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1 Introduction

Shi (1995) and Trejos and Wright (1995) show the existence of a monetary steady state

in a random matching model under the assumption that an agent’s money holding is in

{0, 1}. In the same model, for consumer take-it-or-leave-it o↵ers and for money holdings

in {0, 1, · · · , B}, Zhu (2003) provides su�cient conditions for the existence of a full-support

monetary steady state with a strictly increasing and strictly concave value function.1 By way

of a variant of a neutrality argument, his result also implies the existence of non-full-support

steady states in which all agents treat bundles of money, each bundle being B/l 2 N units,

as the smallest unit held and traded.

Among the questions that Zhu’s existence result leaves open are the following. First,

are his full-support steady states unique? Second, are necessary and su�cient conditions

for existence of full-support steady states weaker or stronger than those for non-full-support

steady states? Third, do both pure-strategy and mixed-strategy full-support steady states

exist generically?2 Fourth, if so, are both kinds of full-support steady states stable? Fifth,

are the above non-full-support steady states stable? The smallest set of money holdings for

which these questions arise is {0, 1, 2}, which is the smallest set for which the distribution

of money holdings over people depends on the trades that are made. For this set, we answer

all but the first question.

The necessary and su�cient condition for the existence of a full-support steady state

turns out identical to that for the non-full-support steady state, and hence is weaker than

Zhu’s su�cient condition. Both pure-strategy and mixed-strategy full-support steady states

exist generically. As regards stability, any full-support steady state is stable, while the

1In this article, “full-support” and “non-full-support” refer to the support of the equilibrium distribution

of money holdings among agents.

2Zhu uses a fixed-point theorem for the existence proof so the equilibrium strategy is not described.
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nonfull-support steady state, which necessarily has support {0, 2}, is unstable. Although

the two-unit bound is restrictive, it, at least, permits conjectures to be made for the general

case.

One reason to study the Zhu (2003) model is that it has policy implications that di↵er

from those of the model with money holdings in {0,1} and from models with degenerate

distributions of money holdings. In particular, as discussed in Wallace (2014) and shown

by Molico (2006) and Deviatov (2006), moderate inflation improves welfare through re-

distributional e↵ects in versions of the Zhu model. That cannot happen in models with

money holdings in {0,1} or in models with degenerate distributions of money holdings. But

prior studies of Zhu’s model leave open the questions set out above, some of which are

addressed here.

2 The Zhu (2003) model

Time is discrete, with periods dated as t � 0. There is a unit measure of non-atomic agents

who are infinitely-lived. Also, there are divisible and non-storable consumption goods at

each date. Each agent maximizes expected discounted utility with discount factor � 2 (0, 1).

At each date, if an agent produces an amount q � 0 of the good, the utility cost is q. If

an agent consumes an amount q � 0 of the good, the period utility he gets is u(q), where

u : R+ ! R is strictly increasing, strictly concave and continuously di↵erentiable on R+.

Also, u(0) = 0, u0(1) = 0 and u0(0) is su�ciently large but finite.3 These assumptions imply

that there is a unique x̄ > 0 such that u(x̄) = x̄.

There exists a fixed stock of indivisible money that is perfectly durable. There is a

bound on individual money holdings, denoted B 2 N, so the individual money-holding set

is B ⌘ {0, 1, · · · , B}. Let m 2 (0, 1) denote the per capita stock of money divided by the

3The assumption u0(0) <1 is used only in the proof of proposition 5.
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bound on individual money holdings so that the per capita stock is Bm.

It is assumed that agents cannot consume their own production goods so they need to

trade to obtain consumption. In each period, agents are randomly matched in pairs. With

probability 1/n, where n � 2, an agent is a consumer (producer) and the partner is a producer

(consumer). Such meetings are called single-coincidence meetings. With probability 1�2/n,

the match is a no-coincidence meeting.4 In meetings, agents’ money holdings are observable,

but any other information about an agent’s trading history is private.

Consider a date-t single-coincidence meeting between a consumer (potential buyer) with

i units of money (pre-trade) and a producer (potential seller) with j units of money (pre-

trade), an (i, j)-meeting. If i > 0 and j < B, the meeting is called a trade meeting. In

trade meetings, the consumer makes a take-it-or-leave-it o↵er. (There are no lotteries.) The

producer accepts or rejects the o↵er. If the producer rejects it, both sides leave the meeting

and go on to the next date.

For each k 2 B, let wt
k be the expected discounted value of holding k units of money

prior to date-t matching. Using the wt
k’s, the consumer’s problem in an (i, j)-meeting is

max
p2�(i,j),q2R+

{u(q) + �wt+1
i�p} (1)

s.t. � q + �wt+1
j+p � �wt+1

j , (2)

where �(i, j) ⌘ {p 2 B|p  min{i, B� j}} is the set of feasible payments. As (2) holds with

equality in the solution, the consumer’s problem reduces to

f t(i, j) ⌘ max
p2�(i,j)

{u
�
�wt+1

j+p � �wt+1
j

�
+ �wt+1

i�p}.

