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Abstract

Suppose that in aggregative games, in which a player’s payoff depends only on this

player’s strategy and on an aggregate of all players’ strategies, the players are endowed

with constant conjectures about the reaction of the aggregate to marginal changes in

the player’s strategy. The players play the equilibrium determined by their conjec-

tures and equilibrium strategies determine the players’ payoffs, which can be different

for players with different conjectures. It is shown that with random matching in an

infinite population, only consistent conjectures can be evolutionarily stable, where a

conjecture is consistent if it is equal to the marginal change in the aggregate at equi-

librium, determined by the players’ actual best responses. In the finite population case

in which relative payoffs matter, only zero conjectures representing aggregate-taking

behavior can be evolutionarily stable. The results are illustrated with the examples of

a linear-quadratic game (that includes a Cournot oligopoly) and a rent-seeking game.
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1 Introduction

This paper shows that there exist evolutionary foundations behind certain conjectures in

aggregative games. An aggregative game (see e.g. Corchón, 1994, and Cornes and Hartley,

2009, for a more recent treatment) is a game in which the payoff of a player depends on the

player’s own strategy and on an aggregate of the strategies of all players. For example, in

the Cournot oligopoly, a firm’s profit depends on the firm’s own quantity and on the price,

which is determined by the inverse demand function from the aggregate sum of all firms’

quantities.

Conjectures, also called conjectural variations (see Figuieres et al., 2004, for a recent

book-length discussion), describe players’ beliefs, or expectations, about the reaction of

other players to a change in a player’s strategy. In the context of aggregative games,

conjectures can be seen as beliefs about the reaction of the aggregate (see e.g. Kamien

and Schwartz, 1983, and Sugden, 1985, for particular aggregative settings). Such beliefs

determine players’ equilibrium strategies. In equilibrium each player’s strategy is a best

response given the conjecture about the reaction of the aggregate to a deviation.

Equilibrium strategies lead to some payoffs of the players. Generally, players with

different conjectures can get different payoffs. If there is an evolutionary process selecting

players on the basis of these payoffs, then some conjectures would perform better than

others. Potentially conjectures can be arbitrary; this paper shows that in well-behaved

games the evolutionarily stable (for an infinite population and players randomly matched

to play a given finite-player game) constant conjectures must be consistent at equilibrium:

the beliefs about the reaction to an arbitrarily small deviation from equilibrium coincide

with the marginal change in the aggregate, derived from the players’ actual best response

functions.1 On the other hand, evolutionary stability for finite populations (where all

players interact in the same game) selects zero conjectural variations: players believe that

the aggregate does not change if their strategy changes. Such behavior is akin to the price-

taking behavior in the standard perfect competition model in microeconomics, as noted in

Fama and Laffer (1972) and Kamien and Schwartz (1983).

Players with consistent conjectures form correct expectations about the reaction of the

aggregate and therefore it may appear intuitive that they have a higher payoff in evolution-

1Consistency of conjectures in various contexts was introduced and discussed in e.g. Laitner (1980),

Bresnahan (1981), Perry (1982).
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ary terms. Nevertheless, it is not obvious why it should be the case in a strategic context

because other players may adjust their equilibrium behavior to the conjectures of all players.

Having a consistent conjecture, however, does not have a detrimental strategic effect.

In a finite population, relative payoffs are important in evolutionary terms. If players

are symmetric, the effect of the aggregate is the same on any two players and thus cancel

out from the relative payoff evaluation. Players with zero conjecture indeed behave as

if the aggregate does not change and therefore has no effect on payoffs, thus mimicking

the condition for maximizing the relative payoff, leading to evolutionary stability of zero

conjectures in this case.

The results generalize and combine several previous observations in the literature about

evolutionary justifications of conjectures. Working with an infinite population, Dixon and

Somma (2003) and Müller and Normann (2005) showed that consistent conjectures have

evolutionary foundations in certain duopoly games, while Possajennikov (2009) generalized

the result to arbitrary well-behaved two-player games. This paper extends the result to

n-player aggregative games. On the other hand, for the finite population case Possajen-

nikov (2003) provided evolutionary background for aggregate-taking behavior in aggregative

games. In the context of conjectures, aggregate-taking behavior is equivalent to zero con-

jectural variation about the change in the aggregate.2

2 Aggregative Games and Conjectures

An aggregative game on the real line is given by G = ({1, . . . , n}, {Xi}ni=1, {ui}ni=1), where

{1, . . . , n} is the set of players, Xi ⊂ R is the strategy set of Player i and ui(xi, X) :

Xi×R→ R is the payoff function of player i. Here, X = f(x1, . . . , xn) : X1× . . .×Xn → R
is the aggregate of players’ strategies. The payoff of each player depends on the player’s

own strategy and this aggregate only: other players’ strategies influence a player’s payoff

only through the aggregate.

