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Abstract

In earlier work (Halpern and Régo, 2009), we proposed a logic that
extends the Logic of General Awareness of Fagin and Halpern (1988)
by allowing quantification over primitive propositions. This makes it
possible to express the fact that an agent knows that there are some
facts of which he is unaware. In that logic, it is not possible to model
an agent who is uncertain about whether he is aware of all formulas.
To overcome this problem, we keep the syntax of the earlier paper, but
allow models where, with each world, a possibly different language is
associated. We provide a sound and complete axiomatization for this
logic and show that, under natural assumptions, the quantifier-free
fragment of the logic is characterized by exactly the same axioms as
the logic of Heifetz, Meier, and Schipper (2008).

1 INTRODUCTION

Adding awareness to standard models of epistemic logic has been shown
to be useful in describing many situations (see (Fagin and Halpern, 1988;
Heifetz et al., 2006) for some examples). One of the best-known models of
awareness is due to Fagin and Halpern (1988) (FH from now on). They
add an awareness operator to the language, and associate with each world
in a standard possible-worlds model of knowledge a set of formulas that
each agent is aware of. They then say that an agent implicitly knows a
formula ¢ if ¢ is true in all worlds that the agent considers possible (this is
the traditional definition of knowledge, going back to Hintikka (1962)); an
agent explicitly knows ¢ if the agent implicitly knows ¢ and is aware of .!

In the economics literature, going back to the work of Modica and Rus-
tichini (1994; 1999) (MR from now on), a somewhat different approach is
taken. A possibly different set £(s) of primitive propositions is associated
with each world s. Intuitively, at world s, the agent is aware only of formu-
las that use the primitive propositions in £(s). A definition of knowledge is
given in this framework, and the agent is said to be aware of ¢ if, by defini-
tion, K;¢oV K;—=K;p holds. Heifetz, Meier, and Schipper (2006; 2008) (HMS
from now on), extend the ideas of MR to a multiagent setting. This exten-
sion is nontrivial, requiring lattices of state spaces, with projection functions

nterestingly, Hintikka (1962) distinguished between a weak and strong sense of knowl-
edge, where, roughly speaking, weak knowledge of ¢ only requires the agent to have the
information that ¢ was true, while strong knowledge requires, in addition, justification
for the information. As Sillari (2008a) points out, we could view explicit knowledge as
strong knowledge and implicit knowledge as weak knowledge, if we interpret awareness as
justification (although this is not the spirit in which it is typically interpreted).



between them. As we showed in earlier work (Halpern, 2001; Halpern and
Régo, 2008), the work of MR and HMS can be seen as a special case of the
FH approach, where two assumptions are made on awareness: awareness is
generated by primitive propositions, that is, an agent is aware of a formula
iff he is aware of all primitive propositions occurring in it, and agents know
what they are aware of (so that each agent is aware of the same formulas in
all worlds that he consider possible).

As we pointed out in (Halpern and Régo, 2009) (referred to as HR from
now on), if awareness is generated by primitive propositions, then it is im-
possible for an agent to explicitly know that he is unaware of a specific fact.
Nevertheless, an agent may well be aware that there are relevant facts that
he is unaware of. For example, primary-care physicians know that special-
ists are aware of things that could improve a patient’s treatment that they
are not aware of; investors know that investment fund companies may be
aware of issues involving the financial market that could result in higher
profits that they are not aware of. It thus becomes of interest to model
knowledge of lack of awareness. HR. does this by extending the syntax of
the FH approach to allow quantification, making it possible to say that an
agent knows that there exists a formula of which the agent is unaware. A
complete axiomatization is provided for the resulting logic. Unfortunately,
the logic has a significant problem if we assume the standard properties of
knowledge and awareness: it is impossible for an agent to be uncertain about
whether he is aware of all formulas. For example, suppose that an oncologist
missed the latest international conference on oncology, and is uncertain as to
whether any new treatment options were presented. Thus, the oncologist is
uncertain about whether he is aware of all treatment options. This situation
could not be modeled using the logic of HR, but can be modeled using the
approach presented in this paper. Note that while the agent is aware of the
concept of a treatment for cancer, he may be unaware of specific treatments.
For example, the idea of a treatment that involves radiation may not even
be on his radar screen, so to speak.

In this paper, we deal with this problem by considering the same lan-
guage as in HR,? but using the idea of MR that there is a different language
associated with each world. As we show, this slight change makes it possi-
ble for an agent to be uncertain about whether he is aware of all formulas,
while still being aware of exactly the same formulas in all worlds he consid-
ers possible. We provide a natural complete axiomatization for the resulting

2In this language, quantification can be used to express the fact that an agent (explic-
itly) knows that he is not aware of all formulas.



logic. Interestingly, implicit knowledge in this logic acts much like explicit
knowledge in the original FH framework, if we take “awareness of ¢’ to
mean K;(p V —¢); intuitively, this formula is true if agent ¢ knows all the
relevant concepts in ¢; that is, if all the primitive propositions in ¢ are
part of the language at all worlds that ¢ considers possible. Under minimal
assumptions, K;(¢ V =) is shown to be equivalent to K;¢ V K;—K;p: in
fact, the quantifier-free fragment of the logic that just uses the K; operator
is shown to be characterized by exactly the same axioms as the HMS ap-
proach, and awareness can be defined the same way. Thus, we can capture
the essence of the HMS approach without requiring the lattice structures of
HMS, and instead associating a possibly different language with each world.
By adding quantification to the language, we can in addition reason about
knowledge of lack of awareness; it is not clear how to do this in the HMS
approach. It turns out that, once we allow the possibility of different lan-
guages associated with different states, the gap between implicit knowledge
and explicit knowledge narrows significantly. To understand this better, and
to compare our framework carefully to the MR/HMS framework, we con-
sider a language that includes both implicit and explicit knowledge, even
though an agent reasons only about what he explicitly knows. In addition,
under minimal assumptions, we show that we can define awareness using
the implicit knowledge operator, and get equivalence of implicit and explicit
knowledge.

Board and Chung (2009) independently pointed out the problem of the
HR model and proposed the solution of allowing different languages at dif-
ferent worlds. They also consider a model of awareness with quantification,
but they use first-order modal logic, so their quantification is over domain
elements. Moreover, they take awareness with respect to domain elements,
not formulas; that is, agents are (un)aware of objects (i.e., domain elements),
not formulas. They also allow different domains at different worlds; more
precisely, they allow an agent to have a subjective view of what the set of ob-
jects is at each world. Recent results of Board, Chung, and Schipper (2011)
suggest that, in a sense, the Board and Chung approach is equally expressive
as the HMS approach. Given the results of this paper, it should also be as
expressive as our approach. Which approach lends itself more naturally to
modeling applications of interest remains to be seen. While the examples of
this paper are easily modeled with unawareness of formulas, there may be
others that are more easily modeled using unawareness of objects.

Sillari (2008b), in independent work, uses much the same approach as
Board and Chung (2009).That is, he has a first-order logic of awareness,
where the quantification and awareness is with respect to domain elements;



he also allows for different subjective domains at each world. He goes further
by using what is called neighborhood semantics, also called Montague-Scott
structures (Fagin et al., 1995). As is well known, neighborhood semantics
provide a more general approach for modeling knowledge than the standard
Kripke structures used here (and in most papers in computer science and
economics). For example, they have been used to deal with the logical
omniscience problem Fagin et al. (1995). But this greater flexibility comes
at a price. Because it does not model knowledge in terms of possible worlds,
but rather, in a sense, just provides a list of events that the agent knows,
neighborhood semantics seem like a less natural way of modeling knowledge
than Kripke structures (which is perhaps why it is used far less often in the
literature). Neighborhood semantics and awareness are both ways of dealing
with what has been called the logical omniscience problem: the fact that
in the standard approaches, agents know all tautologies and know all the
logical consequences of their knowledge. While the combination does give
some greater generality, it does not seem necessary for most applications.

Agotnes and Alechina (2007) consider a restricted version of the HR
logic, where we can reason only about certain types of unawareness (specif-
ically, the only types of quantified statements allowed are ones that talk
about whether an agent i is aware of all formulas, and whether an agent 7 is
aware of everything that another agent j is aware of). This restriction is still
expressive enough to capture all the motivating examples considered in HR,
while having significantly lower complexity (it is decidable, whereas the HR
logic is undecidable). Unfortunately, the problem in the HR logic already
occurs in the restricted version considered by Agotnes and Alechina. We
could modify the Agotnes-Alechina logic along the lines of our modification
here; we suspect that the improved complexity results would still obtain,
although we have not checked.

Walker (2011) further restricts the logic so that the only types of quan-
tified statements allowed are ones about whether an agent i is aware of all
formulas. In this restricted logic, he provides yet another solution to the
problem in the HR logic. His solution has the advantage of not requiring
different languages at different worlds. On the other hand, it is not clear
how to extend his solution to a richer language. Moreover, in this logic an
agent is allowed to have false beliefs about formulas that involve Vx Az, but
not for other type of formula.

The rest of the paper is organized as follows. In Section 2, we review
the HR model of knowledge of unawareness. In Section 3, we present our
new logic and axiomatize it in Section 4. In Section 4, we compare our logic
with that of HMS and discuss awareness more generally. All proofs are left



to the appendix.

2 THE HR MODEL

In this section, we briefly review the relevant results of (Halpern and Régo,
2009). The syntax of the logic is as follows: given a set {1,...,n} of agents,
formulas are formed by starting with a countably infinite set ® = {p,q,...}
of primitive propositions and a countably infinite set X of variables, and
then closing off under conjunction (A), negation (—), the modal operators
K, A, X, i =1,...,n. We also allow for quantification, so that if ¢ is a
formula, then so is Vxp. The domain of quantification is a subset of the set
of formulas; see below for further discussion. Let £7-5X4(®, X) denote this
language and let £XX4(®) be the subset of formulas that do not mention
quantification or variables. As usual, we define ¢ V ¢, ¢ = 1, and Jxp
as abbreviations of —=(—¢ A =), = V ¢, and —~Vx—y, respectively. The
intended interpretation of A;p is “i is aware of ¢”.