4If n � 3, one foundation is that there are n types of agents and n types of consumption goods, that

type-k agents can produce type-k goods only and consume type-(k + 1) goods only, and that the money is

symmetrically distributed across the types.
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We define

P t(i, j) ⌘ argmax
p2�(i,j)

{u
�
�wt+1

j+p � �wt+1
j

�
+ �wt+1

i�p}. (3)

Because the solution P t(i, j) may be multi-valued, Zhu introduces randomization. Let ⇤t(i, j)

denote the set of probability distributions on P t(i, j). A mapping �t is called a consumer’s

optimal strategy if it maps each (i, j) 2 B⇥ B to an element of ⇤t(i, j), so that

X

p2P t(i,j)

�t(p; i, j) = 1. (4)

For each z 2 B, let ⇡t
z denote the fraction of agents holding z units of money at the start

of period t, so that ⇡t is a probability distribution on B with mean Bm. Given a strategy,

the law of motion for ⇡t+1 can be expressed as

⇡t+1
z =

n� 2

n
⇡t

z +
2

n

BX

i=0

BX

j=0

⇡t
i⇡

t
j

�t(i� z; i, j) + �t(z � j; i, j)

2
. (5)

The second term of (5) informs who in single-coincidence meetings will end up with z units:

consumers who originally had i units and spent i� z units and producers who originally had

j units and acquired z � j units.

The value function wt satisfies the Bellman equation

wt
i =

n� 1

n
�wt+1

i +
1

n

BX

j=0

⇡t
jf

t(i, j). (6)

The first term of the r.h.s corresponds to either entering a no-coincidence meeting or becom-

ing a producer, who is indi↵erent between trading and not trading. When i = 0, equation

(6) reduces to wt
0 = �wt+1

0 , so the only nonexplosive case is wt
0 = 0,8t. For this reason,

we focus on equilibria in which the value from owning no money is always zero and let

wt ⌘ (wt
1, · · · , wt

B). Finally, we allow free disposal of money and consider equilibria in
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which agents are not willing to throw away money. That is, the value function must be

nondecreasing in every period:

wt
B � · · · � wt

1 � wt
0 = 0. (7)

Definition 1 Given ⇡0, an equilibrium is a sequence {(⇡t, wt)}1t=0 that satisfies the con-

sumer’s optimality condition (4), the law of motion (5), the Bellman equation (6), and

non-disposal of money (7). A tuple (⇡, w) is a monetary steady state if (⇡t, wt) = (⇡, w)

for t � 0 is an equilibrium and w 6= 0. Full-support steady states are those for which ⇡ has

a full support. Pure-strategy steady states are those for which (3) has a unique solution for

all meetings. Other steady states are called mixed-strategy steady states.

3 Monetary steady states when B = 2

In Trejos and Wright (1995), the case B = 1, a necessary and su�cient condition for existence

of a monetary steady state is

u0(0) >
n(1� �)

�(1�m)
+ 1 (⌘ K) . (8)

One of our propositions says that (8) is also necessary and su�cient for existence of a full-

support steady state in the economy with B = 2. To state it, it is helpful to express ⇡0 and

⇡2 in terms of ⇡1 using
P

⇡i = 1 and
P

i⇡i = Bm. We have

(⇡0, ⇡2) =
⇣
1�m� ⇡1

2
, m� ⇡1

2

⌘
, (9)

⇡1 2 ⇧ ⌘ [0, 2 min{m, 1�m}]. (10)

Throughout this paper, the dependence of ⇡ on ⇡1 is kept implicit to simplify the notation.
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Lemma 1 If a monetary full-support steady state exists, then

(i) the solution set (3) is either {1} or {1, 2} for (2,0)-meetings and is {1} for other trade

meetings; and

(ii) ⇡1 satisfies ⇡1  ⇡⇤1 ⌘ (
p

1 + 12m(1�m) � 1)/3, where the inquality is strict if and

only if �(1; 2, 0) < 1.

The proof of this result and all other proofs appear in section 5. The proof of lemma 1(i)

first shows optimality of one-unit payment in any trade meeting. Using that result, it then

shows suboptimality of zero-unit payment in those meetings.

The next lemma gives a characterization of when full-support steady states exist and is

useful for proving the main existence result.

Lemma 2 A monetary full-support steady state exists if and only if there exists (⇡1, x) � 0

such that

x =
�

1� ⇡2
[⇡0u(x) + ⇡1u(�x)] ⌘ h(x, ⇡1) (11)

and

u[(1 + �)x]  u(x) + x, (12)

where

� =
(1� ⇡2)�

n(1� �) + (1� ⇡2)�
< 1 (13)

and where (12) must hold with equality if ⇡1 < ⇡⇤1. (Notice that the definition of h takes into

account the dependence of ⇡ and � on ⇡1.)
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If ⇡1 = ⇡⇤1 and (12) holds strictly, then the steady state is a pure-strategy steady state,

and it is a mixed-strategy steady state otherwise. The necessity part of the proof uses lemma

1 to derive (11)-(13). The su�ciency part shows that ⇡1 > 0 and (�w1, �w2) = (x, (1 + �)x)

satisfy all the equilibrium conditions.

Proposition 1 u0(0) > K is necessary and su�cient for existence of a monetary full-support

steady state.

The proof uses the following main ideas. For a given ⇡1 2 [0, ⇡⇤1], the function h(·, ⇡1) is

strictly concave and di↵erentiable on R+, h(0, ⇡1) = 0, and h1(1, ⇡1) = 0. Therefore, (11)

has a positive solution if and only if h1(0, ⇡1) > 1.

Proposition 2 Generically, both pure-strategy and mixed-strategy full-support steady states

exist. (That is, there exists open regions in the parameter space in which pure-strategy full-

support steady states exist and open regions in which mixed-strategy full-support steady states

exist.)

It is helpful to have an example of cases where pure-strategy and mixed-strategy full-

support steady states exist. Let n = 2 and u(y) = y1/2. For such a utility function, (11)

can be explicitly solved, and the inequality (12) for (m, �), although complicated, can be

explicitly derived. Figure 1 displays open regions of (m, �) for which each of the two types

of full-support steady states exist.5 The figure shows that when money is su�ciently scarce

buyers always pay just one unit, whereas when the money supply is high, buyers sometimes

spend two units of money in one trade. The threshold depends on how much the future

matters, namely �.6

5Although the full-support steady states computed in figure 1 seem to be unique, we have been unable

to establish such uniqueness in general. Nor do we have an example of co-existence.