It is assumed that the games are well behaved: the sets Xi are convex and the functions

ui and f are twice continuously differentiable.

A player’s conjecture ri ∈ Ri, where Ri is a convex subset of the real line R, is a

number representing the player’s belief, or expectation, about the change in the aggregate

2Müller and Normann (2007) show that in a duopoly, finite population evolutionary stability indeed leads

to a result that would be obtained with zero conjectures about the aggregate.
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in response to a marginal change in the player’s own strategy. If Bi[Z] denotes the belief

of Player i about the object Z, then ri = Bi

[
dX
dxi

]
. Note that the conjecture is about the

total differential: the reactions of other players are incorporated in dX, and only the final

change in X matters for the player’s payoff. It is assumed that players entertain constant

conjectures: ri does not vary with x1, . . . , xn. This assumption means that players are

generally boundedly rational: dX
dxi

derived from the players’ reaction functions may vary

with x1, . . . , xn, although in some cases (as in the example in Section 4.1) it does not.3

Given the conjecture ri, a player maximizes the payoff ui(xi, X). If the solution of

the player’s maximization problem is interior, then the first-order condition ∂ui
∂xi

(xi, X) +

∂ui
∂X (xi, X) · Bi

[
dX
dxi

]
= 0 holds. Since the conjecture is constant, ri = Bi

[
dX
dxi

(x1, . . . , xn)
]

for any x1, . . . , xn, the condition is

Fi(xi, X; ri) :=
∂ui
∂xi

(xi, X) +
∂ui
∂X

(xi, X) · ri = 0. (1)

Suppose that all n players have some conjectures, given by r1, . . . , rn. Denote the

vector of conjectures by r = (r1, . . . , rn). The vector will sometimes be denoted by r =

(r1, r−1) = (ri, r−i) to emphasize which player is being considered. If each player’s solution

of the payoff maximization problem is interior, then the equilibrium is characterized by the

following equations:

F1(x1, X; r1) = 0

· · · (2)

Fn(xn, X; rn) = 0

X − f(x1, . . . , xn) = 0

The first n equations are the n first-order conditions for the maximization problems of the

n players; the last equation is the equation defining the aggregate. The equations implicitly

define equilibrium strategies x∗i (r1, . . . , rn) and an equilibrium value of the aggregate X∗ =

f(x∗1, . . . , x
∗
n) = f(x∗1(r), . . . , x

∗
n(r)). In general an (interior) equilibrium may not exist

or there may be multiple equilibria. It will be assumed in the sequel that the equilibrium

selection x∗i (r1, . . . , rn) exists and locally well behaved for the relevant values of conjectures.

3Focusing on constant conjectures restricts the dimensionality of the analysis and allows unambiguous

selection in many settings. If conjectures vary with x1, . . . , xn, then many choices of x1, . . . , xn can be

justified with an appropriately constructed consistent conjectures (see Laitner, 1980, for such a result in a

duopoly setting).
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While conjectures seem to imply a dynamic process of reaction, the equilibrium con-

cept has the following static interpretation. Suppose that currently players are playing or

contemplating to play a certain strategy profile (x1, . . . , xn), which is common knowledge.

Player i considering an (arbitrarily small) deviation from it believes that the other players

would have time to react, leading to the change in the aggregate equal to ri times the change

in xi before any payoffs accrue. The player believes that after these reactions, payoffs are

realized. A necessary condition for the profile (x1, . . . , xn) to be an equilibrium in this set-

ting is that no player expects to get a higher payoff after a marginal deviation and reactions

to it, and that is what Equations (2) capture.

In a standard Nash equilibrium analysis, players choose best response keeping the actions

of the other players fixed. In the current setting, this can be represented by ri = Bi

[
dX
dxi

]
=

∂f
∂xi

. But the setting allows for many more conjectures, some of which turn out to be relevant

in terms of evolution.

The zero conjectural variation ri = 0 means that a player with such a conjecture has

beliefs Bi

[
dX
dxi

]
= 0. For such a player, a change in his or her own action does not affect

the aggregate, which can be termed the aggregate-taking behavior (Possajennikov, 2003).

Price-taking behavior in microeconomic competitive equilibrium models is an example of

such a behavior.

To define a consistent conjecture, imagine that Player i’s strategy can be varied freely

while the remaining n− 1 players behave optimally. Then there are n equations character-

izing optimal choices:

Fj(xj , X; rj) = 0, j 6= i (3)

X − f(x1, . . . , xn) = 0

Treating xi as a parameter and xj , j 6= i and X as variables, this system implicitly

defines reaction functions x∗j (xi) and X∗(xi) = f(x1, x
∗
2(x1), . . . , x

∗
n(x1)). Again, it will be

assumed that the reaction functions are well defined for the relevant values of conjectures.

Then

Definition 1 A conjecture ri is consistent if ri = dX∗

dxi
(x∗1, . . . , x

∗
n).