Essentially as in first-order logic, we can define inductively what it means
for a variable x to be free in a formula . Intuitively, an occurrence of a
variable is free in a formula if it is not bound by a quantifier. A formula that
contains no free variables is called a sentence. We are ultimately interested
in sentences. If ¢ is a formula, let ¢[x /1] denote the formula that results
by replacing all free occurrences of the variable x in ¢ by . (If there is no
free occurrence of = in ¢, then plx/¢] = ¢.) In quantified modal logic, the
quantifiers are typically taken to range over propositions (intuitively, sets of
worlds), but this does not work in our setting because awareness is syntactic;
when we write, for example, Vax A;x, we essentially mean that A;p holds for
all formulas . However, there is another subtlety. If we define Vxy to
be true if p[z/1] is true for all formulas 1, then there are problems giving
semantics to a formula such as ¢ = Vz(z), since p[z/p] = ¢. We avoid these
difficulties by taking the domain of quantification to be the quantifier-free
sentences, or more precisely, the formulas in £XX4(®). (See (Halpern and
Régo, 2009) for further discussion.)?

We give semantics to sentences in L£75%4(d, X) in awareness struc-
tures. A tuple M = (S, 7, Ky, ..., Ky, A1, ..., Ay) is an awareness structure

3We remark that Feinberg (2011) has recently generalized our approach by replacing the
V¥ in the syntax by a family of quantifiers V™, for m = 0,1,2,.... Let £EX40 = pKX.A
the quantifier-free formulas, and let £X%4™ consist of all formulas that mention only
the quantifiers v for m' < m. Feinberg takes the domain of quantification of V" to
consist of all the formulas in £XX4™; that is V" z¢ is true at a world s iff [z /1] is true
at s for all formulas ¢ € £LE5XAm



for n agents (over ®) if S is a set of worlds, 7 : S x & — {true, false} is an
interpretation that determines which primitive propositions are true at each
world, /C; is a binary relation on S for each agent i = 1,...,n, and A; is a
function associating a set of sentences with each world in S, for : =1, ..., n.
Intuitively, if (s,t) € K;, then agent i considers world ¢ possible at world s,
while A;(s) is the set of sentences that agent i is aware of at world s. We
are often interested in awareness structures where the IC; relations satisfy
some properties of interest, such as reflexivity, transitivity, or the Euclidean
property (if (s,?), (s,u) € K;, then (¢,u) € ;). It is well known that these
properties of the relation correspond to properties of knowledge of interest
(see Theorem 2.1 and the following discussion). We often abuse notation
and define KC;(s) = {t : (s,t) € K;}, thus writing ¢ € ;(s) rather than
(s,t) € K;. This notation allows us to view a binary relation IC; on S as a
possibility correspondence, that is, a function from S to 2°. (The use of pos-
sibility correspondences is more standard in the economics literature than
binary relations, but they are clearly essentially equivalent.)

Semantics is given to sentences in L7%X4(® X) by induction on the
number of quantifiers, with a subinduction on the length of the sentence.
Truth for primitive propositions, for =, and for A is defined in the usual way.
The other cases are defined as follows:*

(M, s) E Kypif (M,t) E ¢ for all t € IC;(s)

(M, s) | Aip if o € Ayi(s)

(M,s) E Xjpif (M,s) E Ajp and (M, s) E K;p

(M, s) = Vayp if (M, s) = plz/], for all o € LEXA(D).

In the HR model, as in standard epistemic logics, the intended interpre-
tation of K;(p is that agent ¢ considers possible only worlds where ¢ is true,
while, as in the FH model, X, is true if, in addition to ¢ being true in all
worlds that ¢ considers possible, ¢ is aware of .

There are two standard restrictions on agents’ awareness that capture
the assumptions typically made in the game-theoretic literature (Modica
and Rustichini, 1999; Heifetz et al., 2006, 2008). We describe these here in
terms of the awareness function, and then characterize them axiomatically.

e Awareness is generated by primitive propositions (agpp) if, for all
agents i, ¢ € A;(s) iff all the primitive propositions that appear in ¢
are in A;(s) N ®.

4HR gives semantics to arbitrary formulas, including formulas with free variables. This
requires using valuations that give meaning to free variables. By restricting to sentences,
which is all we are ultimately interested in, we are able to dispense with valuations here,
and thus simplify the presentation of the semantics.



o Agents know what they are aware of (ka) if, for all agents ¢ and all
worlds s,t such that (s,t) € K; we have that A;(s) = A;(t).

To be able to relate our results better to those in the economics literature,
we restrict attention in this paper to structures that satisfy agpp and ka.
If C is a (possibly empty) subset of {r,t,e}, then MS(®, X) is the set of
all awareness structures such that awareness satisfies agpp and ka and the
possibility correspondence is reflexive (r), transitive (¢), and Euclidean (e)
if these properties are in C.

A sentence ¢ € L7FXA(®, X) is said to be wvalid in awareness structure
M, written M = ¢, if (M, s) = - for all s € S. We remark that this notion
is called weak validity in (Halpern and Régo, 2008). For the semantics we
are considering here, weak validity is equivalent to the standard notion of
validity, where a formula is valid in an awareness structure if it is true at
all worlds in that structure. However, in the next section, we modify the
semantics to allow some formulas to be undefined at some worlds; with this
change, the two notions do not coincide. As we use weak validity in the
next section, we use the same definition here for the sake of uniformity. A
sentence is valid in a class M of awareness structures, written M |= ¢, if it
is valid for all awareness structures in M, that is, if M = ¢ for all M € M.

An azxiom system AX consists of a collection of axioms and inference
rules. An axiom is a formula, and an inference rule has the form “from
©1,...,pk infer ¢,” where @1,..., g, are formulas. A formula ¢ is prov-
able in (or a theorem of) AX, denoted AX F ¢, if there is a sequence of
formulas such that the last one is ¢, and each one is either an axiom or fol-
lows from previous formulas in the sequence by an application of an inference
rule.

In (Halpern and Régo, 2009), we gave sound and complete axiomatiza-
tions for both the language L£7%%4(®, X) and the language £24(®, X),
which does not mention the implicit knowledge operator K; (and the quan-
tification is thus only over sentences in £:X4(®)). The latter language is ar-
guably more natural (since agents do not have access to the implicit knowl-
edge modeled by K;), but some issues become clearer when considering
both. In particular, considering both allows us to analyze the relationship
between K; and X; more carefully, and to compare our approach to the work
of Heifetz, Meier, and Schiper and of Modica and Rustichinni.

We start by describing axioms for the language £7%%4(®, X'), and then
describe how they are modified to deal with £7%4(®, X'). Given a formula
o, let () be the set of primitive propositions in ® that occur in .

Prop. All substitution instances of valid formulas of propositional logic.



AGPP. A0 & Npea(p)Ain-°

KA. Ajp = K Ajp

NKA. -A;p = K;~A;p

K. (Kip A Ki(p = ) = K.

T. Kip = .

4. Kip = K;K;op.

5. Ko = Ki—~K;p.

AO0. X0 & Kip A Ajp.

ly. Yz = plx /1] if 1 is a quantifier-free sentence.
Ky. V(o = ¢) = Yoy = Vo).

Ny. ¢ = Vzp if x is not free in .

Barcan. Ve K;p = K;Vzrop.

MP. From ¢ and ¢ = 1 infer 1) (modus ponens).
Geng. From ¢ infer K;p.

Geny. If ¢ is a primitive proposition, then from ¢ infer Vaplq/z]|.

Axioms Prop, K, T, 4, 5 and inference rules MP and Geng are standard
in epistemic logics. A0 captures the relationship between explicit knowledge,
implicit knowledge and awareness, and just says that explicit knowledge is
equivalent to the combination of implicit knowledge and awareness; this is
just the FH definition of explicit knowledge. Axioms 1y, Ky, Ny and infer-
ence rule Geny capture standard properties of universal quantification (and
have exact analogues in first-order logic, where the quantification is over ob-
jects). For example, 1y says that if a universally quantified formula is true,
then so is each instance of it. (Bull, 1969; Engelhardt et al., 1998; Fine, 1970;

5As usual, the empty conjunction is taken to be the vacuously true formula true, so
that A;¢p is vacuously true if no primitive propositions occur in ¢. We remark that in the
conference version of HR, an apparently weaker version of AGPP called weak generation of
awareness by primitive propositions is used. However, this is shown in HR to be equivalent
to AGPP if the agent is aware of at least one primitive proposition, so AGPP is used in
the final version of HR, and we use it here as well.



Kaplan, 1970; Kripke, 1959).6 The Barcan axiom, which is well-known in
first-order modal logic, captures the relationship between quantification and
K;. Tt says that if agent ¢ knows @[z /9] for each quantifier-free formula
1, then he knows Vzy. The converse to the Barcan formula holds as well,
although we do not need it for the complete axiomatization. Axiom AGPP
captures the key property of awareness being generated by primitive proposi-
tions; axioms KA and NKA capture the properties of agents knowing which
formulas they are and are not aware of. Specifically, KA says that an agent
knows what he is aware of; NKA says that he knows what he is not aware
of. Let AX®X4Y be the axiom system consisting of all the axioms and
inference rules in {Prop, AGPP, KA, NKA, K, A0, 1y, Ky, Ny, Barcan, MP,
Geng, Geny}.

The language £7%4 without the modal operators K; has an axioma-
tization that is similar in spirit. Let Kx, Tx, 4x, XA, and Barcany be
the axioms that result by replacing the K; in K, T, 4, KA, and Barcan, re-
spectively, by X;. Let 5x and Genx be the axioms that result from adding
awareness to 5 and Geng:

5x. (0 Xip AN Aip) = Xi=Xip.
Geny. From ¢ infer A;0 = X;p.

The analogue of axiom NKA written in terms of X;, = A;p = X;—A;¢p, is not
valid. An agent can never explicitly know what he is not aware of. Indeed,
-Ajp = - X;—A;p is valid. To get completeness in models where agents
know what they are aware of, we need the following axiom, which can be
viewed as a weakening of NKA:

FAx. -VzA;x = X;=VzA;x.

FA x says that if an agent is not aware of all formulas, then he explicitly
knows that. This may seem to be an unreasonable axiom. If an agent in fact
is not aware of all formulas, why should he explicitly know this? It seems
reasonable that he could mistakenly believe that he is aware of everything,
even though he is not. Nevertheless, it is not hard to show that this formula
is valid in the models considered by Halpern and Régo (2009), and is not
valid in the models that we consider in this paper.

