the following loss and penalty fun
tions:

ℓ(x(t), γ(t)) =
[x(t)]2(1 + [γ(t)]2)

2
and (8a)

P [T, x(T )] =
e−ρT [x(T )]2

2
, (8b)su
h that: (a) the optimal level of the 
ontrol poli
y is as follows:

γ∗s (t) =
1

2a

(

2(a− r)− ρ+ σX
2 + tanh

(√
M(T − t)

2

+ar
tanh(2φ a2 + 2(r − a) + ρ+−σX2

√
M

))√
M

)

, (9)where M = [2(a−r)−ρ+σ2
X]

2+4a2, tanh(z) = (exp(z)−exp(−z))/(exp(z)+
exp(−z)) is the hyperboli
 tangent fun
tion and ar
tanh(z) = (0.5)(log(1 +

z) − log(1 − z)) its inverse; and (b) the optimal poli
y rule for 
ontrol ofin
ome inequality is more aggressive in the sto
hasti
 version of the modelthan the deterministi
 version, that is, γ∗s (t) ≥ γ∗d(t), for all t ∈ [0, T ].1The Generalised Entropy family of inequality indi
es have the form:
1

α2 − α

∫
((

y

µY

)α

− 1

)

fY (y)dy,where α is real and not equal to zero or one. This expression equals the term in our valueand loss fun
tion when α = 2. Shorro
ks (1980) developed these indi
es, whi
h are theonly measures for whi
h relative inequality 
an be de
omposed additively a
ross populationsubgroups, a property whi
h has found many uses; see Jenkins and van Kerm (2009) fora re
ent survey. Hen
e the value fun
tion in Proposition 2 is additively de
omposable.9



(a) (b)Figure 2: Dependen
e of: (a) optimal poli
y rule γ∗s and (b) optimal expe
ted path of x on 
hoi
e of φ

10



Eq.(9) shows that the optimal poli
y rule is independent of x0 and is anonlinear fun
tion of the time remaining in the DM's planning horizon, T−t.Conditional upon a parti
ular 
hoi
e of T , 
omparative stati
 results for theother parameters in the model are di�
ult to establish in 
losed form, butdi�erentiating Eq. (9) with respe
t to ρ, a and r and evaluating at a rangeof parameter values suggests that ∂γ∗s (t)/∂ρ < 0 (an in
rease in the rate oftime preferen
e makes optimal poli
y less aggressive), ∂γ∗s (t)/∂a (the greaterthe rate of growth in the standard deviation of the in
ome distribution, themore aggressive is optimal poli
y) and ∂γ∗s (t)/∂r < 0 (the greater the rateof growth of mean in
ome, the less aggressive is optimal poli
y). These areintuitively agreeable results.The remaining parameter in the expression for the optimal 
ontrol is
φ, the weight applied to the penalty fun
tion. Repeating the numeri
al
omparative stati
 analysis shows that ∂γ∗s (t)/∂φ > 0, implying that, thegreater the weight atta
hed to the level of inequality remaining at T , themore aggressive is optimal poli
y. The e�e
t of 
hanging the level of φ on
γ∗s (t) and the optimal expe
ted path of x(t) may be seen in Figures 2(a) and(b), where we run numeri
al simulations with the parameters T = 10, a =

1/40, r = 7/1000, ρ = 1/50, σX = 1/4, and x0 = 1, varying φ. The higher isthe value of φ, the more aggressive is the poli
y, and, 
onsequently, the loweris the level of inequality remaining at T .3 Dis
ussionProposition 2 shows that a PM seeking to redu
e inequality to a parti
ulartarget level within a �nite planning horizon should a

ount for both the ex-pe
ted response of x to the poli
y variable and the strength of the sho
ks.Failure to a

ount for the latter 
an lead to targets being missed, on aver-age. This is an important result, given that many developed e
onomies are
urrently experien
ing sluggish growth and intensi�ed e
onomi
 instability,and are implementing wide-ranging austerity poli
ies.Proposition 2 also suggests a simple me
hanism by whi
h a PM may
hoose to target an expe
ted level of inequality redu
tion by use of the weight11