The definition means that a conjecture is consistent if it, i.e. the belief about the change

in the aggregate, is equal to the actual marginal change that would arise from optimal

reactions of other players to a deviation by one player from the profile (x∗1, . . . , x
∗
n). This
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actual change is derived from the reaction functions of the players, which depend on the

conjectures those players are holding.

3 Evolutionary Stability of Conjectures

3.1 Conjectures of Individual Players

Imagine that players are endowed with some conjectures. The previous section characterized

the equilibrium strategies that the players use if the solution of their payoff maximization

problems are interior. Substituting the solution into the payoff functions, the payoff of

Player i is then ui(x
∗
i (r), X

∗(r)).

Suppose that the players other than Player i have some fixed conjectures r−i. Consider

the following interpretation of the choice of conjecture for Player i. There is a large pop-

ulation of agents that can potentially be Player i. Each of the agents is endowed with a

conjecture. Agents with different conjectures will get different payoff in the game if selected

to play. An evolutionary interpretation is that the agents that get a higher payoff are more

likely to survive or to reproduce. Thus,

Definition 2 A conjecture rESi is evolutionarily stable for Player i against given conjec-

tures r−i of the other players if ui(x
∗(rESi , r−i), X

∗(rESi , r−i)) > ui(x
∗(ri, r−i), X

∗(ri, r−i))

for any ri 6= rESi .

The definition requires that a player with the evolutionarily stable conjecture gets a higher

payoff that a player with any other conjecture. If other conjectures could get the same

payoff, there would be no selection pressure against them. The definition is adapted from

the evolutionarily stable strategy (ESS) definition for asymmetric games (Selten, 1980).

The definition means that rESi maximizes function ui(x
∗(ri, r−i), X

∗(ri, r−i)) as a func-

tion of ri. A necessary condition for an interior maximum is that dui
dri

= 0 at ri = rESi ,

or
∂ui
∂xi

∂x∗i
∂ri

(ri, r−i) +
∂ui
∂X

dX∗

dri
(ri, r−i) = 0 (4)

at ri = rESi .

If ∂ui
∂X 6= 0 and

∂x∗i
∂ri
6= 0, the left hand side can be rewritten as

∂ui/∂xi
∂ui/∂X

+
dX∗/dri
∂x∗i /∂ri

= 0.
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From Equation (1), at the solution of Player i’s maximization problem −∂ui/∂xi
∂ui/∂X

= ri. Thus

if rESi is an evolutionarily stable conjecture, then rESi = dX∗/dri
∂x∗i /∂ri

(rESi , r−i).

Speaking somewhat loosely in mathematical terms, if one treats dri = ∂ri (since ri is an

independent variable, its total and partial differentials are equal) as a small change in ri,

one can cancel it from the above expression. Then rESi = dX∗

dx∗i
. Recalling that a conjecture

is consistent if ri = dX∗

dxi
(x∗1, . . . , x

∗
n), if a conjecture is evolutionarily stable, then it has to

be consistent.

Using implicit function theorems, the intuition can be made precise. To simplify nota-

tion, consider i = 1 (the reasoning for the other players is analogous). From the system of

equations (2)

∂F1

∂x1

∂x∗1
∂r1

+ 0 + . . . + 0 +
∂F1

∂X

dX∗

dr1
+

∂F1

∂r1
= 0

0 +
∂F2

∂x2

∂x∗2
∂r1

+ . . . + 0 +
∂F2

∂X

dX∗

dr1
= 0

· · · · · · · · · · · · · · · · · ·

0 + 0 + . . . +
∂Fn
∂xn

∂x∗n
∂r1

+
∂Fn
∂X

dX∗

dr1
= 0

− ∂f

∂x1

∂x∗1
∂r1

+ − ∂f

∂x2

∂x∗2
∂r1

+ . . . + − ∂f

∂xn

∂x∗n
∂r1

+
dX∗

dr1
= 0

Let

A =



∂F1
∂x1

0 . . . 0 ∂F1
∂X

0 ∂F2
∂x2

. . . 0 ∂F2
∂X

... · · · . . . · · ·
...

0 0 . . . ∂Fn
∂xn

∂Fn
∂X

− ∂f
∂x1

− ∂f
∂x2

. . . − ∂f
∂xn

1


.

Then |A| =
∏n
i=1

∂Fi
∂xi

+
∑n

i=1
∂f
∂xi

∂Fi
∂X

∏
j 6=i

∂Fj

∂xj
.

Suppose that |A| 6= 0. By Cramer’s rule,

∂x∗1
∂r1

=
1

|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣

−∂F1
∂r1

0 . . . 0 ∂F1
∂X

0 ∂F2
∂x2

. . . 0 ∂F2
∂X

... · · · . . . · · ·
...