6On the boundary, one-unit payment and two-unit payment are indi↵erent for buyers but the former is

assigned probability one.
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Figure 1: Parameter regions for full-support steady states

This figure shows the regions of (m,�) for existence of pure-strategy full-support
steady states (PF) and mixed-strategy full-support steady states (MF).

We end this section with a lemma about a monetary steady state with a non-full-support

distribution.

Lemma 3 A monetary steady state with support {0, 2} exists if and only if (8) holds, and

it is unique. It has w1 = 0 and w2 that is a unique positive solution to

w =
n� 1 + m

n
�w +

1�m

n
u(�w). (14)

Moreover, P (1, 0) = {0, 1}, P (1, 1) = P (2, 1) = {1}, and P (2, 0) = {2}.

4 Stability

In this section we study stability of our three kinds of steady states. Our stability criterion

is as follows.

8



Definition 2 A steady state (⇡, w) is locally stable if there is a neighborhood of ⇡ such

that for any initial distribution in the neighborhood, there is an equilibrium path such that

(⇡t, wt) ! (⇡, w). A locally stable steady state is determinate, if for each initial distribution

in this neighborhood, there is only one equilibrium that converges to it.

This definition of stability only requires convergence of some equilibria, not all equilibria.

This is because there are always equilibria that do not converge to a given monetary steady

state. In particular, a non-monetary equilibrium always exists from any initial condition.

Notice that the above definition of local stability implies that the valued-money steady

state in the Trejos-Wright {0, 1} model is stable, because there is no ‘neighborhood’ of the

steady state. Also, for that model, the only non-explosive path converging to that steady

state is the one in which the value of money remains constant, which implies determinacy

of that steady state.7 The following are our stability results for the {0, 1, 2} economy.

Proposition 3 Mixed-strategy full-support steady states are generically locally stable.

Proposition 4 Pure-strategy full-support steady states are generically locally stable and de-

terminate.

Proposition 5 Non-full-support steady states are unstable.

The stability of the mixed-strategy steady state is proved by showing that if the initial

distribution is su�ciently close to the steady state distribution, then the mixed-strategy

steady state can be attained in one step, except in a nongeneric situation in which P (2, 0) =

{1, 2} but �(1; 2, 0) = 1 so the distribution is equal to that of the pure-strategy full-support

steady state.

7For the Trejos-Wright {0, 1} model, Lomeli and Temzelides (2002) show that the non-monetary steady

state is indeterminate.
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The standard approach to stability analysis for di↵erence equation systems (see, for

example, [8]) is to compare the number of eigenvalues of the dynamical system that are

strictly smaller than one in absolute value, say a, and the number of initial conditions, say b.

If a = b (a > b), then there is a unique (an infinity of) convergent path(s). If a < b, then there

is no convergent solution. This standard approach is applied to establish local stability and

determinacy of the pure-strategy full-support steady state except for a nongeneric situation

in which the Bellman equation is not time-invertible at the steady state.

The statement about non-full-support steady state shows that if the economy starts with

a positive measure of people holding one unit of money, then the economy does not converge

to the steady state in which a bundle of two units of money is treated as one in {0, 1} model.

The proof is by way of contradiction and relies on two features. First, the dynamical system

necessarily involves unit-root convergence because the outflow from holdings of 1 unit, which

comes from (1, 1)-meetings, approaches zero rapidly as the frequency of such meetings goes

to zero. Second, the non-full-support steady state is on the boundary of the state space in

two senses: the distribution does not have full support and the value of money is not strictly

increasing. Hence, a convergent sequence must at all dates satisfy ⇡t
1 � 0 and (7).

5 Proofs

Before turning to the proofs, we set out some steady state consequences that we use in the

proofs. The steady-state law of motion reduces to

(⇡1)
2�(1; 1, 1) =

⇣
1�m� ⇡1

2

⌘ ⇣
m� ⇡1

2

⌘
�(1; 2, 0), (15)
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which equates outflows from holdings of 1 (the lefthand side) to inflows into holdings of 1

(the righthand side). The Bellman equations are

w1 =
n� 1 + ⇡2

n
�w1 +

⇡0

n
max[u(�w1), �w1] (16)

+
⇡1

n
max[u(�w2 � �w1), �w1], and

w2 =
n� 1 + ⇡2

n
�w2 +

⇡1

n
max[u(�w2 � �w1) + �w1, �w2]

+
⇡0

n
max[u(�w2), u(�w1) + �w1, �w2]. (17)

As for full-support steady states, lemma 1 establishes that zero-unit payment is suboptimal

and one-unit payment is optimal in all trade meetings in any full-support steady state, two-

unit payment in (2, 0)-meetings being also optimal for a mixed-strategy full-support steady

state. The corresponding inequalities are

(1, 1)-meeting u(�w2 � �w1) > �w1 (18)

(1, 0)-meeting u(�w1) > �w1 (19)

(2, 1)-meeting u(�w2 � �w1) > �w2 � �w1 (20)

(2, 0)-meeting u(�w1) + �w1 > �w2 (21)

& u(�w1) + �w1 � u(�w2). (22)

The proof of lemma 1 is composed of two steps. Step 1 shows that being a full-support

monetary steady state (i.e., ⇡1 > 0 and w2 > 0) implies that both �(1; 1, 1) and �(1; 2, 0) are

strictly positive and that (18)-(22) hold at least weakly. Step 2 shows that when (18)-(22)

hold weakly, the solution to (16)-(17) satisfies (18)-(21) strictly.
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Proof of lemma 1. (i) Being a monetary steady state implies w2 > 0 and having a

full-support distribution implies ⇡1 > 0. Then (16) implies w1 > 0.