5Since we gave semantics not just to sentences, but also to formulas with free variables
in (Halpern and Régo, 2009), we were able to use a simpler version of Geny that applies
to arbitrary formulas: from ¢ infer Vaxp. Note that all the other axioms and inference
rules apply without change to formulas as well as sentences.



Finally, consider the following weakening of A0, which captures the re-
lationship between explicit knowledge and awareness to the extent that we
can talk about it without having K; in the language:

AOX. Xigo = AZ'QO.

Let AX®4Y be the axiom system consisting of all the the axioms and in-
ference rules in {Prop, AGPP, XA, FAx, Kx, AOx, 1y, Ky, Ny, Barcany,
MP, Geny, Geny}. The following result shows that the semantic properties
r,t,e are captured by the axioms T, 4, and 5, respectively in the language
[,X’K XA similarly, these same properties are captured by Ty, 4x, and 5x
in the language £704,

Theorem 2.1 (Halpern and Régo, 2009) If C (resp., Cx) is a (possibly
empty) subset of {T,4,5} (resp., {Tx,4x,5x}) and if C is the correspond-
ing subset of {r,t,e} then AXEXAYUC (resp., AXXAYUCK ) is a sound and
complete axiomatization of the sentences in LI5XA(®, X) (resp. LIXA(®, X))
with respect to MG (®, X).7

Consider the formula
=X, Ve Az A X,V A;x. (1)

The formula 1 says that agent 7 considers it possible that she is aware of all
formulas and also considers it possible that she is not aware of all formulas.
It is not hard to show 1) is not satisfiable in any structure in M(®, X'), so =)
is valid in awareness structures in M(®, X’). However, in many situations,
it seems reasonable that an agent may be uncertain about whether there

"We remark that when we say “completeness” here and elsewhere in the paper, as usual,
we mean, as usual, that every formula that is valid is provable. There is a stronger notion
of completeness, called strong completeness. An axiom system AX is strongly complete
if, for every subset ¥ of formulas, if ¢ is valid in every structure M such all the formulas
in U are true at every state of M, then ¢ is provable from AX together with ¥ (that is,
all the formulas in ¥ are taken as axioms). Strong completeness does not hold. Indeed,
we cannot hope to provide a strongly complete axiomatization for our logic, since it is
not even compact: there is an infinite set of formulas, each subset of which is satisfiable,
although the infinite set is not. This follows because of the presence of the universal
quantifier. Consider the infinite set ¥ of formulas consisting of A;p for all ¢ € £XX:4
and —VaxA;z. Clearly every finite subset of U is satisfiable, although the infinite set W
is not. Since W is not satisfiable, all formulas are trivially valid in every structure where
every formula in ¥ is satisfiable (since there are no such structures). But because proofs
are finitary, it is not hard to show that it is not the case that all formulas are provable
from the result of adding ¥ to any sound axiom system; indeed, the primitive proposition
p will not be provable.

10



are formulas he is unaware of. In the next section, we show that a slight
modification of the HR approach, using ideas of MR, allows this, while still
maintaining the desirable properties of the HR approach.

3 THE NEW MODEL

We keep the syntax of Section 2, but, following MR, we allow different
languages to be associated with different worlds. Define an extended aware-
ness structure for n agents (over ®) to be a tuple M = (S, L, m, Ky, ...,
Kn, A1, ..., Ap), where M = (S, 7, K1, ..., Ky, Ay, ..., Ay) is an awareness
structure and £ maps worlds in S to nonempty subsets of ®. Intuitively,
LYEXA(L(s), X) is the language associated with world s. We require that
Ai(s) C LYFXA(L(s), X), so that an agent can be aware only of sentences
that are in the language of the current world. Thus, in this model, associated
with each world s € S, there is an objective language L£(s) that is sufficient
to describe all relevant objective events in s; a subjective subset A;(s) of
LYEXA(L(s), X), which characterizes the events in s that i is aware of; and
a subjective description /C;(s) of the worlds that agent i considers possible.
We still want to require that agpp and ka; this means that if (s,t) € K;, then
Ai(s) C LYEXA(L(1), X). But £(t) may well include primitive propositions
that the agent is not aware of at s. It may at first seem strange that an
agent considers possible a world whose language includes formulas of which
he is not aware.® But, in the context of knowledge of lack awareness, there
is an easy explanation for this: the fact that A;(s) is a strict subset of the
sentences in LXA(L(t), X) is just our way of modeling that the agent
considers it possible that there are formulas of which he is unaware; he can
even “‘name” or “label” these formulas, although he may not understand
what the names refer to. If the agent considers possible a world ¢t where
A;(s) consists of every sentence in L7%XA(L(t), X), then the agent con-
siders it possible that he is aware of all formulas. The formula 1 defined
in (1) is satisfied at a world s where agent i considers possible a world ¢;
such that A;(s) consists of all sentences in £L2%XA4(L(¢,),X) and a world
ty such that A;(s) does not contain some sentence in L3 %XA(L(ty), X).
What this suggests is that, informally, the new model allows for “levels”
of unawareness. While there may be some concepts that agent ¢ is unaware
of and not even realize are “out there”, there may be other concepts that
1 is unaware of where i is aware of the “gap” in his awareness. The former

8Note that, in general, this happens in the HR approach too, even though there we
require that £(s) = L(t).

11



situation can be modeled by a formula p that agent ¢ is unaware of at a
world s such that p is not in the language at any world that ¢ considers
possible; the latter situation can be captured by having p in the language at
all worlds that ¢ considers possible. We can have intermediate cases as well,
where 7 is uncertain about whether there is a concept that he is unaware of
(so that p would be in the language at some worlds that ¢ considers possible,
and not in the language at other worlds that i considers possible). Roughly
speaking, although ¢ cannot name the concepts that he is unaware of (if he
could, he would be aware of them), he may have “labels” for concepts he is
unaware of. For example, if ¢ is aware that there is a formula that he and j
are not aware of, but k is aware of, and another formula that he and k are
aware of but j is not aware of, then ¢ will need labels for these two distinct
concepts, although he is aware of neither one. While, from ¢’s point of view,
these are just labels, a world s will “flesh out” these labels and give them a
concrete interpretation.

In this model, it is perfectly reasonable for i to consider possible a world ¢
where neither he nor j is aware of some formula p (that is, p ¢ A;(t)UA;(¢)).
For example, in the oncology example, ¢ might consider it possible that
there is a specific oncology treatment p that neither he nor j is aware of.
Of course, p does not have an specific meaning; p is just a label that i uses
to describe the treatment. But he can consider it possible that he and j
are unaware of the same treatment. We can similarly describe worlds where
agent 1 considers it possible that agents 2 and 3 are aware of the same
formulas, although both are aware of formulas that he (1) is not aware of,
and other more complicated relationships between the awareness of agents.
See Section 4 for further discussion of awareness of unawareness in this
setting.

The truth relation is defined for formulas in £7%X4(®, X) just as in
Section 2, except that for a formula ¢ to be true at a world s, we also require
that ¢ € LYEXA(L(s), X), so we just add this condition everywhere. Our
approach here is similar to that of MR. Intuitively, if ¢ ¢ £7554(L(s), X),
then the truth value of ¢ at s is undefined. We do not have a three-valued
logic, with an “undefined” truth value; instead, we take both ¢ and = to
be false at s. We can essentially identify a formula ¢ such that ¢ and —¢
are both false at s as a formula that is undefined at s. Thus, for example,

o (M,s)Epifpe L(s)and n(s,p) = true;
o (M,5) | ~pif p € LERXAL(s), X) and (M, ) I .
o (M,s) = Vapif p € LIEXA(L(s), X) and
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(M, 5) | plz/y] for all ¢ € L3554(L(s)).

We leave it to the reader to make the obvious changes to the remaining
clauses. It is worth emphasizing that our interpretation of K;p and X;¢
remains exactly as in the HR model; in particular, K;¢ holds iff agent ¢ con-
siders possible only worlds where ¢ is true, which implies that the language
at every world considered possible by ¢ is rich enough to express ¢.

If C is a (possibly empty) subset of {r,¢,e}, then N (®,X) is the set
of all extended awareness structures such that awareness satisfies agpp and
ka and the possibility correspondence is reflexive, transitive, and Euclidean
if these properties are in C'. We say that a formula ¢ is valid in a class
N of extended awareness structures if, for all extended awareness structures
M € N and worlds s such that ®(¢) C L(s), (M, s) = ¢. (This is essentially
the notion of weak validity defined in (Halpern and Régo, 2008).)

4 AXIOMATIZATION

In this section, we provide a sound and complete axiomatization of the logics
described in the previous section. It turns out to be easier to start with
the language L7254 (®, X). All the axioms and inference rules of AX*4Y
continue to be sound in extended awareness structures, except for Barcanx
and FAx. In a world s where £(s) = {p} and agent 1 is aware of p, it is
easy to see that Yz X; A;x holds. But if agent 1 considers possible a world ¢
such that L£(t) = {p,q}, it is easy to see that X;VxA;x does not hold at s.
Similarly, if in world ¢, agent 1 considers s possible, then —Vx A;x holds at t,
but X;—VxA;x does not. Thus, Barcany does not hold at s, and FA x does
not hold at t. We instead use the following variants of Barcanyx and FAx,
which are sound in this framework:

Barcan’,. (A4;(Vzp) AVa(4ix = X)) = X;(Vz Az = Vap).
FA%. Vz-A;x = X;Ve-Ax.

Barcan’, avoids the problem with Barcanx mentioned above. Essentially,
it relativizes Barcany to awareness. Thus, in the conclusion, rather than
requiring that Vzy be true in all worlds that the agent considers possible,
it requires only that Vzy be true in those worlds where the agent is aware
of all formulas. And in the antecedent, rather than requiring that the agent
(explicitly) know @[z /9] for all formulas 1, the agent is required to know
@l /1] only if the agent is aware of 1. There is an additional technical
requirement in the antecedent that the agent be aware of the formula V.
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FA% seems much more reasonable that FA x. It says that if the agent is
not aware of any formulas, then he explicitly knows this. It does not seem
implausible that an agent should know that he is not aware of anything
(Vx—A;x), although he may not know that he is not aware of all formulas
(=VzA;x). In any case, we clearly need to weaken FAy if we do not want
the formula ¢ in (1) to hold.