0 0 . . . ∂Fn
∂xn

∂Fn
∂X

0 − ∂f
∂x2

. . . − ∂f
∂xn

1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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or
∂x∗1
∂r1

= 1
|A|

(
−∂F1
∂r1

)
|A−1|, where

A−1 =


∂F2
∂x2

. . . 0 ∂F2
∂X

· · · . . . · · ·
...

0 . . . ∂Fn
∂xn

∂Fn
∂X

− ∂f
∂x2

. . . − ∂f
∂xn

1


and thus |A−1| =

∏n
i=2

∂Fi
∂xi

+
∑n

i=2
∂f
∂xi

∂Fi
∂X

∏
j 6=i,j 6=1

∂Fj

∂xj
. Also,

dX∗

dr1
=

1

|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1
∂x1

0 . . . 0 −∂F1
∂r1

0 ∂F2
∂x2

. . . 0 0
...

. . .
. . .

. . .
...

0 0 . . . ∂Fn
∂xn

0

− ∂f
∂x1

− ∂f
∂x2

. . . − ∂f
∂xn

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

or dX∗

dr1
= − 1

|A|
∂F1
∂r1

∂f
∂x1

∏
j 6=1

∂Fj

∂xj
. Therefore,

dX∗/dr1
∂x∗1/∂r1

=
−∂F1
∂r1

∂f
∂x1

∏
j 6=1

∂Fj

∂xj(
−∂F1
∂r1

)(∏n
i=2

∂Fi
∂xi

+
∑n

i=2
∂f
∂xi

∂Fi
∂X

∏
j 6=i,j 6=1

∂Fj

∂xj

) ,

or dX∗/dr1
∂x∗1/∂r1

= 1
|A−1|

∂f
∂x1

∏
j 6=1

∂Fj

∂xj
, provided that |A−1| 6= 0 (from Equation (1) ∂F1

∂r1
= ∂u1

∂X and

thus ∂F1
∂r1
6= 0).

The reaction of the aggregate to independent changes in the strategy of Player 1 is found

from system (3). Using the implicit function theorem, dX∗

dx1
can be found from

∂F2

∂x2

∂x∗2
∂x1

+ . . . + 0 +
∂F2

∂X

dX∗

dx1
= 0

· · · · · · · · · · · · · · ·

0 + . . . +
∂Fn
∂xn

∂x∗n
∂x1

+
∂Fn
∂X

dX∗

dx1
= 0

− ∂f

∂x2

∂x∗2
∂x1

+ . . . + − ∂f

∂xn

∂x∗n
∂x1

+
dX∗

dx1
+ − ∂f

∂x1
= 0

Then

dX∗

dx1
=

1

|A−1|

∣∣∣∣∣∣∣∣∣∣

∂F2
∂x2

. . . 0 0
...

. . .
. . .

...

0 . . . ∂Fn
∂xn

0

− ∂f
∂x2

. . . − ∂f
∂xn

∂f
∂x1

∣∣∣∣∣∣∣∣∣∣
,
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or dX∗

dx1
= 1
|A−1|

∂f
∂x1

∏
i 6=1

∂Fi
∂xi

.

Therefore it holds that dX∗

dx1
= dX∗/dr1

∂x∗1/∂r1
, if the regularity conditions allowing that the so-

lutions of the systems above are satisfied. Thus if rES1 is an evolutionarily stable conjecture,

then rES1 = −∂u1/∂x1
∂u1/∂X

= dX∗/dr1
∂x∗1/∂r1

= dX∗

dx1
, i.e. rES1 is consistent. Since the index 1 was used

only to make the notation simpler, the result holds for any player.

Proposition 1 Suppose that players’ conjectures are given by r = (r1, . . . , rn), ri is interior

in Ri. Under the regularity conditions that

(i) There exist a solution x∗i (r), X
∗(r) of system (2);

(ii) ∂ui
∂X 6= 0 at x∗i (r), X

∗(r);

(iii) |A| =
∏n
i=1

∂Fi
∂xi

+
∑n

i=1
∂f
∂xi

∂Fi
∂X

∏
j 6=i

∂Fj

∂xj
6= 0 at r and x∗i (r), X

∗(r);

(iv) |A−i| =
∏
j 6=i

∂Fj

∂xj
+
∑

j 6=i
∂f
∂xj

∂Fj

∂X

∏
k 6=i,k 6=j

∂Fk
∂xk
6= 0 at r and x∗i (r), X

∗(r);

if ri is an evolutionarily stable conjecture, then ri is consistent.

Thus only consistent conjectures can generally be evolutionarily stable. Note that only

the necessary first-order condition was used; it may happen that such a condition is not

sufficient to find the maximum of a function. Appropriate assumptions on the concavity of

functions can ensure that a consistent conjecture is indeed evolutionarily stable. Examples

in Section 4 demonstrate that consistent conjectures indeed can be evolutionarily stable.