Figure 3: `Missing the target', by failing to a

ount for the sho
ks to thein
ome distribution
φ atta
hed to the penalty fun
tion. However, poli
y makers seeking to for
ethe expe
ted level of inequality to fall throughout the planning horizon must
hoose a value of φ whi
h penalises su�
iently the level of inequality remain-ing at T (see Figures 2(a) and (b)). Figure 2(b) shows that the optimalexpe
ted path of x 
an be non-linear in t, meaning that, for a range of valuesof φ, the level of expe
ted inequality 
an be in
reasing when following anoptimal poli
y.These ideas are illustrated in Figure 3, whi
h 
ontrasts the sto
hasti
and deterministi
 poli
y rules for a PM seeking to redu
e the 
oe�
ient ofvariation by 10%, from a starting value x0 = 1, over a ten-year period andusing the parameter values from the previous numeri
al example. We seefrom Figure 2(a) that this requires that φ ≈ 30. Figure 3 
ompares theresulting optimal paths of γ∗s (σX = 1/4) and γ∗d (σX = 0), and also showsthe expe
ted traje
tories of x. It shows that failure to set a poli
y rule whi
ha

ounts for the sho
ks to the in
ome distribution, that is, setting the poli
yrule assuming that σX = 0, leads to the PM implementing a more benign12



poli
y, with the result that there is an expe
ted de
line in the 
oe�
ient ofvariation of 3.5% rather than the 10% a
hieved by γ∗s .As we pointed out in the introdu
tion, the fo
us in this paper is onin
ome inequality but the methodology 
an also be applied to other ran-dom variables. We have 
hosen to work with the 
oe�
ient of variation,a well-understood variability measure whi
h is of parti
ular interest in themeasurement of in
ome inequality (see on). Eden (1980) and Deaton andPaxson (1994) 
arry out most of their applied analysis using the varian
eof logarithms, whi
h has some problems as an inequality measure (involvingthe prin
iple of transfers, and enumerated in Foster and Ok, 1999), but they
laim that their result, showing that inequality in
reases over time whenin
ome follows a random walk, holds for `any measure of inequality that pre-serves the prin
iple of transfers'. It is primarily through our 
hoi
e of the
oe�
ient of variation as an inequality index that we have been able to derivea 
losed form solution to the problem at hand.There is a strong sense in whi
h the 
oe�
ient of variation is salient forour model. Using the notation of se
tion 2.1, de�ne z as a variate whi
hhas been s
aled to have the same mean, as well as the same Lorenz 
urve, as
Yt+1 in expe
tation. We may think of z as the `mean-and-inequality 
ertainty-equivalent period 1 in
ome distribution'. A ne
essary and su�
ient 
onditionfor `expe
ted inequality' to have unambiguously in
reased a

ording to anyinequality index, is that the 
oe�
ient of variation of z ex
eeds that of in
omein period t.There are many other possible 
andidates for inequality measure thanthe 
oe�
ient of variation in terms of whi
h we have analyzed this prob-lem. These in
lude the ever-popular Gini 
oe�
ient. Further work 
ouldbe done in terms of the Gini 
oe�
ient, although its non-di�erentiability inindividual in
omes would limit tra
tability. When the entire Lorenz 
urvefor in
ome is shifted up/down, every index of relative inequality shows ande
rease/in
rease, and in su
h a 
ase the 
hoi
e of index is immaterial; butwhen there are Lorenz 
urve interse
tions, di�erent indi
es respond di�er-ently. In many su
h 
ases the 
oe�
ient of variation is `de
isive', in that its13