Step 1 : Any full-support monetary steady state satisfies (18)-(22) at least weakly.

Proof of Step 1

First we show �(1; 1, 1) > 0 and that (18), (21) and (22) hold at least weakly. Suppose

by way of contradiciton that �(1; 1, 1) = 0 so u(�w2 � �w1)  �w1. Then (19) must hold,

because substituting (19) with a reversed weak inequality and the supposition into (16) gives

w1 = 0, a contradiction to w1 > 0. Then the supposition and (19) gives

�w2 � �w1 < �w1. (23)

Note that (19) implies 0 < �w1 < x̄, with x̄ = u(x̄). Thus we have 0  �w2 � �w1 < x̄,

which in turn implies (20) with weak inequality. This weak inequality and (23) gives (21).

Because u is strictly concave, that (18) does not hold implies u(�w2)� u(�w1) < �w1. This

together with (21) implies �(1; 2, 0) = 1. For ⇡1 to be strictly positive in (15), we must have

�(1; 1, 1) > 0, a contradiction. Therefore we have �(1; 1, 1) > 0 and hence the weak (18).

But if �(1; 1, 1) > 0, then (15) and ⇡1 > 0 imply �(1; 2, 0) > 0. This implies (21) at least

weakly and (22).

Next we show that (19) and (20) hold at least weakly. Suppose by way of contradiction

that u(�w1) < �w1. Then the weak (18) implies �w2 � �w1 > �w1. Combining this

with the weak (21) gives u(�w1) > �w1, which is a contradiction. Suppose now by way of

contradiction that (20) does not hold even weakly: u(�w2��w1) < �w2��w1. Then the weak

(21) implies �w2��w1 < �w1. But the weak (18) and supposition imply �w2��w1 > �w1,

which is a contradiction. (End of proof of Step 1)

Step 2 : If (18)-(22) hold weakly, then (18)-(21) hold strictly.

12



Proof of Step 2

When (18)-(22) hold at least weakly, we can eliminate ‘max’ operators from (16)-(17). Then

subtracting (16) from (17) gives

w2 � w1 =
(1� ⇡2)�

n(1� �) + (1� ⇡2)�
w1, (24)

and �w1 is a solution to

�w1 =
�

n(1� �) + (1� ⇡2)�


⇡0u(�w1) + ⇡1u

✓
(1� ⇡2)�

n(1� �) + (1� ⇡2)�
�w1

◆�
, (25)

Suppose by way of contradiction that (18) does not hold:

u(�w2 � �w1) = u

✓
(1� ⇡2)�

n(1� �) + (1� ⇡2)�
�w1

◆
 �w1.

Then, we have

�w1  ⇡0�

n(1� �) + ⇡0�
u(�w1)

< u

✓
⇡0�

n(1� �) + ⇡0�
�w1

◆

< u

✓
(1� ⇡2)�

n(1� �) + (1� ⇡2)�
�w1

◆
= u(�w2 � �w1),

where the first inequality is by substituting the supposition into (25) and the second is

by u(0) = 0 and strict concavity of u. This is contradiction and thus (18) should hold.

Inequality (21) follows from u(�w1) > u(�w2 � �w1) > �w1 > �w2 � �w1, where the first

and the third inequalities are by (24) and the second is (18).

Suppose by way of contradiction that (19) does not hold: u(�w1)  �w1. Then (18)
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implies �w2 � �w1 > �w1. Combining this with (21) gives u(�w1) > �w1, which is a

contradiction. Suppose now by way of contradiction that (20) does not hold: u(�w2 �

�w1)  �w2 � �w1. Then (21) implies �w2 � �w1  �w1. But (18) and supposition imply

�w2 � �w1 > �w1, which is a contradiction. In summary, (18)-(21) hold strictly. (End of

proof of Step 2)

(ii) Letting �(1; 1, 1) = 1 and �(1; 2, 0) = � in (15) and solving it for ⇡1 yields

⇡1 =

s✓
�

4� �

◆2

+ 4m(1�m)
�

4� �
� �

4� �
. (26)

Here ⇡1 2 [0, ⇡⇤1] is strictly increasing in � 2 [0, 1] and is equal to ⇡⇤1 i↵ � = 1.

Proof of lemma 2. (Necessity) By lemma 1, inequalities (18)-(22) hold for any full-

support steady state. Under these inqualities, the Bellman equations (16)-(17) become (11)

and (13) with x = �w1 and (1 + �)x = �w2. Also, (22) implies (12).

(Su�ciency) The proof resembles a guess and verify argument. Suppose we have such (⇡1, x).

Let �w1 = x and �w2 = (1 + �)x. Then we have (24)-(25). The same arguments as step

2 of the proof of lemma 1 show that (18)-(21) hold. Also, (22) is given by (12), Therefore

we have (18)-(22) with equality in (22) if and only if (12) holds with equality. That is, such

(�w1, �w2) satisfies the optimality of lemma-1 trade. Under the lemma-1 trade, the Bellman

equation (16)-(17) is equivalent to (11) and (13) with x = �w1 and (1 + �)x = �w2, so the

Bellman equation trivially holds. If (12) holds strictly and hence �(1; 2, 0) = 1, then ⇡1 = ⇡⇤1

satisfies the law of motion (15). If (12) holds with equality and hence ⇡1 < ⇡⇤1, then (15)

holds with some unique �(1; 2, 0) due to lemma 1(ii) That is, all the equilibrium conditions

are satisfied.