If the choice of conjectures is interpreted as a concious choice of a player instead of the

product of evolution, then the result means that only choosing a consistent conjecture can

be an interior best response of a player to a given vector of conjectures of the other players

in aggregative games.4 This holds for any conjectures of the other players and therefore

only consistent conjectures can be an equilibrium of the game of choosing conjectures, or,

equivalently, be evolutionarily stable if the conjectures are selected by evolution.

While the result may appear intuitive (players with consistent conjectures correctly

anticipate the reaction of the aggregate), one needs to keep in mind that it is not straight-

forward. Players with given conjectures get payoffs via strategies used in equilibrium of the

4Dixon and Somma (2003) note in the linear-quadratic Cournot duopoly context that the best response

conjecture of one firm to any given conjecture of the other firm equals the actual slope of that other firm’s

reaction function.
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game with these conjectures. Because of possible strategic reactions of other players, it is

not obvious why payoffs in such an equilibrium should be higher with consistent conjec-

tures than with other conjectures. Even consistent conjectures are not necessarily the most

‘rational’ ones from other viewpoints (see e.g. Makowski, 1987). As discussed in Section

2 and illustrated in the examples in Section 4, in particular they do not necessarily lead

to the standard Nash equilibrium concept. For example, in a linear Cournot duopoly, a

zero conjecture about the reaction of the other firm is not consistent because the slope of

the reaction function is non-zero at equilibrium. Similarly, in a linear Cournot oligopoly a

consistent conjecture about the aggregate production is smaller than unity thus making the

equilibrium with consistent and evolutionarily stable conjectures different from the Nash

equilibrium (where the aggregate production is expected to change exactly by the change

in the firm’s production level).

3.2 Symmetric Games and Infinite and Finite Populations of Players

An aggregative game is symmetric if the strategy spaces are the same for all players, Xi =

Xj for all i, j, the aggregate is symmetric, X(π(x1), . . . , π(xn)) = X(x1, . . . , xn) for any

permutation π, and the payoff functions are symmetric, ui(xi, X) = uj(xj , X) if xi = xj ,

for any i, j. Suppose further that the conjecture spaces are the same for all players, Ri = Rj

for all i, j. If the situation is symmetric, one can suppress the indices of players and consider

only one generic player, say Player 1. In a symmetric game, one can compare payoffs of

different players and thus one can consider one population of players for the evolutionary

analysis.

Consider an infinite population of players randomly matched to play an n-player ag-

gregative game G. In a symmetric situation, a slight strengthening of the Maynard Smith

and Price (1973) definition of evolutionary stability, adapted to the current model, is

Definition 3 A conjecture rES is evolutionarily stable if ri = rES for all i and it holds

that u1(x
∗(rES1 , rES−1 ), X∗(rES1 , rES−1 )) > u1(x

∗(r1, r
ES
−1 ), X∗(r1, r

ES
−1 )) for any r1 6= rES.

The condition of the definition requires rES to be the best choice if the other players use

rES . Then Equation (4) again provides the necessary condition for a conjecture to be

evolutionarily stable. Therefore the analysis of the previous subsection still applies:
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Proposition 2 Under the regularity conditions of Proposition 1, if rES is an interior evo-

lutionarily stable conjecture in a symmetric aggregative game with random matching in

infinite population, then rES is consistent.

If the population is finite and all n players participate in the same interaction, Schaffer

(1988) proposed a finite population evolutionary stability concept, based on relative payoffs.

Adapted to the present context of symmetric aggregative games,

Definition 4 A conjecture rfES is finite-population evolutionarily stable (fES) if ri =

rfES for all i and it holds that u1(x
∗
1(r

fES
−n ), X∗(rfES−n )) > u1(x

∗
1(r

fES
−1 ), X∗(rfES−1 )), where

rfES−n = (rfES , rfES , . . . , r) and rfES−1 = (r, rfES , . . . , rfES), for any r 6= rfES.

The idea of the definition is that if any one player has a conjecture r different from rfES ,

then that player will get a lower payoff than the players who have conjecture rfES in an

equilibrium of the game with 1 player having conjecture r and n−1 players having conjecture

rfES .

Schaffer (1988) shows that a fES strategy maximizes relative payoff, represented by the

difference ui(xi, x−i) − uj(xj , x−j) (in symmetric games, it does not matter which players

i, j are considered). In the current context, an fES conjecture rfES is a solution of the

problem

max
r1

u1(x
∗
1(r1, r

fES
−1 ), X∗(r1, r

fES
−1 ))− uj(x∗j (r1, r

fES
−1 ), X∗(r1, r

fES
−1 ))

for j 6= 1. The first-order condition of this maximization problem is

∂u1
∂x1

∂x∗1
∂r1

+
∂u1
∂X

dX∗

dr1
− ∂uj
∂xj

∂x∗j
∂r1
− ∂uj
∂X

dX∗

dr1
= 0. (5)

If rfES is the solution of the maximization problem, then the above condition is satisfied

at r1 = rfES . Suppose that if conjectures are the same for all players, then a symmetric

equilibrium x∗ is played (since the game is symmetric), where x∗i = x∗j . Then at equilibrium
∂u1
∂x1

=
∂uj
∂xj

and ∂u1
∂X =

∂uj
∂X . Equation (5) reduces to

∂u1
∂x1

(
dx∗1
dr1
−
dx∗j
dr1

)
= 0.