Let AXg( ¥ he the result of replacing FA x and Barcany in AXX4Y by
FA*% and Barcan’ (the e here stands for “extended”).

Theorem 4.1 If Cx is a (possibly empty) subset of {Tx,4x,5x} and C is
the corresponding subset of {r,t,e}, then AX?’A’VUCX s a sound and com-
plete aziomatization of the language LY (®, X) with respect to NS (0, X).

The completeness proof is similar in spirit to that of HR, with some
additional complications arising from the interaction between quantification
and the fact that different languages are associated with different worlds.
What is surprisingly difficult in this case is soundness, specifically, for MP.
For suppose that M is a structure in N, (®,X’) such that neither = nor
—(p = 1) are true at any world in M. We want to show that — is not true
at any world in M. This is easy to show if ®(¢) C ®(¢p). For if s is a world
such that ®(¢0) C L(s), it must be the case that both ¢ and ¢ = 1 are true
at s, and hence so is ¥. However, if ¢ has some primitive propositions that
are not in 1, it is a priori possible that =1 holds at a world where neither
o nor ¢ = ¢ is defined. Indeed, this can happen if @ is finite. For example,
if ® = {p,q}, then it is easy to construct a structure M € N, (®, X) where
both A;p A A;q and (A;p A A;q) = YaxA;x are never false, but Yz A;x is false
at some world in M. As we show, this cannot happen if ® is infinite. This
in turn involves proving a general substitution property: if ¢ is valid and
is a quantifier-free sentence, then [q/v] is valid. This substitution property
also fails if ® is finite. The fact that ® is infinite guarantees that we can
find a “fresh” primitive proposition, that is not mentioned in the formulas
that we are considering.” See the appendix for details.

Using different languages has a greater impact on the axioms for K; than
it does for X;. Since K; is affected by the language £(t) in the worlds ¢ that
i considers possible, and X; is affected in much the same way by the set
A;(t) of formulas that i is aware of in the worlds ¢ that ¢ considers possible,
in the new model, the properties of K; and X; are much more similar than
in our earlier work.

9There are other cases where restricting to a finite set of primitive propositions results
in extra axioms; see, for example, Fagin et al. (1992).
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For example, as we would expect, Barcan does not hold, for essentially
the same reason that Barcany does not hold. More interestingly, NKA,
5, and Geng do not hold either. For example, if =K;p is true at a world s
because p ¢ L(t) for some world ¢ that i considers possible at s, then K;—K;p
will not hold at s, even if the /C; relation is an equivalence relation. Indeed,
the properties of K in this framework become quite close to the properties of
the explicit knowledge operator X; in the original FH framework, provided
we define the appropriate variant of awareness.

Let Af(¢) be an abbreviation for the formula K;(¢ V —¢). Intuitively,
the formula A} (¢) captures the property that agent i considers possible only
worlds whose language is rich enough to describe . Note that, in general,
A¥(¢) does not imply A;(¢). It is possible for agent ¢ to consider possible
only worlds whose language can express ¢ without being aware of p. Agent
1 would then explicitly know that there is a formula that he is not aware of.

Let AGPP*, XA*, A0*, 5%, Barcan*, FA*, and Gen* be the result of
replacing X; by K; and A; by A7 in AGPP, XA, AOx, 5x, Barcan’,, FA%,
and Geny, respectively. It is easy to see that AGPP*, A0*, and Gen* are
valid in extended awareness structures; XA*, 5%, Barcan*, and FA* are not.
For example, suppose that p is defined in all worlds that agent ¢ considers
possible at s, so that AJp holds at s. If there is some world ¢ that agent
i considers possible at s and a world u that agent ¢ considers possible at ¢
where p is not defined, then A}p does not hold at ¢, so K;Ap does not hold
at s. It is easy to show that XA* holds if the /C; relation is transitive. Similar
arguments show that 5*, Barcan®, and FA* do not hold in general, but are
valid if K; is Euclidean and (in the case of Barcan® and FA*) reflexive. We
summarize these observations in the following proposition:

Proposition 4.1 (a) XA* is valid in N} (®,X).
(b) Barcan* is valid in N7>¢(®, X).
(c) FA* is valid in N¢(®, X).
(d) 5 is valid in NS(®, X).

In light of Proposition 4.1, for ease of exposition, we restrict attention
for the rest of this section to structures in N/%¢(®, X). Assuming that
the possibility relation is an equivalence relation is standard when modeling
knowledge in any case. Let AXf AAANY he the result of replacing Geng
and Barcan in AX%4Y by Gen* and Barcan*, respectively, and adding the
axioms AGPP*, A0*, and FA* for reasoning about A}. (We do not need the
axiom XA*; it follows from 4 in transitive structures.) Let AXXA"Y consist
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of the axioms in AXf XAALY oxcept for those that mention X; or A;; that

is, AXEAWY = AXEXAAWY_(AGPP, KA, NKA, A0}. Note that AXKA™Y
is the result of replacing X; by K; and A; by A} in AXX AV (except that the
analogue of XA is not needed). Finally, let AXX4" consist of the axioms
and rules in AXf A% except for the ones that mention quantification; that
is, AXf’A* = {Prop, AGPP*, K, Gen*, A0*}. We use AXf’A* to compare
our results to those of HMS.

Theorem 4.2 (o) AXEA" U{T,4,5*} is a sound and complete azioma-
tization of LEX(®) with respect to NTH¢(®).

(b) AXEAYY U IT 4,5} is a sound and complete aziomatization of the
sentences in L5 (®, X) with respect to NTHe(®, X).

(c) AXEXAASY AT 4 5%} is a sound and complete aziomatization of

the sentences in L75XA(®, X) with respect to NT¢H®, X).

Since, as we observed above, AX!4"Y is essentially the result of replacing
X; by K; and A4; by A in AXXAY, Theorem 4.2(b) makes precise the sense
in which K; acts like X; with respect to AJ.

Dekel, Lipman, and Rustichini (1998) show that, in a precise sense, it is
impossible to have an unawareness operator that satisfies certain properties
in a standard state-space model. They consider semantic unawareness and
knowledge operators, that is, functions from sets of states to sets of states.
We do have nontrivial unawareness, so it is of interest to examine the prop-
erties they consider in our setting, to understand why their result does not
apply.

They consider the following properties, where K and U denote the
knowledge and unawareness operators, respectively (recall that these are
functions from sets of states to sets of states), and S is the set of states, and
EFCS:

1. If E C F, then K(E) C K(F)

2. K
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The first property says that knowledge is monotonic; if E implies ' and
you know FE, then you should also know F'. The second property essentially
says that you know all tautologies. The third says that if you are unaware
of something, you are unaware that you are unaware of it. The fourth says
that if you are unaware of something, then you do not know it, nor do you
know that you do not know it. The last property says that you cannot know
that you are unaware of something.

When translating these properties to our framework, we represent un-
awareness as —A, the negation of awareness. With this interpretation, the
third property becomes —Ayp = = A—Ayp, which is valid if awareness is gen-
erated by primitive propositions (although not in general). The validity of
the remaining properties depends on whether we take K to represent im-
plicit or explicit knowledge. Some of the properties are valid if we interpret
K as implicit knowledge; others hold if we interpret it as explicit knowl-
edge. But there is no one interpretation that makes all the properties valid.
Property 1 (monotonicity) holds for implicit knowledge; if ¢ = 9 is valid,
so is K¢ = K1. (Note that the subset relation corresponds to syntactic
implication.) However, if ¢ = 1 is valid, X¢ = X may not be valid, since
the agent may not be aware of ¢. Similarly, the second property is valid for
implicit knowledge (K¢ is valid if ¢ is valid), but is not valid for explicit
knowledge (even if ¢ is valid, X¢ may not be, because the agent may not
be aware of ¢). On the other hand, the last two properties are not valid for
implicit knowledge, but are valid for explicit knowledge. Since there is no
interpretation of knowledge that makes all the properties valid, the Dekel,
Lipman, and Rustichini result does not apply in our setting. In a sense,
it shows that the result depends on not distinguishing implicit and explicit
knowledge.

5 THE DEFINITION OF AWARENESS

Just as in our framework, in the HMS and MR approach, a propositional
language is associated with each world. However, HMS and MR define
awareness of ¢ as an abbreviation of K;p V K;=K;p. In order to compare
our approach to that of HMS and MR, we first compare the definitions of
awareness. Let ALy be an abbreviation for the formula K;p V K;,—K;p.
Recall that Af(p) is an abbreviation for the formula K;(p V —p). Ay is
syntactically quite different from A’p, and seems to be capturing different

7
intuitions. Nevertheless, as the following result shows, in extended awareness
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structures that are Euclidean, Af¢p is equivalent to Alep.

Proposition 5.1 If M = (S,L,m,Ky1,....Ky, A1,..., Ay) is a Euclidean
extended awareness structure, then for all s € S and all sentences ¢ €
EV,K,X,A((I) X) 10
n 9 )
(M, s) = Ajp & Ajp.

Proof: Suppose that (M, s) = K;(¢V —¢) A =K;p. It follows that ®(¢) C
L(s), ®(¢) C L(t) for all t such that (s,t) € K;, and that there exists a
world ¢ such that (s,t) € K; and (M, t) = —p. Let u be an arbitrary world
such that (s,u) € K;. Since K; is Euclidean, it follows that (u,t) € ;.
Thus, (M, u) = —K;p, so (M,s) E K;—~K;p. It follows that (M, s) = Ale,
as desired.

For the converse, suppose that (M,s) = Alp. If either (M,s) = Kip
or (M,s) = K;—K;p, then ®(¢) C L(s), and if (s,t) € K;, we have that
O (p) C L(t). Therefore, (M,s) = Afp. I

The assumption in Proposition 5.1 that the relation is Euclidean is nec-
essary for Afp and ALy to coincide. To see this, consider an extended aware-
ness structure with three states s, ¢, and w such that IC; = {(s,t),(s,u)},
p € L(s)NL(t)NL(u) and (M,t) = —p. Thus, (M,u) = K;p and (M, s) =
Ki(pV —p) AN =K;p AN —K;—~K;p, that is, (M, s) E Afp A ~Alp.