dire
tional 
hange is re�e
ted by other familiar inequality indi
es.2 3Our results show that ignoring the un
ertainty asso
iated with the growthequations for average in
ome, the standard deviation of in
ome, or both,
ould lead to poli
ies missing their targets (in expe
tation). Of 
ourse, thishas been demonstrated using a parsimonious set-up, with a mean-preserving
ontrol poli
y, whi
h allowed us to derive a 
losed form solution. Extensionsof the model in whi
h, for example, the system of di�erential equations (2a)and (2b) is 
oupled, thereby allowing for feedba
k between the level of averagein
ome and inequality and vi
e versa (su
h as in the models of Lundberg andSquire (2003)) would be an interesting extension. In the present model, the`
osts' of poli
y are re�e
ted in the loss fun
tion alone. A model whi
hrelaxes the assumption that the poli
y is mean preserving - for example, byin
orporating a dire
t e�e
t of government a
tion on redu
ing the rate ofgrowth of average in
ome - might also reveal new insights.AppendixProof of Proposition 1We show the result for periods t = 0 and t = 1. The same argument may beused for subsequent periods. Using standard results for 
onditional meansand varian
es (Wa
kerly et al., 2008), the 
oe�
ient of variation in period 1,
x1, is:

x1 =

√

σ2
1

µ1

=

√

(σ2
Y0

+ µ2
Y0
)σ2

α + 2µY0
σαǫ + σ2

ǫ + (1 + µα)2σ
2
Y0

(1 + µα)µY0

. (10)2This result, whi
h follows from Shorro
ks and Foster's (1987) Corollary 1, en
om-passes all `transfer-sensitive' inequality indi
es. Shorro
ks and Foster argue that transfersensitivity provides `a means of prohibiting e

entri
 inequality judgements' (su
h as at-ta
hing greater importan
e to small transfers between millionaires than bigger transfersto the poor). Many of the generalized entropy indi
es are transfer sensitive.3The Gini 
oe�
ient is not transfer sensitive, but it does satisfy a 
riterion 
alled`positional transfer sensitivity,' and it is similarly de
isive for inequality 
omparisons usingpositionally transfer sensitive inequality indi
es when Lorenz 
urves 
ross on
e (Zoli, 1999).None of the positionally transfer sensitive inequality indi
es are di�erentiable fun
tions ofindividual in
omes. 14



In
ome inequality will rise, fall or stay the same between t = 0 and t = 1a

ording to:
x1 R x0 ⇔ σα,e R −(σ2

Y0
+ µ2

Y0
)σ2

α + σ2
ǫ

2µY0

. (11)Sin
e ραǫ = σα,ǫ/σασǫ, Eq. (11) may be written:
x1 R x0 ⇔ −2µY0

ραe ⋚ (σ2
Y0

+ µ2
Y0
)λ+

1

λ
≡ f(λ), (12)where λ = σα/σǫ. It follows that f ′(λ) = (σ2

Y0
+ µ2

Y0
) + 1/λ2, whi
h has aunique minimum at λ = λ∗ = 1

√

σ2

Y0
+µ2

Y0

. Hen
e:
f(λ) ≥ f(λ∗) = 2

√

σ2
Y0

+ µ2
Y0

= 2µY0

√

x2Y0
+ 1, ∀λ.Returning to Eq. (12):

x1 R x0 ⇔ −2µY0
ραe ⋚ (σ2

Y0
+ µ2

Y0
)λ+

1

λ
≥ 2µY0

√

x2Y0
+ 1.but sin
e −2µY0

ραe ∈ [−2µY0
, 2µY0

], it follows that x1 > x0 for all non-degenerate in
ome distributions undergoing growth as de�ned by Eq.(1), thatis, expe
ted inequality in in
ome, as measured by the 
oe�
ient of variation,is unambiguously higher in period 1 than in period 0. �Proof of Proposition 2The idea is to identify a C1,2 value fun
tion V (t, x) whi
h satis�es the Hamilton-Ja
obi-Bellman (HJB) equation for the problem, together with the terminal
ondition given by the penalty fun
tion. This leads to the `fundamentalquadrati
' for the problem, the solution to whi
h 
an be used to establishthe optimal poli
y rule. The HJB equation is:
−Vt = min

γ ∈U

{

e−ρtx
2(1 + γ2)

2
+ Vx[(1− γ)a− r]x+ (13)

15



σ2
Xx

2Vxx
2

}

,with terminal 
ondition V (T, x) = φP [T, x(T )]. The optimal level of γs (asu�
ien
y 
ondition is needed - see below) is obtained by solving Eq. (13):
γ∗s =