Consider the last term in the expression. For
dx∗1
dr1
− dx∗j

dr1
= 0 to hold, both Players 1

and j should react in the same way to a change in conjecture of Player 1. Recall that

11



dx∗1
dr1

= 1
|A|

(
−∂F1
∂r1

)(∏n
i=2

∂Fi
∂xi

+
∑n

i=2
∂f
∂xi

∂Fi
∂X

∏
j 6=i,j 6=1

∂Fj

∂xj

)
. From system (2),

∂x∗n
∂r1

=
1

|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1
∂x1

0 . . . −∂F1
∂r1

∂F1
∂X

0 ∂F2
∂x2

. . . 0 ∂F2
∂X

...
. . .

. . .
. . .

...

0 0 . . . 0 ∂Fn
∂X

− ∂f
∂x1

− ∂f
∂x2

. . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

or ∂x∗n
∂r1

= 1
|A|

∂F1
∂r1

∂f
∂x1

∂Fn
∂X

∏
j 6=n,j 6=1

∂Fj

∂xj
.

In the symmetric case, indices n and any j 6= 1 are interchangeable. Simplifying the

expressions above,

dx∗1
dr1
−
dx∗j
dr1

=
−∂F1/∂r1 · (∂F1/∂x1)

n−2

|A|

(
∂F1

∂x1
+ n

∂f

∂x1

∂F1

∂X

)
.

If
dx∗1
dr1
− dx∗j

dr1
6= 0, then the necessary condition for finite population evolutionary stability

is ∂u1
∂x1

= 0. But recall that a necessary condition for a player to maximize the payoff in the

game is ∂u1
∂x1

+ ∂u1
∂X r1 = 0. If ∂u1

∂X 6= 0, then the only way to satisfy the two conditions is

r1 = 0.

Proposition 3 Suppose that players’ conjectures in a symmetric aggregative game are given

by r = (r1, . . . , rn), ri is interior in Ri, ri = rj for all i, j. Under symmetric equilibrium

selection, the regularity conditions of Proposition 1 and

(v) ∂Fi
∂xi
6= 0 at r and x∗i (r), X

∗(r);

(vi) ∂Fi
∂xi

+ n ∂f
∂xi

∂Fi
∂X 6= 0 at r and x∗i (r), X

∗(r),

if ri is a finite population evolutionarily stable conjecture, then ri = 0.

The result is related to the result in Possajennikov (2003), where the coincidence of

the first-order conditions for the aggregate-taking and the finite-population evolutionarily

stable behaviors is shown. In the current setting, zero conjectural variation ri = 0 means

aggregate-taking behavior, i.e. Player i believes that the aggregate does not change if the

player changes his or her strategy. The finite-population evolutionarily stable conjecture

rfES is a way of committing to the finite-population evolutionarily stable behavior. That

rfES = 0 is then another manifestation of the connection between aggregate-taking and

finite-population evolutionarily stable behaviors.
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4 Examples

4.1 Linear-quadratic aggregative games and Cournot oligopoly

Consider the following game with n players. Player i chooses xi ∈ Xi ⊂ R+. Suppose that

the payoff function is

ui(xi, X) = axi −
c

2
x2i + bxiX,

where X = x1 + . . .+ xn is the aggregate, a, c > 0 and b 6= 0. A typical economic example

of an aggregative game, the Cournot oligopoly, is an example of such a game for b < 0. In

the linear-quadratic Cournot oligopoly players are firms, they choose production quantities

qi, the total production is Q = q1 + . . .+ qn, the inverse demand function is P (Q) = a+ bQ

and cost functions are C(qi) = c
2q

2
i . Dixon and Somma (2003) and Müller and Normann

(2005) analyzed the evolutionary stability of consistent conjectures in such a case for b < 0

and n = 2.

Suppose that the players have some conjectures r = (r1, . . . , rn). The necessary condi-

tions for profit maximization at an interior solution for each player is

a− cxi + brixi + bX = 0, i = 1, . . . , n.

Suppose that x1 is allowed to vary freely, while x2, . . . , xn are chosen optimally. Then

from the above equations

(br2 − c+ b)x2 + bx3 + . . . + bxn = −a− bx1
bx2 + (br3 − c+ b)x3 + . . . + bxn = −a− bx1
· · · · · · · · · · · · · · ·
bx2 + bx3 + . . . + (brn − c+ b)xn = −a− bx1

Let

A =


br2 − c+ b b . . . b

b br3 − c+ b . . . b
...