In (Halpern and Régo, 2008), we showed that AX®4" U {T, 4,5} pro-
vides a sound and complete axiomatization of the structures used by HMS
where the possibility relations are Euclidean, transitive, and reflexive, with
one difference: A} is used for awareness instead of A. However, by Propo-
sition 5.1, in N¢, Af and A} are equivalent. Thus, for the class of structures
of most interest, we are able to get all the properties of the HMS approach;
moreover, we can accommodate reasoning about knowledge of unawareness.
It is not clear how to capture knowledge of unawareness directly in the HMS
approach.

It remains to consider the relationship between A; and Af. Let Aj(s)
be the set of sentences that can be expressed in the language at all the
worlds considered possible by agent i in world s; that is, ¢ € Af(s) iff
(M,s) = Afp. Assuming that agents know what they are aware of, we have
that if (s,t) € KC;, then A;(s) = A;(t). Thus, it follows that A;(s) C Af(s).

"Dekel, Lipman, and Rustichini (1998) defined a property called weak necessitation.
This property states that whenever an agent is aware of a formula, then he must know
any tautology involving that formula. Proposition 5.1 implies that, for HMS and MR’s
definition of awareness, weak necessitation is valid in extended awareness structures. It
is not hard to check that weak necessitation is also valid using our syntactic definition of
awareness.
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For if ¢ € A;(s), then ®(p) C L(t) for all ¢ such that (s,t) € K;, so
(M, s) £ Az(p).

As discussed in Section 4, the opposite inclusion does not hold in general.
But we can get it by assuming the following natural connection between an
agent’s awareness function and the language in the worlds that he considers
possible:

o LA:If pe L(s)—Ai(s), then p ¢ L(t) for some ¢ such that (s,t) € ;.

LA essentially says that if an agent is unaware of p, then he should not
implicitly know that he is unaware of p.!' Thus, he should not use the same
label (i.e., p) in all worlds for a proposition that he is unaware of. Put
another way, if the agent is unaware of p, he should consider it possible that
p does not exist at all. We find this condition quite natural. While we do
not require it in general, it is just what is needed to get the equivalence of A;
and A’. More precisely, it is immediate that in models that satisfy LA (and
agpp), Ai(s) 2 Af(s) for all agents ¢ and worlds s. Thus, under minimal
assumptions, A7 (s) = A;(s). Moreover, under assumption LA (and agpp),
K;p and X;p are equivalent.

Proposition 5.2 If M is an extended awareness structure satisfying LA
and agpp, then

(a) (M,s) = Aip < Alp and

(b) (M,s) = Kip < Xip.

Proof: For part (a), clearly (M,s) = A;p iff p € A;(s), and (M, s) =
Arp iff ¢ € Af(s). Since it follows from LA and agpp that A;(s) = Af(s),
part (a) follows.

For part (b), it is immediate that (M, s) = X;¢ implies (M, s) = K;p.
Now, consider that (M,s) = K;p. Thus, for every p in ¢ and ¢ such that
(s,t) € K;, we have p € L(t), for otherwise, ¢ would not be true at ¢. Since
(M, s) = K;p, it follows that for every p in ¢ we have p € L(s). Therefore,
LA implies that for every p in ¢, p € A;(s). By agpp, we get (M, s) = A;p
as desired. 1

The bottom line here is that under the standard assumptions in the
economics literature, together with the minimal assumption LA, all the
notions of awareness coincide. We do not need to consider a syntactic notion

" Condition LA further restricts to formulas p that are in £(s). This weaker condition
suffices to prove our results.
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of awareness at all. However, as pointed out by FH, there are other notions of
awareness that may be relevant; in particular, a more computational notion
of awareness is of interest. For such a notion, an axiom such as AGPP
does not seem appropriate. We leave the problem of finding axioms that
characterize a more computational notion of awareness in this framework to
future work.

Part (a) of the following proposition relates the HMS and MR definition
of awareness, that is, the operator that we have called A}, to A; and X;.
Specifically, it shows that X;¢VX;—X;¢ is equivalent to A;pAAp; moreover,
in Euclidean structures, X;oV X;—X;¢ is equivalent to A;p. Part (b) shows
that, analogously, X;(pV —¢) is equivalent to A;p. Combining both results,
we get that X;(¢V—y) is equivalent to X,V X;—=X;p in Euclidean structures.

Proposition 5.3 Let M be an extended awareness structure satisfying agpp
and ka.

(a) (M,s) | XipVXi=Xip iff (M, s) = AipAN(KipV K~ Kip). Moreover,
if M is Euclidean, then (M,s) = X;poV X=X iff (M, s) = Aip.

(b) (M,s) = Xi(pV o) iff (M,s) = Aip.

6 DISCUSSION

We have introduced a semantic model where we have both lack of awareness
and different languages at each world. By allowing different languages at
each world, we can capture natural states of knowledge of lack of awareness
that cannot be captured using earlier frameworks. Moreover, it allows us
to unify various approaches to unawareness. But doing this requires us to
examine more carefully the connection between awareness and language.
Recall that we think of propositions p € L(t) — A;(s) as just being labels
for concepts that the agent is unaware of, but understands might be “out
there” and relevant. For example, in the oncology example described in the
introduction, the agent might be unaware of various cancer treatments. It
is important that we allow there to be more than one primitive proposi-
tion in £(s) — A;(s). A world where an agent is unaware of two primitive
propositions is different from a world where an agent is unaware of only one
primitive proposition. For example, to express the fact that, in world s, i is
unaware of two cancer treatments, we could have two primitive propositions

in L£(s) — A;(s).
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The propositions in £(s) — A;(s) take on added significance if there are
several agents in the picture. For example, if agent 1 considers it possible
that (1) there is a formula that he is unaware that agent 2 is aware of and
(2) there is a formula that both he and agent 2 are unaware of that agent
3 is aware of, agent 1 needs to consider possible a world ¢ with at least two
primitive propositions in £(¢)—.A;(s). Needless to say, reasoning about such
lack of awareness might be critical in a decision-theoretic context. Although
it is unlikely that the agent would know that there are exactly three primitive
propositions that he is unaware of, he might well consider it possible that
there are between three and ten relevant concepts that he is unaware of.
These examples suggest that the line between awareness and unawareness
is not so sharp. Facts regarding unawareness may still impact an agent’s
decisions. We return to this issue below.

The fact that the primitive propositions that an agent is not aware of are
simply labels means that switching the labels does not affect what the agent

knows or believes. More precisely, given a model M = (S, L, Kq,..., Ky, Ag, ...

let M’ be identical to M except that the roles of the primitive propositions p

,An,ﬂ'),

and p’ are interchanged. More formally, M’ = (S, L', Ky,..., Ky, A}, ..., AL, 7'),

where, for all worlds s € S, we have
o L(s)—{p.p'} = L'(s) = {p.p'};
e pe L/(s)iff p' € L(s), and p’ € L/(s) iff p € L(s);
o m(s,q) = (s,q) for all g € L(s) — {p,p'};

e if p € L(s), then 7(s,p) = «/(s,p’), and if p’ € L(s), then «(s,p’) =
(s, p);

e if ¢ is a formula that mentions neither p nor p/, then ¢ € A;(s) iff
p € Aj(s);

e for any formula ¢ that mentions either p or p/, p € A;(s) iff p[p +
p'] € Al(s), where ¢[p <> p'] is the result of replacing all occurrences
of p in ¢ by p’ and all occurrences of p’ by p.

It is easy to see that for all worlds s, (M, s) = ¢ iff (M',s) E ¢[p + p]. In
particular, this means that if neither p nor p’ is in £(s), then for all formulas,
(M,s) E ¢ iff (M',s) = ¢. Thus, switching labels of propositions that are
not in £(s) has no impact on what is true at s.

We remark that the use of labels here is similar in spirit to our use of
virtual moves in (Halpern and Régo, 2013) to model moves that a player is
aware that he is unaware of.
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Note that we allow agents to have some partial information about for-
mulas that they are unaware of. We certainly want to allow agent 1 to know
that there is a formula that agent 2 is aware of that he (agent 1) is unaware
of; indeed, capturing a situation like this was one of our primary motivations
for introducing knowledge of lack of awareness. But we also want to allow
agent 1 to know that agent 2 is not only aware of the formula, but knows that
it is true; that is, we want X (3z(—-A;(xz) A X2(z))) to be consistent (and, in
fact, this formula is consistent in the model presented in this paper). There
may come a point when an agent has so much partial information about a
formula he is unaware of that, although he cannot talk about it explicitly
in his language, he can describe it sufficiently well to communicate about it.
When this happens in natural language, people will come up with a name
for a concept and add it to their language. Again, this emphasizes the point
that the line between awareness and lack of awareness is not so sharp. We
have not addressed the dynamics of language change here, but we believe
that this is a topic that deserves further research.

Like standard decision theory, where an agent’s choice does not change if
we relabel the events and acts, in our model, switching labels of propositions
that are not in £(s) has no impact on what is true at s. However, changing
the truth value of a primitive proposition that an agent is not aware at
s may have some impact on what the agent explicitly knows at s. For
example, consider a model M such that ® = {q}, S = {s,t}, 7(s,q) = true,
7(t,q) = false, ¢ ¢ A1(s) = A1(t), and K1 = {(s,9), (s,1),(t,s), (t,t)}. In
this model, we have that ¢ = X;(3z(—-A12 A ~Kjz A —K;—x)) is true at s,
since A1q A = K1q N = K71—q holds at both worlds s and ¢t. However, if we
were to change the truth value of ¢ from false to true in ¢, then ¢ would no
longer be true at s; this change would make the worlds s and ¢ identical,
so the same formulas would be true at both. We can get a similar result
without using the K operator by adding another agent to the model, taking
Ko = Ky, setting As(s) = Az(t) = {q}, and replacing K; by Xs.