The proof of proposition 1 uses the intermediate value theorem to construct (⇡1, x) � 0

in lemma 2.
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Proof of proposition 1. In this proof, we denote � as �⇡1 to make the dependence on ⇡1

explicit. First we show necessity of (8). Suppose that a full-support steady state exists. By

lemma 1, full-support steady states satisfy (18)-(22). If all these optimality conditions are

substituted into (16) and (17) and (�w2, �w1) is replaced by (x, (1+�⇡1)x), then one obtains

(11). That is, it is necessary for (11) to have a positive solution x, which as remarked in the

text implies h1(0, ⇡1) > 1, where

h1(0, ⇡1) = �⇡1


⇡0

1� ⇡2
+

⇡1�⇡1

1� ⇡2

�
u0(0) ⌘ J⇡1u

0(0). (27)

Therefore, h1(0, ⇡1) > 1 is equivalent to u0(0) > 1/J⇡1 . By some algebra, one can show

1/J⇡1 �K =
n(1� �)

�
· ⇡1n(1� �) + �⇡1⇡0

[⇡0n(1� �) + �(1� ⇡2)2](2� 2m)
� 0,

with equality if and only if ⇡1 = 0. Therefore (8) is necessary for (11) to have a positive

x > 0.

Next we show su�ciency of (8). Let x0 be the unique positive solution for x to x = h(x, 0).

A consequence is h1(x0, 0) < 1. Because h(x, 0) = �0u(x), where �0 denotes � when ⇡1 = 0,

we have �0u
0(x0) < 1. Applying the concavity theorem, we have

u[(1 + �0)x0]� u(x0) < u
0
(x0)�0x0 < x0. (28)

Now, consider the function h1(0, ⇡1) on the domain [0, ⇡⇤1]. By (13) and (27), h1(0, ⇡1) is

continuous. We also know that h1(0, 0) = �0u
0(0) = u0(0)/K > 1. Now, there are two cases.

Case 1: There exists ⇡̄1 2 (0, ⇡⇤1) such that h1(0, ⇡̄1) = 1 and h1(0, ⇡1) > 1 for all

⇡1 2 (0, ⇡̄1) (That is, (11) has a potive solution x > 0 for all ⇡1 2 (0, ⇡̄1).) Let x⇡1 be the

unique positive solution to x = h(x, ⇡1) for each ⇡1 2 (0, ⇡̄1). Note first that because �⇡1 is

decreasing in n and is equal to one when n = 0, the expression in the square brackets in (27)

15



is smaller than one. Therefore, (27) for ⇡1 = ⇡̄1 implies 1 = h1(0, ⇡̄1) < �⇡̄1u
0(0). Thus

u(x⇡1) + x⇡1 � u((1 + �⇡1)x⇡1)

x⇡1

<
x⇡1 � u0((1 + �⇡1)x⇡1)�⇡1x⇡1

x⇡1

! 1� u0(0)�⇡̄1 < 0, as ⇡1 ! ⇡̄1, (29)

where the first inequality follows from concavity of u and the limit operation uses the fact

that x⇡1 ! 0 as ⇡1 ! ⇡̄1. Therefore we have u(x⇡1) + x⇡1 < u((1 + �⇡1)x⇡1) for ⇡1 < ⇡̄1 that

is su�ciently close to ⇡̄1. Recalling (28), we can apply the intermediate value theorem, so

there exists ⇡̂1 such that

u(x⇡̂1) + x⇡̂1 = u((1 + �⇡̂1)x⇡̂1). (30)

By lemma 2, such a pair (⇡̂1, x⇡̂1) forms a mixed-strategy full-support steady state.

Case 2: h1(0, ⇡1) > 1 for all ⇡1 2 [0, ⇡⇤1]. In this case, (11) has a positive solution for

all ⇡1 2 [0, ⇡⇤1]. If u(x⇡⇤
1
) + x⇡⇤

1
 u((1 + �⇡⇤

1
)x⇡⇤

1
), then with (28) the intermediate value

theorem is applied and we have (30) for some ⇡̂1. By lemma 2, the pair (⇡̂1, x⇡̂1) forms a

mixed-strategy full-support steady state. If u(x⇡⇤
1
) + x⇡⇤

1
> u((1 + �⇡⇤

1
)x⇡⇤

1
), then lemma 2

implies that there is a (pure-strategy) full-support steady state. Lemma 1 and 2 imply that

it is a unique pure-strategy full-support steady state.

Overall, a mixed-strategy steady state exists when a pure-strategy steady state does not.

Proof of Proposition 2. When � is su�ciently close to one, the pure-strategy full-

support steady state exists. To see this, fix all parameters except � and let ⇡1 = ⇡⇤1. As

� ! 1, equation (11) approaches x⇡⇤
1

= u(x⇡⇤
1
), (13) approaches �⇡⇤

1
= 1, and (12) approaches

u(2x⇡⇤
1
) < u(x⇡⇤

1
) + x⇡⇤

1
. By strict concavity of u, this last inequality holds. As remarked

after lemma 2, x and (1 + �⇡1)x represent �w1 and �w2, respectively, so the pure-strategy

16



full-support steady state exists.

For the generic existence of mixed-strategy full-support steady states, note that in the

proof of proposition 1 we saw that a mixed-strategy full-support steady state exists if a

pure-strategy one does not exist. By (27) we saw that u0(0) > 1/J⇡⇤
1

is necessary for the

existence of a pure-strategy full-support steady state. Therefore, if u0(0) 2 (K, 1/J⇡⇤
1
), then

a mixed-strategy full-support steady state exists.