...
. . .

...

b b . . . brn − c+ b


and let Ai be the matrix obtained from matrix A by substituting the column vector (−a−
bx1) (11 . . . 1)′ of the right-hand sides of the equations in place of column i of matrix A.

Then x∗i = |Ai|
|A| and X∗ = x1 +

∑n
i=2 x

∗
i = x1 + 1

|A|
∑n

i=2 |Ai| = x1 + 1
|A|(−a− bx1)

∑n
i=2 |Âi|,

13



where Âi is the matrix obtained from matrix Ai by having column (−a − bx1) (11 . . . 1)′

replaced by (11 . . . 1)′. Since neither |A| nor |Âi| depend on x1, the relationship between

X∗ and x1 is linear, thus the constant conjectures about dX∗

dx1
are justified in this setting at

an interior equilibrium.

If the players other than Player 1 all have the same conjecture r = dX
dxi

, the necessary

conditions for profit maximization for each of the players are a− cxi + brxi + bX = 0. The

second-order conditions −c + 2br < 0 are satisfied for r < c
2b if b > 0 and for r > c

2b if

b < 0. Adding up the first-order conditions for the n− 1 players other than Player 1 gives

(n−1)a−c(X−x1)+br(X−x1)+(n−1)bX = 0. Therefore X∗ = c−br
c−br−(n−1)bx1+ (n−1)a

c−br−(n−1)b
and dX∗

dx1
= c−br

c−br−(n−1)b . A symmetric consistent conjecture is then characterized by

r =
c− br

c− br − (n− 1)b
. (6)

If b > 0, the quadratic equation can have zero, one, or two solutions satisfying the

second-order condition constraint r < c
2b depending on the parameter values. The case

b < 0 is simpler. If b < 0, Equation (6) has one root rC between 0 and 1 because at r = 0

the right hand side is c
c−(n−1)b > 0, and at r = 1 the right hand side is c−b

c−b−(n−1)b < 1.

The other root is r < c
b <

c
2b , violating the second-order condition for the maximization

problem. Thus for any n > 1 there is a unique symmetric consistent rC ∈ (0, 1).5

The condition for r to be consistent can be rewritten as crC−br2C−(n−1)brC−c+brC = 0.

Then drC
dn = − −brC

c−2brC−(n−2)b < 0 for rC ∈ (0, 1). The symmetric consistent conjecture

decreases as n increases. As n → ∞, then rC → 0. With infinitely many players, the

consistent conjecture is that one player has no influence on the aggregate.

If all players have the same conjecture r, the equilibrium is characterized by n first-order

conditions a − cxi + bxir + bX = 0. Adding them up gives na − cX + brX + nbX = 0, or

X = na
c−br−nb . The standard Nash equilibrium is obtained by taking conjectures r = 1, since

then dX
dxi

= 1. In the context of the Cournot oligopoly xi are production quantity choices.

Then the total quantity X with consistent conjectures rC < 1 for all players for a given n

is larger than the total quantity for Nash conjectures r = 1.

If all players have consistent conjectures, X = na
c−brC−nb and dX

dn = a(c−brC+nb·drC/dn)
(c−brC−nb)2 .

Since drC
dn < 0, then dX

dn > 0. In the Cournot oligopoly setting, quantity monotonically

increases with n if conjectures adjust to be consistent.

5This corresponds to the negative consistent conjecture δ =
d(

∑
j 6=i xj)

dxi
= ri − 1 for negatively sloped

demand functions in Perry (1982).
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If conjectures are r = 0, then X = na
c−nb . Again, if xi are quantity choices and P = a+bX

is the demand function, then this is the perfectly competitive outcome arising from price-

taking behavior. Since marginal cost is cxi, the individual supply is P = cxi, or xi = P/c.

The total supply is XS = n
cP and the inverse supply is P = c

nXS . Equating demand and

supply gives c
nX = a+ bX, or X = na

c−nb . Thus zero conjectures about the aggregate, which

characterize aggregate-taking behavior, mean competitive (Walrasian) equilibrium for any

number n of firms in this setting.

Proposition 2 shows that only a consistent conjecture rC can be evolutionarily stable in

an infinite population of players randomly matched to play the n-player game. To check

whether the consistent conjecture is indeed evolutionarily stable in the current setting with

b < 0, consider the maximization problem

max
r1

π1 = ax∗1(r1, r−1)−
c

2
(x∗1(r1, r−1))

2 + bx∗1(r1, r−1)X
∗(r1, r−1), (7)

where the conjectures of n− 1 players other than Player 1 are r−1 = (rC , . . . , rC).