More generally, it seems natural to consider the impact of awareness on
decision making. First steps in this direction were taken by Schipper (2010).
He worked in the awareness structures introduced by Heifetz, Meier, and
Schipper (2006; 2008), and thus did not deal with awareness of unawareness.
While an agent cannot make decisions based on facts that he is unaware of,
it is clear that awareness of unawareness can have a significant impact in
decision making. In terms of our earlier discussion, we are saying that the
different levels of unawareness can have an impact on decision making. We
leave the problem of finding an appropriate decision model and clarifying
the impact to future work.
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A PROOFS

We first prove Theorem 4.1. As we said in the main text, proving soundness
turns out to be nontrivial, so we begin by showing that MP, Barcan’;, and
Geny are sound. (Soundness of the remaining axioms is straightforward.)
For MP, we need some preliminary lemmas.

Lemma A.1 If ¢ is a sentence in LI5XA(®, X)) that does not mention q
and is satisfiable in N, (®, X), then it is satisfiable in an extended awareness
structure M = (S, L(s), 7, K1,...,Kn, A1,..., An) € Nup(P,X) such that
q & L(s) for every s € S.

Proof: Let 7 : ® — ® be a 1-1 function. For a sentence 1, let 7()) be
the result of replacing every primitive proposition ¢ in ¢ by 7(¢). Given
an extended awareness structure M’ = (S, L(s), 7, K1,..., Kn, A1, ..., Ap),
let M7™ = (S,L7(s),n",K1,...,Kn, A7,..., A7) be the extended awareness
structure that results from “translating” M by 7; formally: £7(s) = {7(p) :
p € L(s)}, 77(s,7(p)) = w(s,p), and Al(s) = {7(¢)) : ¥ € Ai(s)}. We
now prove that (M, s) =4 iff (M7, s) = 7(¢) by induction in the structure
of . All the cases are straightforward and left to the reader except the
case 1 has the form Vzt¢/. In this case, we have that (M,s) | v iff
(M,s) = ¢'[z/B] for all B € LEXA(L(s)). By the induction hypothesis,
(M, s) = '[x/B] for all B € LEXA(L(s)) iff (MT,s) | 7(¢/[x/8]) for all
B € LEXA(L(s)). Since T(¢'[x/B]) = 7(¢')][x/7(B)] and, by construction
of L7, for all v € LEXA(L7(s)) there exists B € LEX4(L(s)) such that
v = 7(B), it follows that (M7, s) = 7(¢'[x/p]) for all § € LEXA(L(s)) iff
(M7,s) = 7(¢)[z/q] for all v € LEXA(L7(s)). The latter statement is
true iff (M7, s) = 7(¢).

To complete the proof of the lemma, suppose that ¢ is a sentence that
does not mention ¢ and that (M,s) = ¢. Let 7 be a 1-1 function such
that 7(p) = p for every p that occurs in ¢ and such that there exists no
r € ® such that 7(r) = ¢q. (Here we are using the fact that ® is an infinite
set.) Note that ¢ = 7(¢). Thus, the claim implies that (M’, s) E ¢ and by
construction ¢ ¢ L'(s) for every s € S. I

Substitution is a standard property of most propositional logics. It says
that if ¢ is valid, then so is ¢[g/v]. Substitution in full generality is not
valid in our framework, because of the semantics of quantification. For
example, although Vz—A;x = —A;q is valid, Ve—A;z = —A;(VxA;z) is
not. As we now show, if we restrict to quantifier-free substitutions, we
preserve validity. But this result depends on the fact that ® is infinite.
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For example, if & = {p,q}, then ¢ = A;p A A;q = VxA;x is valid, but
vlg/p] = Aip N Ajp = VYxA;x is not valid. We first prove that a slightly
weaker version of Substitution holds (in which ¢ cannot appear in ), and
then prove Substitution.

Proposition A.1 (Weak Substitution) If ¢ is a sentence valid in N, (®, X),
q s a primitive proposition, and 1 is an arbitrary quantifier-free sentence
that does not mention q, then p[q/] is valid in Np(®, X).

Proof: Suppose, by way of contradiction, that ¢[g/t] is not valid. Then
—plq/] is satisfiable. By Lemma A.1, there exists an extended awareness
structure M = (S, L(s), 7, K1,...,Kn, A1,...,Ay) and a world s* € S such
that (M, s*) = —¢[q/v] and ¢ ¢ L(s) for every s € S. Let M’ extends M
by defining ¢ as t; more precisely, M’ = (S, L', 7", K1,..., Kn, Al,..., AL),
where

o L'(s) = L(s)U{q}if ¥ € LIEXA(L(s)), and L'(s) = L(s) otherwise;

e 7'(s,p) = 7w(s,p) for every p € L(s) and if ¢ € L'(s), then 7'(s,q) =
true iff (M, s) = v;

o Al(s)=A;(s) if ¢ ¢ Ai(s), and Al(s) is the smallest set generated by
primitive propositions that includes A;(s) U {q} otherwise.

Intuitively, we are just extending M by defining ¢ so that it agrees with
everywhere. We claim that for every sentence o, if 1) € LXXA(L(s)), then
the following are equivalent:

(a) (M',5) o
(b) (M’,s) |= ola/y]
(c) (M, s) = alg/¢].

We first observe that if ¢’ is a quantifier-free sentence that does not mention
q, then for all worlds s € S, we have that (M,s) = o iff (M’,s) =o’. (The
formal proof is by a straightforward induction on ¢’.)

We now prove the claim by induction in the structure of . For the
base case, note that if ¢ is the primitive proposition ¢, then the equiva-
lence between (b) and (c) follows from the observation above. All cases are
straightforward except the case where o has the form Vxo’. To see that
(a) implies (b), suppose that (M’,s) = Vaeo'. Then (M’,s) = o’[z/3] for all
B € LEXA(L(s)). By the induction hypothesis, (M’,s) = (o'[z/8])[q/].
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Note that o'[z/Bllg/0] = ((o'[a/¢])[x/B])la/¥]. Thus, applying the in-
duction hypothesis again, it follows that (M’,s) & (o'[q/v])[z/B] for all

B e LEXA(L(s)). Therefore, (M',s) |= Vxo'[q/1]. This shows that (a)
implies (b).

To see that (b) implies (c), suppose that (M’,s) | Vao'[q/1]. Thus,
(M, 5) |= (o'lq/v])[x/B] for all B € LIFSAL (s)). Since LOA(L(s)) C
LEXA(L(s)), by the induction hypothesis, it follows that (M, s) = (o' [q/v])[z/f]
for all B € LEXA(L(s)). Thus, (M,s) = Voo'[q/].

Finally, to see that (c) implies (a), suppose that (M,s) = Vzo'[q/1].
We want to show that (M',s) = Vao', or equivalently, that (M’',s) =
o'lx/B] for all B € LEXA(L(s). Choose B € LEXA(L(s). So choose
B € LEXA(L(s"). By the induction hypothesis, (M’,s) = o'[z/f] iff
(M, ) b= (o/[/ B)la /] fE (M, 5) = (o'l ) a/e]. Since (o/[z/B])la/v] =
o'la/)(x/Blafo]), and (M, s) = o'lq/o)(w/Bla/o]) since (M, s) |= Vao'lg/o],
by assumption, the desired result follows.

Since, by assumption, (M, s*) = —p[q/1], it follows from the claim above
that (M’', s*) = =, a contradiction. I

Corollary A.1 (Substitution) If ¢ is a sentence valid in Ny, (®,X), q is
a primitive proposition, and 1 is an arbitrary quantifier-free sentence, then

elg/v] is valid in Ny (P, X).

Proof: Choose a primitive proposition r that does not appear in ¢ or ¢. By
Weak Substitution (Proposition A.1), ¢’ = ¢[q/r] is valid. Applying Weak
Substitution again, ¢'[r/v] = ¢[q/1] is valid. I

We are finally ready to prove the soundness of MP.

Corollary A.2 If ¢ = ¢ and ¢ are both valid in an awareness structure
M, then so is p.

Proof: Suppose, by way of contradiction, then ¢ = 1 and ¢ are valid in M,
and, for some world s in M, we have that (M, s) = —p. It must be the case
that ¢ ¢ LIEXA(L(s), X), while p € LIEXNA(L(s), X). Let qu,...,q be
the primitive propositions that are mentioned in ¢ but are not in £(s). Note
that none of ¢, ..., g, can appear in ¢. Since, by assumption, £(s) is non-
empty, let p € L(s), and let ' = ¢¥[q1/p, ..., qr/p]. By Weak Substitution,
Y and ¢ = ¢ are valid. But ¢/ and ¢ are in L75%4(L(s), X). Thus, we
must have (M, s) =" and (M, s) = ¢ = ¢, s0 (M, s) = ¢, a contradiction.
|

The following two results prove the soundness of Geny and Barcan’.
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Proposition A.2 (Geny) If ¢ is a valid sentence in Ny, (®, X) and q is an
arbitrary primitive proposition, then Vxp|q/x] is valid in Ny, (®, X).

Proof: Suppose not. Then there exists an extended awareness structure
in M € Np(®,X) and a world s such that (M,s) = —Vazp[g/x]. Thus,
there exists a formula ¢ € LEXXA(L(s)) such that (M, s) = —(¢lq/x])[z/].
Thus, ¢[q/v] is not valid. By Substitution, it follows that ¢ is not valid
either, a contradiction. il

Proposition A.3 (Barcan¥) (4;(Vzo)A\Vz(Aix = X)) = X;(VeAiz =
V) is valid in Ny (P, X).

Proof: Suppose that (M,s) = (4;(Vze) AV (A;x = X;p)). Since aware-
ness is generated by primitive propositions, (M,s) = Ai(VzAixz = Vzp).
Suppose, by way of contradiction, that (M, s) = =X;(VxA;x = Vzp). Then
there must exist some world ¢ such that (s,t) € K; and (M, t) = (Ve Az =
Vxyp). Thus, (M,t) = VxA;xz and (M,t) E —Vzp. Since (M,t) = —Vap,
it follows that there exists v € L£:XA4(L(t)) such that (M,t) = —p[z/1)].
Since (M,t) | Vo A;x, we must have (M,t) E A;v. Since A;(s) = A;(t),
we also have (M, s) = A;i. Since (M, s) = Va(A;x = X;p), it follows that
(M, s) E Xiplz/1]. Thus, (M,t) = ¢[x/1], a contradiction. B

With these results in hand, we can now prove Theorem 4.1. We repeat
the theorem here for the convenience of the reader.
Theorem 4.1: If Cx is a (possibly empty) subset of {Tx,4x,5x} and
C is the corresponding subset of {r,t,e}, then AXXAY U Cy is a sound
and complete aziomatization of the language L34(®, X) with respect to

NE(®, X).