Proof of Lemma 3. (Necessity) Suppose there is a monetary steady state with support

{0, 2}. We have ⇡1 = 0 and hence �(1; 2, 0) = 0 by (15). Then equations (16)-(17) imply

that both w1 and w2 must satisfy

w =
n� 1 + m

n
�w +

1�m

n
max[u(�w), �w]. (31)

This equation has at most two solutions: �w = 0 and �w 2 (0, x̄). For a monetary steady

state, (31) (or (14)) must have a positive solution. This requires u0(0) > K.

(Su�ciency) If u0(0) > K, equation (14) has a (unique) positive solution. The rest of

the proof proceeds by guess and verify. Let (⇡, w,�) satisfy the following: (⇡0, ⇡1, ⇡2) =

(1�m, 0, m), �(1; 1, 0) = �(1; 1, 1) = �(1; 2, 1) = �(2; 2, 0) = 1, w1 = 0, and w2 is the unique

positive solution to (14). We show these form a monetary steady state with support {0, 2}.

Under such �, the above ⇡ satisfies (15) and w satisfies (16)-(17). By (14), u(�w2) > �w2

holds. This and w1 = 0 ensure strict optimality of the above � in all trade meetings but (1, 0)-

meetings. That is, we have P (2, 0) = {2}, P (1, 0) = {0, 1}, and P (1, 1) = P (2, 1) = {1}.

It is not hard to check that there is no other monetary steady state with a non-full-support

distribution.

Proof of Proposition 3. Denote the mixed-strategy steady state by (⇡, w,�). We show

that if the initial distribution ⇡0
1 is su�cienty close to ⇡1 and if ⇡1 < ⇡⇤1, then the economy

17



can jump to the steady state in one period. By (5), the date-1 distribution is given by

⇡1
1 = ⇡0

1 �
2(⇡0

1)
2

n
+

2

n

✓
1�m� ⇡0

1

2

◆ ✓
m� ⇡0

1

2

◆
�0(1; 2, 0) (32)

where �0(1; 2, 0) 2 [0, 1] is the date-0 randomization. That is, the distribution can jump to

⇡1 in one period if

⇡1 2

⇡0

1 �
2(⇡0

1)
2

n
, ⇡0

1 �
2(⇡0

1)
2

n
+

2

n

✓
1�m� ⇡0

1

2

◆ ✓
m� ⇡0

1

2

◆�
. (33)

The lower bound is smaller than ⇡1 if ⇡0
1 is su�ciently close to ⇡1. The upper bound can

be rewritten as ⇡0
1 + ⇠(⇡0

1) where ⇠(⇡0
1) is positive, zero, or negative i↵ ⇡0

1 < ⇡⇤1, ⇡0
1 = ⇡⇤1 or

⇡0
1 > ⇡⇤1, respectively. Therefore, the upper bound of (33) is greater than ⇡1 if we have ⇡1 < ⇡⇤1

and ⇡0
1 is su�ciently close to ⇡1. That is, generically, there exists an open neighborhood of

⇡1 from which the economy can choose �0(1; 2, 0) to jump to ⇡1 in one period. Afterwards,

the economy can have (⇡t, wt, �t) = (⇡, w,�) for all t � 1. Such randomization is the optimal

choice by the agents, because w1 = w satisfies the indi↵erence condition for date-0 trades.

Then the initial value w0 can be determined from the initial distribution ⇡0
1 and w1 via the

Bellman equation. (Note that w0 does not a↵ect agents’ decisions.) Thus the mixed-strategy

steady state is locally stable generically (i.e., if ⇡1 6= ⇡⇤1).

The proof of stability of the pure-strategy full-support steady state and the proof of

instability of the non-full-support steady state share some common procedures. The following

lemma derives a dynamical system which governs equilibrium paths, if any, that converge to

these steady states.
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Lemma 4 Let (⇡1, w1, w2) be a steady state and let

 �
⇡ = 1�

p
1 + 12m(1�m)

n
�, (34)

��
⇡ =

2

64
��w1�u(�w1)+2u(��w)

2n

��w2�[�{u(�w1)+�w1}+(1��)u(�w2)]+2[u(��w)+�w1]
2n

3

75 , (35)

and

��
w =

0

BBBB@

(n�1+⇡2)�
n + ⇡0�u0(�w1)

n � ⇡1�u0(��w)
n

⇡1�u0(��w)
n

�⇡0(u0(�w1)+1)�
n + ⇡1(1�u0(��w))�

n
(n�1+⇡2)�

n + ⇡0(1��)�u0(�w2)
n + ⇡1�u0(��w)

n

1

CCCCA
,

(36)

where �w ⌘ w2 � w1 and � 2 {0, 1}. Suppose that ��
w has an inverse. If a sequence

converges to either the pure-strategy full-support or non-full-support steady state, then it

satisfies xt+1 = F (xt), where xt ⌘ (⇡t
1, w

t
1, w

t
2), and the Jacobian of F evaluated at the steady

state is given by

A� ⌘

2

64
 �

⇡ O

�(��
w)�1��

⇡ (��
w)�1

3

75 , (37)

where � = 1 for the pure-strategy full-support steady state and � = 0 for the non-full-support

steady state.

Note that (36) is always invertible for the non-full-support steady state (0 = � = ⇡1 =

w1). For the pure-strategy full-support steady state (� = 1), the determinant of (36) is zero

i↵

(n� 1 + ⇡2)(n� 1 + ⇡2 + ⇡0u
0(�w1)) = (1� ⇡2)⇡1u

0(��w), (38)

where ⇡1 = ⇡⇤1, and (w1,�w) = (x, �x) from Lemma 2 is an implicit but well-defined
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function of parameters (n, m, �, u). Equation (38) is not implied by (11) and hence the set

of parameters for which (36) is singular has measure zero.