Vxae
ρt

x
. (14)Substituting γ = γ∗s into Eq. (13) and simplifying gives:

−eρtVt =
x2

2
− e2ρtV 2

x a
2

2
+ eρtVxx(a− r) +

eρtσ2
Xx

2Vxx
2

. (15)Make the guess that:
V (t, x) =

e−ρtA(t)x2

2
, (16)where A(t) is to be determined. This implies that:

Vt(t, x) =
e−ρtx2

2
[Ȧ(t)− ρA(t)], (17a)

Vx(t, x) = e−ρtA(t)x and (17b)
Vxx(t, x) = e−ρtA(t). (17
)By substituting Eq. (17b) into Eq. (14), we note that:

γ∗s = aA(t). (18)Finally, substitute Eqs. (17a) to (17
) into Eq. (15) and 
an
el terms. We areleft with the following ordinary di�erential equation in A(t) (the RHS beingthe `fundamental quadrati
'), the solution to whi
h may be used to yield theoptimal γ (in Eq. (18)) and the optimal expe
ted path of inequality:
Ȧ(t, T ) = −1 + (A (t))2 a2 + 2A(t)(r − a)− σ2A (t) + A (t) ρ. (19)(a) The optimal level of γ∗s 16



To obtain the optimal level of γ∗s , solve Eq. (19) for A(t) and substituteinto Eq. (18) to give Eq. (9).4 We use the sto
hasti
 maximum prin
ipleproposed by Framstad et al. (2004), to show that the poli
y rule Eq. (18) isoptimal. Firstly, rewrite Eq. (13) as:
−Vt = min

γ ∈U
{H} ,where H is the sto
hasti
 Hamiltonian:

H = e−ρtx
2(1 + γ2)

2
+ p(t)[(1− γ)a− r]x+

σ2
Xx

2q(t)

2
, (20)where p(t) and q(t) satisfy the adjoint equations for the problem. Theorem2.1 of Framstad et al. states that, for an admissable set of state and 
ontrols,if H evaluated at the value of the 
ontrol whi
h minimises H is 
onvex in

x, for all t in [0, T ], then the pair (γ, x) 
omprise an optimal pair for theproblem. H is stri
tly 
onvex in γ sin
e Hγγ = x2e−ρt > 0. The 
ontrolwhi
h minimises H is given by Eq. (14) and so the minimised Hamiltonianis:
Ĥ(x, γ, ψ(t), π(t)) = 1/2 x2

(

1 +
p2a2

(e−ρ t)2 x2

)

e−ρ t + px

((

1− pa

xe−ρ t

)

a− r
)

+ 1/2 qσ2x2whi
h is stri
tly 
onvex in x, sin
e Ĥxx = e−ρt + qσ2 > 0.(b) Comparison of sto
hasti
 and deterministi
 poli
y rulesSetting σX = 0 in Eq. (9) does not allow a de�nitive 
omparison of thesto
hasti
 and deterministi
 poli
y rules, be
ause σX appears in both thenumerator and the denominator of the RHS. To 
ompare the levels of γ∗s and
γ∗d , we use a qualitative approa
h based on the analysis of the fundamentalquadrati
 (following the ideas of Ewald and Wang (2011)).Consider Eq. (19) when Ȧ = 0 and let A−

s and A+
s be the roots of the4Maple 14 is used to solve Eq. (19).

17



fundamental quadrati
 (where A−
s < A+

s ):
A−

s =
2( a− r)− ρ+ σX

2 −
√
M

2a2
, (21a)

A+
s =

2( a− r)− ρ+ σX
2 +

√
M

2a2
, (21b)where M = [2(a− r)− ρ+ σ2

X ]
2 +4a2>0. It is straightforward to show that

A−
s A

+
s = −1/a2 < 0, implying that A−

s is always negative and A+
s is alwayspositive. Let A−

d and A+
d be the roots when σX = 0. Inspe
tion of Eqs. (21a)and (21b) shows that A−
d < A−

s and A+
d < A+

s .The parabola of the fundamental quadrati
 has its vertex at (Amin
s , Ȧmin

s )where:
Amin

s =
2 ( a− r)− ρ+ σX

2

2 a2
, and (22a)