Proof: Corollary A.2 and Propositions A.2 and A.3 show the soundness
of MP, Geny, and Barcan’, respectively. The proof of soundness for the
other axioms and rules is standard and left to the reader. The soundness of
AXXAY Yy follows easily.

We now consider completeness. As we said in the main text, the proof is
quite similar in spirit to that of Theorem 2.1 given in HR. We focus here on
the differences. We give the remainder of the proof only for the case Cx = 0);
the other cases follow using standard techniques (see, for example, (Fagin
et al., 1995; Hughes and Cresswell, 1996)).

As usual, the idea of the completeness proof is to construct a canonical
model M€ where the worlds are maximal consistent sets of sentences. It
is then shown that if sy is the world corresponding to the maximal con-
sistent set V', then (M€ sy) E ¢ iff ¢ € V. As observed in HR, this will
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not quite work in the presence of quantification, since there may be a max-
imal consistent set V' of sentences such that —Vze € V, but p[z/v] for all
Y € LEXA(®). That is, there is no witness to the falsity of Vay in V.
This problem was dealt with in HR by restricting to maximal consistent
sets V' that are acceptable in the sense that if —=Vxp € V, then —plx/q] € V
for infinitely many primitive propositions ¢ € ®. (Note that this notion of
acceptability also requires ® to be infinite.) Because here we have possibly
different languages associated different worlds, we need to consider accept-
ability and maximality with respect to a language.

Definition A.1 A set ' is acceptable with respect to L C & if ¢ €
LYXAL X)) and T & @[x/q] for all but finitely many primitive propositions
g€ L, then I'-Vzp. 1

Definition A.2 [f AX is an aziom system, a set I is maximal AX-consistent
set of sentences with respect to L C ® if I' is a set of sentences contained
in LIA(L, X) and, for all sentences ¢ € LYA(L, X), if T U{p} is AX-
consistent, then ¢ € I'. 11

The following four lemmas are essentially Lemmas A.4, A.5, A.6, and
A.7 in HR. Since the proofs are essentially identical, we do not repeat them
here.

Lemma A.2 If " is a finite set of sentences, then I' is acceptable with
respect to every subset L C ® that contains infinitely many primitive propo-
sitions.

Lemma A.3 If I' is acceptable with respect to L and T is a sentence in
LYXAL, X)), then T U{r} is acceptable with respect to L.

Lemma A.4 IfT' C L3XA(L, X) is an acceptable AXXA-consistent set
of sentences with respect to L, then I' can be extended to a set of sentences
that is acceptable and mazximal AX?’A’v—consistent with respect to L.

Let I'/X; = {¢: X;p €T}
Lemma A.5 IfT is a a set of sentences that is mazimal AXf’A’v—consistent
with respect to L containing ~X;p and Asp, then T/ X; U {~¢} is AXXAY.
consistent.
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Lemma A.14 in HR shows that if I' is an acceptable maximal consistent
set that contains A;¢ and =X, then I'/X; U {—¢} can be extended to an
acceptable maximal consistent set A. (Lemma A.8 in HR proves a similar
result for the K; operator.) The following lemma proves an analogous result,
but here we must work harder to take the language into account. That is,
we have to define the language L’ with respect to which A is maximal and
acceptable. As usual, we say that L is co-infinite if & — L is infinite.
Lemma A.6 If T is an acceptable maximal AX?’A’V-consz’stent set of sen-
tences with respect to L, where L is infinite and co-infinite, - X;p € I, and
Ajp € T, then there exist an infinite and co-infinite set L' C ® and a set
A of sentences that is acceptable, mazximal AX?’A’V—consistent with respect
to L' and contains T'/X; U {—~¢}. Moreover, Aj}p € A iff App € T for all
formulas 1.

Proof: By Lemma A.5, T'/X; U {~¢} is AXX4"_consistent. We define
a subset L' C ® and construct a set A of sentences that is acceptable
and maximal AXX4"-consistent with respect to L’ such that A contains
I/X; U{=p} and A;p € A iff A;p €T for all formulas .

We consider two cases: (1) I'/X; U{—¢} F VzA;z; and (2) I'/ X;U{—p} I/
VaA;x.

If T/X; U{=¢} F VzA;z, then define L' = {q : A;q € T'}. Note that
since I' + A;¢, it follows that every primitive proposition ¢ in ¢ must be
in L', as is every primitive proposition in a formula in I'/X;. L' must be
infinite, for if it were finite, then we would have that I' = A;q for only finitely
many primitive propositions in L. Since I' is a maximal AX? AV_consistent
set, it must be the case that I' F —A;q for all but finitely many primitive
propositions ¢ € L. Since I' is acceptable with respect to L, I' - Vz—A;x.
Thus, axiom FA% implies that Vz—A;xz € I'/X;, which is a contradiction,
since by assumption I'/ X; U{=¢} F VzA;z. Thus, L’ must be infinite. Since
L' is a subset of L, it is clearly co-infinite, since L is.

We prove that I'/ X; U {—p} is acceptable with respect to L’ in this case.
Suppose that 1 € L7XA(L/, &) and

I'/X; U{~p}F ¢[x/q] for all but finitely many ¢ € L'. (2)

We want to show that I'/X; U {-¢} F V¢, It follows from (2) that
I'/X; F —p = 9[x/q] for all but finitely many ¢ € L’. Since every prim-
itive proposition in ¢ is in L' = {q : A;q € T}, and A;p € T, it easily
follows that I' b X;(—¢ = ¢[z/q]) for all but finitely many ¢ € L’. Since
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L' ={q: Ajq € T'}, it follows that I' - A;,q = X;(—¢ = [z/q]) for all but
finitely many ¢ € L. Since I' is acceptable with respect to L, we have that

' Ve(Ax = Xi(—e = ¢)). (3)

Again using the fact that I' = A;q for all ¢ in ¥ and I' F A;¢, from AGPP
we have that
I'F AVz(—p = ). (4)

From Barcan’;, (3), and (4), it follows that I' = X;(Vz A;x = V(- = v)).
Thus, I'/X; F Ve Ajx = Vo (-p = ). Since I'/X;U{—p} F Yz A;z, it follows
that I'/ X;U{—p} I Va(—¢ = 1). Since ¢ is a sentence, applying Ky and Ny,
it easily follows that I'/ X; U {—¢} F =¢ = Vaep. Thus, I'/X; U {—¢} F Vi,
as desired.

Therefore, T'/X; U {—p} is a set of sentences that is acceptable with
respect to L' and AXf’A’v—consistent. Thus, by Lemma A.4, there exists a
set of sentences A containing I'/X; U {—p} that is acceptable and maximal
AXf’A’v—consistent with respect to L’. Finally, we prove that A;y € T iff
A;p € A. First, suppose that A;3p € I'. Then, XA implies that X;A;¢p € T
Thus, A;¢ € T'/X; C A. For the converse, suppose that A;7» € A. Since
Y e LYXNA(L, X)), it must be the case that T' = A;q for every primitive
proposition ¢ that appears in ; thus I' = A;.

If T/X; U{~¢} I/ VeA;z, define L' = {q : Aig € T} UL", where L”
is an infinite and co-infinite set of primitive propositions not occurring in
I' U{¢} (which exists, since, by assumption, ® — L is infinite). It can be
casily seen that L' is infinite and co-infinite. Since I'/X; U {=¢} is AXAY.
consistent, I'/X; U {—¢} V/ VzA;x implies that I'/X; U {—p,VzA;x} is
AXXAY_consistent.

To see that I'/X; U {—p} is acceptable with respect to L', suppose that
Y € LYNAL,X) and T/X; U {=¢} F 9[z/q] for all but finitely many
q € L'. There must be some ¢ € L' not mentioned in I'/X; or ¢ such that
I'/X; U{—¢} F ¢[z/q]. Since I'/X; U {—¢} F ¥[z/q], it follows that there
exists a subset {£1 ..., 8} € T'/X;U{=¢} such that AXXAY - 8 = w[x/q],
where = 1 A--+ A B,. Since g does not occur in S or ¢, by Geny, we have
AXXAY - va(B = 4). Since § is a sentence, applying Ky and Ny, it easily
follows that AXXAY - 3 = Vaep, which implies that T'/X; U {—@} F Vaip,
as desired. Finally, since I'/X; U {—p} is acceptable with respect to L/,
Lemma A.3 implies that I'/X; U {—p, -Vz A;x} is acceptable with respect to
L.

Let 11,5, ... be an enumeration of the set of sentences in L’X’X’A(L’ ,X)
such that if ¢y is of the form —Vzp, then there must exist a j < k such
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that 1); is of the form Ve and if 44, is a formula that contains a primitive
proposition ¢ € L”, then there must exist a j < k such that 1; is of the form
—A;q. The construction continues exactly as in the proof of Lemma A.4,
where we take Ay = I'/X; U {—p, =VzA;z}. Note that by construction, if
Yj = —A;q for some ¢ € L”, then g does not occur in A} ;. We claim
that A, _; U {-A;q} is AXXAY_consistent. For suppose otherwise. Then,
as above, there exists a subset {f1,...,0,} C A;_l such that AXXAY -
B = VxA;z Since {f1, ..., By, "VrAx} C A;-fl, it follows that A;fl is not
AXXAY_consistent, a contradiction.

Therefore, A is a set of sentences that is acceptable and maximal A
consistent with respect to L' and includes I'/ X;U—@U{—A;q: ¢ € L"}. The
proof that A;3p € T implies A;7p € A is identical to the first case. For the
converse, suppose that A;4 € A. Then, by AGPP, A;q € A for all primitive
propositions ¢ that appear in . The construction of A guarantees that, for
all primitive propositions in L', we have A;q € A iff A;q € T'. Since T is
maximal XY-consistent with respect to L, AGPP implies that Az € T. I

X,AY
XZ -

Lemma A.7 If ¢ is a AXf’A’v—consistent sentence, then ¢ is satisfiable in
Nogopkad( o x).,

Proof: As usual, we construct a canonical model where the worlds are
maximal consistent sets of formulas. However, now the worlds must also
explicitly include the language. For technical reasons, we also assume that
the language is infinite and co-infinite.