Proof of Lemma 4. For the pure-strategy full-support steady state, trading one unit

in all trade meetings is a strictly preferred strategy at the steady state (see Definition 1

and Lemma 1), so it is also optimal in its neighborhood. That is, �t(1; 1, 0) = �t(1; 1, 1) =

�t(1; 2, 1) = �t(1; 2, 0) = 1 for all t � 0.

Similarly, we can also pin down the optimal trading strategy that is constantly played

along a path that converges to the non-full-support steady state from ⇡0
1 6= 0, if there is any

such path. By lemma 3, trading one unit is strictly preferred in (1, 1)- and (2, 1)-meetings,

and paying two units is strictly preferred in (2, 0)-meetings at (⇡, w). Therefore, they are

also optimal in the neighborhood of (⇡, w), so �t(1; 1, 1) = �t(1; 2, 1) = �t(2; 2, 0) = 1 for

all t � 0. Moreover, the following argument shows �t(1; 1, 0) = 1 should be the case for all

t � 0. When the economy is close to but not equal to (⇡, w), we have ⇡t
1 > 0 for all t � 0

so (6) implies wt
1 > 0 for all t > 0, because there is always a positive probability that a

consumer with one unit meets a producer with one unit and the consumer can get a positive

amount of utility from such a meeting.8 Moreover, (14) implies u(x) > x for all x < �w2

and therefore u(�wt
1) > �wt

1 holds all along the path. So, in (1, 0)-meetings, paying one unit

is strictly preferred to paying nothing along the path.

Therefore in both cases, a unique strategy is constantly played along any potential con-

8One can consider the dynamic version of (16) with ⇡t
1 > 0 and wt+1

2 > 0.
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vergent path. Under that strategy, the law of motion and Bellman equation reduces to

⇡t+1
1 = ⇡t

1 �
2(⇡t

1)
2

n
+

2

n

✓
1�m� ⇡t

1

2

◆ ✓
m� ⇡t

1

2

◆
� (39)

wt
1 =

n� 1 + ⇡t
2

n
�wt+1

1 +
⇡t

0

n
u(�wt+1

1 ) +
⇡t

1

n
u(�wt+1

2 � �wt+1
1 ) (40)

wt
2 =

n� 1 + ⇡t
2

n
�wt+1

2 +
⇡t

0

n
[�(u(�wt+1

1 ) + �wt+1
1 ) + (1� �)u(�wt+1

2 )]

+
⇡t

1

n
[u(�wt+1

2 � �wt+1
1 ) + �wt+1

1 ], (41)

where � = 1 for the pure-strategy full-support steady state and � = 0 for the non-full-support

steady state. Denote (39) by ⇡t+1
1 =  �(⇡t

1) : ⇧ ! ⇧ and (40)-(41) by wt = ��(⇡t
1, w

t+1) :

⇧⇥W ! W , where wt ⌘ (wt
1, w

t
2) and W ⌘ {(w1, w2)|0  w1  w2}. Then, our dynamical

system is

✓
⇡t+1

1

wt+1

◆
=

✓
 �(⇡t

1)

��(⇡t
1, w

t)

◆
, (42)

where �� is the inverse of �� (inverse in terms of w) and is obtained by applying the implicit

function theorem in the vicinity of the steady state.9 This is F in the statement of this

lemma.

Finally, straightforward di↵erentiation of (39)-(41) and the implicit function theorem

imply that the Jacobian of F at the steady state is given by (34)-(37).

The proofs of propositions 4 and 5 look into the properties of (37).

Proof of Propositions 4. For the pure-strategy full-support steady state, we set � = 1

in (37) and denote the steady state by (⇡⇤, w⇤). Because the top-right submatrix of (37) is

9Because the non-full-support steady state lies on the boundary of ⇧ ⇥W , the domain of  � , �� and

hence the domain of u are extended to allow for an open neighborhood around the steady state before

applying the implicit function theorem. This is the only place where the assumption u0(0) <1 is used.
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a zero matrix, one eigenvalue of (37) is given by (34), which is smaller than one, and the

other two eigenvalues are those of (��
w)�1, which are the reciprocals of eigenvalues of ��

w. In

what follows, we show that eigenvalues of ��
w are smaller than one in absolute value.

Because h1(�w⇤
1, ⇡

⇤
1) < 1, we have

n(1� �) + (1� ⇡⇤2)�

�
> ⇡⇤0u

0(�w⇤
1) + ⇡⇤1

(1� ⇡⇤2)�

n(1� �) + (1� ⇡⇤2)�
u0(��w⇤). (43)

The eigenvalues of a general 2⇥ 2 matrix

2

64
a b

c d

3

75 are given by

⌘+, ⌘� =
a + d ±

p
(a� d)2 + 4bc

2
.

Because

(a� d)2 + 4bc

=


⇡⇤0
n

�u0(�w⇤
1)� 2

⇡⇤1
n

�u0(��w⇤)

�2

+4


1� ⇡⇤2

n
� +

⇡⇤0
n

�u0(�w⇤
1)�

⇡⇤1
n

�u0(��w⇤)

�
⇡⇤1
n

�u0(��w⇤)

=


⇡⇤0
n

�u0(�w⇤
1)

�2

+ 4
1� ⇡⇤2

n
�

⇡⇤1
n

�u0(��w⇤) > 0,

both eigenvalues are real. They are smaller than one in absolute value if and only if a+d < 2
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and (1� a)(1� d)� bc > 0. Checking these conditions for (36) gives

1� a + 1� d

= 2

✓
1� n� 1 + ⇡⇤2

n
�

◆
� ⇡⇤0

n
�u0(�w⇤

1)