Ȧmin
s = −M

4a2
< 0. (22b)Let Amin

d and Ȧmin
d be the respe
tive values in the deterministi
 version of themodel. By setting σX equal to zero in Eq. (22a), it follows that Amin

d < Amin
sand Ȧmin

d > Ȧmin
s . By setting σX equal to zero in Eq. (22b), it follows that

Ȧmin
d > Ȧmin

d .Finally, for both the sto
hasti
 and deterministi
 versions, Ȧ = −1 when
A = 0.Figure 4 
ontrasts the parabolas from sto
hasti
 and deterministi
 ver-sions of the model under the restri
tion that ρ < 2(a− r), whi
h pla
es theverti
es of both parabolas to the right of the Ȧ(t) axis. The proof requiresthat the the parabola for the sto
hasti
 version of the model lies to the rightof that for the deterministi
 version, whi
h is guaranteed regardless of thevalue of the rate of time preferen
e relative to a, r and σ2

X given that: 1.
A−

s > A−
d and 2. for both parabolas, Ȧ = −1 when A = 0.Use Eqs. (16) and (8b) to equate the value and penalty fun
tions at T :

e−ρTA(T )[x(T )]2

2
=
e−ρTφ[x(T )]2

2
, (23)18



A(t)

Ȧ(t)

A−
d

A−
s A+

sA+

d

Amin
s

Ȧmin
s

Amin
d

0

Deterministic

Stochastic-1
Figure 4: Phase diagram for sto
hasti
 and deterministi
 solutions to Eq.(19) under the restri
tion ρ < 2(a− r)hen
e:

A(T ) = φ ≥ 0, (24)whi
h implies we may restri
t attention to the orthants for whi
h A(t) > 0.The phase diagram shows that both A+
d and A+

s are unstable equilibria,be
ause the quadrati
 is upward sloping at ea
h root. A(T ) = φ ≥ 0 maylie in three regions: [0, A+
d ), [A+

d , A
+
s ) and [A+

s ,∞). If A+
d ≤ φ < A+

s , thepath of A(t) approa
hes φ = A(T ) from below in the deterministi
 modeland from above in the sto
hasti
 model. From Eq. (18), the optimal poli
yrule for the 
ontrol is equal to aA(t), so it follows that γ∗s (t) > γ∗d(t) for all
t ∈ [0, T ].Now 
onsider 0 < φ < A+

d . The point A(T ) = φ is approa
hed from above19



by A(t) in both the sto
hasti
 and deterministi
 models (be
ause Ȧ(t) < 0,refer to Figure 4). A simple 
ontradi
tion may be used to show that it is stillthe 
ase that, in this s
enario, γ∗s (t) > γ∗d(t) for all t ∈ [0, T ]. Without loss ofgenerality, �x a value of As(T ) = Ad(T ) = φ̄ > 0 in this interval. We wantto show that As(t) ≥ Ad(t) for all t ∈ [0, T ]. De�ne the fun
tion:
g(t) = As(t)− Ad(t) (25)and let us suppose that there exists t1 ∈ [0, T ] su
h that As(t1)−Ad(t1) < 0(implying γ∗s (t1) < γ∗d(t1)). By applying a 
lassi
al mean value theorem toEq. (25), for some t2 ∈ [t1, T ]:

[As(T )−Ad(T )]− [As(t1)− Ad(t1)]

T − t1
= ġ(t2),

⇒ −[As(t1)− Ad(t1)]

T − t1
= ġ(t2) > 0,sin
e As(T ) = Ad(T ) = φ and given our assumption that As(t1)−Ad(t1) < 0.This is a 
ontradi
tion, sin
e ġ(t) = Ȧs(t)− Ȧd(t) < 0 for all t ∈ [t1, T ] (referto Figure 4). Hen
e As(t) ≥ Ad(t), and so γ∗s (t) ≥ γd(t) by Eq. (18), for all

t ∈ [0, T ].Analogous reasoning 
an be used for φ ∈ [A+
s ,∞). �Referen
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