Let M¢ = (S,L,Kq,....Kpn, A1, ..., Ay, m) be a canonical extended aware-
ness structure constructed as follows

e S={(sy,L):V is aset of sentences that is acceptable and maximal
AX?’A’V—consistent with respect to L, where L C ¢ is infinite and
co-infinite};

o L((sv,L)) = L;

) true ifpeV,
m((sv, L),p) = { false if pe (L—V);

Ai((sv, L)) ={p: Aip e VL5
Ki((sy,L)) ={(sw, L") : V/X; CW and A;p € W iff A;p € V for all formulas ¢}.
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We show that if 1) € £7*4(L, X) is a sentence, then

(M¢, (sv, L)) o iff peV. (5)

Note that this claim suffices to prove Lemma A.7 since, for all L C &
that is infinite and co-infinite, if ¢ € LI04(L, X) is a AXZ-consistent
sentence, by Lemmas A.2 and A .4, it is contained in a set of sentences that
is acceptable and maximal AXf’A’v—consistent with respect to L.

We prove (5) by induction of the depth of nesting of V¥, with a subinduc-
tion on the length of the sentence. The details are standard and left to the
reader. For the case of X;p, we need Lemma A.6.

If ¢ is consistent, by Lemmas A.2 and A.4, then ¢ there is a set L C &
that is infinite and co-infinite and contains ®(p) and a set V' of sentences
that is acceptable and maximal AXf’A’v—consistent with respect to L such
that ¢ € V. By the argument above, (M, (sy,L)) = ¢, showing that ¢ is
satisfiable, as desired. 1

To finish the completeness proof, suppose that ¢ is valid in N,%9PP o (@ x).
Since ¢ is a sentence, it follows that —¢ is a sentence and is not satisfiable in
Nogrpkad(® x). So, by Lemma A.7, =g is not AXX4"_consistent. Thus,
¢ is provable in AXXAY, g

Proposition 4.1:
(a) XA* is valid in N} (®,X).
(b) Barcan® is valid in N}>¢(®, X).
(¢) FA* is valid in N¢(®, X).
(d) 5 is valid in NS(®, X).

Proof: For part (a), suppose that (M,s) E Afp, where M € N (®,X).
Thus, (M,s) | Ki(p V —p). Since the axiom 4 is valid in structures in
NE(®, X), it follows that (M, s) = K;K;(¢V —), that is, (M, s) & K;Afp.

For part (b), suppose that (M, s) = Af(Vep) AVa(Afx = K;p), where
M € N>¢(®,X). It easily follows that (M,s) = Af(VxAlz = Vzp). Sup-
pose, by way of contradiction, that (M,s) = —~K;(VxAjz = Vay). Then
there must exist some world ¢ such that (s,t) € IC; and (M, t) = (Ve Afz =
Vxp). Thus, (M,t) = VeAlz and (M,t) = —Vap. Since (M,t) = —Vap, it
follows that there exists ¢ € LEX5XA(L(t)) such that (M,t) = —plz/v].
Since (M,t) = VxAfz, we must have (M,t) = Afp. Thus, for every
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world u such that (t,u) € K;, it follows that o € LEXA(L(u)). Sup-
pose that (s,v) € K;. Since K; is Euclidean and (s,t) € K;, it follows
that (t,v) € K; and, by the observation above, that ¢ € LEXA(L(v)).
Since K; is reflexive and Euclidean, it follows that (¢,s) € K;, so the ar-
gument above also shows that ¢ € L£KXA(L(s)). Thus, (M,s) = Af.
Since (M, s) | Vz(Afx = K;p), it follows that (M, s) = K;plx/vy]. Thus,
(M, t) E p[z/1], a contradiction.

Finally, for part (c), suppose that (M, s) = Vz—Afx, where M € N¢(®, X).
Thus, for every primitive proposition p € L(s), there exists some ¢, such that
(s,tp) € K;and p ¢ L(t,). Let u be an arbitrary world such that (s,u) € K;.
Let ¢ be an arbitrary quantifier-free sentence in L£3FXA(L(u),X). If
®(p) N L(s) # 0, suppose that p € ®(p) N L(s). By assumption, p ¢
L(t,). Since K; is Euclidean, (u,t,) € K;. Thus, (M,u) = —Afp. If
P(p) N L(s) = 0, note that since K; is reflexive and Euclidean, the fact that
(s,s) and (s,u) are in K; implies that (u,s) € K;. Hence, we again have
that (M,u) E —Afp.

The proof of part (d) is standard, and left to the reader. I

Theorem 4.2:

(a) AXEA U{T,4,5%} is a sound and complete aziomatization of LX(®)
with respect to N"b¢(®).

(b) AXEAYY U IT 4,5} is a sound and complete aziomatization of the
sentences in L35 (®, X) with respect to NTHe(®, X).

(c) AXEXAANY IT 4 5%} is a sound and complete aziomatization of
the sentences in L5540, X) with respect to N»0e(0, X).

Proof: The proof of part (c) is identical to the proof of Theorem 4.1, except
that X; and A; are replaced by K; and A}, respectively, and in Lemma A.7,
another step is needed in the induction to deal with X; that uses the extra
axiom AO in the standard way.

For part (b), note that since X; and A; are not part of the language the
axioms of AXXXAA"Y that mention these operators are not needed in the
induction of Lemma A.7. Therefore, the proof is the same.

The proof of part (a) is similar to that of Theorem 4.1, except that the
following lemma is used instead of Lemma A.7.

Lemma A.8 If ¢ is a AXEA" U {T, 4,5 }-consistent sentence in LK (®),
then ¢ is satisfiable in N"W¢(®).
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Proof: Let M¢ = (S,L,Ky,...,Ky, A1, ..., Ay, 7) be a canonical extended
awareness structure constructed as follows

e S = {(sy,L) : V is a set of sentences in £LX(L) that is maximal
AXEA" U (T, 4, 5% }-consistent with respect to L and L C ®};

o L((sv,L)) = L;

) true ifpeV,
o m((sv,L)p) _{ false if pe (L—V);

o A;((sv,L)) is arbitrary;
o KCi((sv,L)) ={(sw,L):V/K; CW}.

It is easy to see that M€ € N4¢(®). As usual, to prove Lemma A.8, we
now show that for every ¢ € LE(L),

(M®, (sv, L)) = iff Y eV (6)

We prove (6) by induction on the length of the formula. All the cases
are standard, except for the case that v = K;v'. In this case, if ¢ €
V, then ¢/ € W for every W such that (sw,L’) € Ki((sy,L)). By the
induction hypothesis, (M€, (sw, L)) = ¢’ for every (sw,L’) € Ki((sy, L)),
so (M€, (sy,L)) E K¢/

If o ¢ V, since 1 € LE(L), it follows that ¢ € V. If A%’ ¢ V, then
Y’ is not defined at some world (sy, L") € K;((sy,L)) which implies that
(M¢,(sy, L)) . If A¥)' € V, then we need to show that V/K; U {—¢'}
is AXXA" U {T, 4, 5" }-consistent. Suppose not. Then there exists a subset
{B1,..., 0k} € V/K; such that

AXEA LT, 4,5" - 8= o,
where 8 = 51 A -+ A Bg. By Gen™, it follows that
AXEA ULT, 4,5"  F A (B = o) = Ki(B = ).

Since {f1,..., 0k} C V/K;, it follows that {K;S1,..., K;8t} C V. Thus, by
A0*, we have {AffB,..., AXBr} C V. Thus, AX(f =) €V and K;8 € V.
Therefore, K;1' € V, a contradiction.

Since V/K; U {~'} C £X(L) and is AXEA" U {T, 4, 5* }-consistent, it
follows that there exists a set of sentences W that is maximal AXXA™ U
{T, 4, 5" }-consistent with respect to L and contains V/K; U {—¢'}. Thus,
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(sw,L) € Ki((sy, L)) and, by the induction hypothesis, (M€, (sw, L)) = '
Thus, (M°, (sv, L)) . 1

Proposition 5.3: Let M be an extended awareness structure satisfying
agpp and ka.

(a) (M,s) = XipVX;=X;p iff (M, s) E AipN(K;pVK;—K;p). Moreover,
if M is Euclidean, then (M,s) = XV X;=Xip iff (M, s) = Aip.

(b) (M, s) E Xi(pV —p) iff (M,s) E Aip.

Proof: For part (a), first suppose that (M,s) E X;p V X;=X;p. Thus,
either (i) (M,s) E X;p or (ii) (M, s) E X;—X;p. In case (i), it follows that
(M,s) = Aijp and (M, s) = Kip. Thus, (M, s) = AipN\(K;eVK;—-K;p). In
case (ii), it follows that (M, s) = A;—=X;¢ and (M, s) = K;—X;p. By agpp,
we have (M,s) &= A;p. Let t € K;(s). By ka, we have (M,t) = Ajp. And
as (M, s) E K;—X;p, it follows that (M,t) = —~X;p. Thus, (M,t) E ~K;p,
and so (M,s) | K;—K;p. For the other direction, suppose that (M,s) =
Aip N (KipV K;i=K;p). Thus, either (i) (M,s) = Aip A K;p or (ii) (M, s) &=
Aijp N K= K;p. In case (i), it follows that (M, s) = X;p. In case (ii), agpp
implies that (M, s) = A= X;p. Let t € K;(s). Thus, (M,t) = —K;p, which
implies that (M, t) = —X;p. Therefore, (M, s) E X;—X;p.

Now suppose that M is Euclidean. Recall that by ka it follows that
(M,s) = Aip implies (M,s) = Afp. Proposition 5.1 shows that, if M
is Euclidean, then (M,s) = Afe implies (M,s) = Alp. Combining both
results, we get (M, s) = A;p implies (M, s) = K¢ V K;—K;p.

For part (b), note that by agpp and the semantics of X, it follows
that (M,s) = Xi(p V —) implies (M,s) = A;p. For the converse, recall
that (M,s) = A;p implies (M,s) = Afp. By agpp and the definition of
(M,s) = Xip, (M,s) = Aip A\ Afp implies (M, s) = Xi(¢V ), as desired.
|
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