> 2
n(1� �) + (1� ⇡⇤2)�

n
� ⇡⇤0

n
�u0(�w⇤

1)�
⇡⇤1
n

(1� ⇡⇤2)�

n(1� �) + (1� ⇡⇤2)�
�u0 (��w⇤)

>
n(1� �) + (1� ⇡⇤2)�

n
> 0; and

(1� a)(1� d)� bc

=

✓
1� n� 1 + ⇡⇤2

n
� � ⇡⇤0

n
�u0(�w⇤

1) +
⇡⇤1
n

�u0(��w⇤)

◆ ✓
1� n� 1 + ⇡⇤2

n
� � ⇡⇤1

n
�u0(��w⇤)

◆

�⇡⇤1
n

�u0(��w⇤)


1� ⇡⇤2

n
� +

⇡⇤0
n

�u0(�w⇤
1)�

⇡⇤1
n

�u0(��w⇤)

�

=
(n(1� �) + (1� ⇡⇤2)�)�

n2
⇥

✓
n(1� �) + (1� ⇡⇤2)�

�
� ⇡⇤0u

0(�w⇤
1)� ⇡⇤1

(1� ⇡⇤2)�

n(1� �) + (1� ⇡⇤2)�
u0(��w⇤)

◆

> 0,

where the last inequalities of the above two conditions follow from (43). Therefore, the

eigenvalues of (��
w)�1 are greater than one in absolute value. The pure-strategy full-support

steady state has a one-dimensional stable manifold. Because we have one initial condition,

this full-support steady state is locally stable and determinate.

Proof of Propositions 5. To establish the instability of the non-full-support steady state,

suppose by way of contradiction that there is an equilibrium path that converges to that

steady state. By assumption, the economy starts with ⇡0
1 > 0, which in turn means w0

1 > 0

as was shown in the proof of lemma 4. By lemma 4, such a path must have Jacobian (37)

with � = 0. We analize the local trajectory implied by the eigenvectors.
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Figure 2: Unit-root convergence of the law of motion

Equation (34) gives a unit eigenvalue for the law of motion. The unit root does not

immediately imply instability: As figure 2 illustrates, the law of motion (39) has slope at

the fixed point that is unity, but it still displays convergence. Note also that this steady

state is on the boundary of the state space ⇧ ⇥W , which makes it necessary to explictly

study the limiting behavior by seeing the eigenspace of the linearized system (37) to check

(⇡t
1, w

t) 2 ⇧⇥W all along the path.10

As 0 = � = ⇡1 = w1, the Jacobian (37) reduces to

A� =

2

66664

1 0 0

�r/a0 1/a0 0

�s/d0 0 1/d0

3

77775
, (44)

where r ⌘ 1
nu(�w2), s ⌘ 1

2n [u(�w2) � �w2] > 0, a0 ⌘ (n�1+m)�
n + 1�m

n �u
0
(0), and d0 ⌘

(n�1+m)�
n + 1�m

n u
0
(�w2)�. Note that because w2 is a positive solution to (14), a0 > 1 and

d0 2 (0, 1) hold. Eigenvalues of (44) are simply its diagonal elements.

10Note that this analysis is not needed for the pure-strategy full-support steady state because that steady

state is in the interior of ⇧⇥W .
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Since ⇡0
1 > 0, w0

1 > 0, and the law of motion has unit-root convergence, the convergent

trajectory will eventually be parallel to the eigenspace of (44) associated with the unit

eigenvalue11. The associated eigenvector, which constitutes a base of the space, has the form

2

66664

1

�r
a0�1

s
1�d0

3

77775
.

The fact that convergent trajectory of (⇡t
1, w

t
1, w

t
2�w2) will be parallel to the above eigenvec-

tor implies that ⇡t
1 and wt

1 will eventually have di↵erent signs, in contradiction to ⇡t
1, w

t
1 > 0

for all t.

6 Concluding remarks

We show that the necessary and su�cient condition for existence of the monetary steady

state of the Trejos-Wright {0, 1} economy, namely (8), is also necessary and su�cient for

existence of a full-support steady state of the {0, 1, 2} economy. Hence, Zhu’s (2003) su�cient

condition is not necessary for the bound of two. Moreover, both the pure-strategy and mixed-

strategy full-support steady states are generic. Given our result, a reasonable conjecture is

that even for a higher bound, condition (8) is necessary and su�cient for existence of full-

support steady states. For values of parameters that lead to lower values of money (i.e.,

high n, low � and high m), a mixed-strategy equilibrium seems to be likely as randomization

allows agents to trade large quantities of money and yet ensures a rich support for the

money-holding distribution.

Our findings regarding stability, namely the local stability of full-support steady states

and instability of non-full-support steady states, also permit conjectures for the case of a

11See Subsection “Dominant Eigenvector” on page 165 of [5].
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general bound.12 Generalizing Proposition 4-5 to a higher bound case, however, is not simple.

When the bound is two, we can identify candidate strategies that support steady states and

get explicit expressions for the relevant di↵erence-equation system. For a general bound, we

do not know the supporting strategies. Therefore, if analogous proofs are to be provided,

they must be constructed di↵erently.13

Conducting our analysis for the model with lotteries is not easy. In models with lotteries,

optimal lottery o↵ers are defined by first-order conditions to the buyer’s problem similar to

(1)-(2) but their dependence on parameters is not easily characterized. Futhermore, because

the date-t optimal lotteries depend upon the date-(t+1) values of money, the law of motion

(39) is no longer autonomous; the date-t distribution depends on the date-(t + 1) values

through the date-t lotteries. Consequently, the Jacobian (37) does not have a triangular

form in general. Hence our approach does not work.
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