The equilibrium values ofX∗ and x∗1 are found from the conditions a−cx∗1+br1x
∗
1+bX∗ =

0 and n− 1 conditions a− cx∗i + bx∗i rC + bX∗ = 0 for i 6= 1. The latter conditions add up

to (n− 1)a− c(X∗ − x∗1) + brC(X∗ − x∗1)− (n− 1)bX∗ = 0, or (n− 1)a− (c− brC − (n−
1)b)X∗ + (c− brC)x∗1 = 0. Thus,

b
dX∗

dr1
+ −(c− br1)

dx∗1
dr1

+ bx∗1 = 0

−(c− brC − (n− 1)b)
dX∗

dr1
+ (c− brC)

dx∗1
dr1

= 0

Let A = b(c − brC) − (c − br1)(c − brC − (n − 1)b). Then dX∗

dr1
= 1

A(−bx∗1)(c − brC) and
dx∗1
dr1

= 1
A(−bx∗1)(c− brC − (n− 1)b).

Maximizing function (7), the first order condition is dπ1
dr1

= a
dx∗1
dr1
− cx∗1

dx∗1
dr1

+ b(X∗
dx∗1
dr1

+

x∗1
dX∗

dr1
) = 0, or dπ1

dr1
= bx∗1

(
dX∗

dr1
− r1

dx∗1
dr1

)
= 0. If x∗1 6= 0, the only solution of this equation

is if r1(c− brC − (n− 1)b) = c− brC , which means that r1 = rC .

The second-order condition for maximization is d2π
dr21

= b
dx∗1
dr1

(dX
∗

dr1
− r1

dx∗1
dr1

) + bx∗1(
d2X∗

dr21
−

dx∗1
dr1
− r1

d2x∗1
dr21

). At r1 = rC , the first term is zero. Also, since d2X∗

dr21
= −b(c − brC)

d(x∗1/A)
dr1

and
d2x∗1
dr21

= −b(c− brC − (n− 1)b)
d(x∗1/A
dr1

, d2X∗

dr21
− r1

d2x∗1
dr21

= 0 at r1 = rC because c− brC =

rC(c − brC − (n − 1)b). Thus d2π
dr21

= −bx∗1
dx∗1
dr1

. Since at r1 = rC ,
dx∗1
dr1

=
−bx∗1

2brC−c < 0, the

second-order condition is satisfied.
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For finite populations, only the conjecture r = 0 can be evolutionarily stable. Consider

the maximization problem

max
r1

(a+ bX∗(r1, r−1))(x
∗
1(r1, r−1)− x∗n(r1, r−1))−

c

2
((x∗1(r1, r−1))

2 − (x∗n(r1, r−1))
2) (8)

where the conjecture of n− 1 firms is r−1 = (0, . . . , 0).

The equilibrium values of X∗, x∗1 and x∗i are found from the conditions a+ bX∗ − (c−
br1)x

∗
1 = 0 and n− 1 conditions a+ bX∗− cx∗i = 0 for i 6= 1. The last conditions add up to

(n − 1)a + (n − 1)bX∗ − c(X∗ − x∗1) = 0, or (n − 1)a − (c − (n − 1)b)X∗ + cx∗1 = 0. From

these two conditions,

b
dX∗

dr1
+ −(c− br1)

dx∗1
dr1

+ bx∗1 = 0

−(c− (n− 1)b)
dX∗

dr1
+ c

dx∗1
dr1

= 0

Let A = bc− (c− br1)(c− (n− 1)b). Since r1 >
c
2b >

c
b , A < 0. Then dX∗

dr1
= 1

A(−bx∗1)c < 0

and
dx∗1
dr1

= 1
A(−bq∗1)(c−(n−1)b) < 0 at interior q∗1. Note also that since x∗n = 1

n−1(X∗−x∗1),
dx∗n
dr1

= 1
A(−b2x∗1) > 0.

Maximizing function (8), the first order condition is (a+ bX∗)(
dx∗1
dr1
− dx∗n

dr1
) + bdX

∗

dr1
(x∗1 −

x∗n)− cx∗1
dx∗1
dr1

+ cx∗n
dx∗n
dr1

= 0. From the equilibrium equations, a+ bX∗ − cx∗1 = −br1x∗1 and

a + bX∗ − cx∗n = 0 thus the condition becomes bdX
∗

dr1
(x∗1 − x∗n) − bx∗1r1

dx∗1
dr1

= 0. If r1 > 0,

then q∗1 < q∗n and thus the first term on the left-hand side is negative, and so is the second

term. Similarly, if r1 < 0, then q∗1 > q∗n and thus the first term is positive, and so is the

second term. Thus the only solution of the first order condition is r1 = 0. Note also that

the sign of the left-hand side for r1 < 0 and for r1 > 0 imply that the function is indeed

maximized at r1 = 0.

The results can be summarized as

Proposition 4 In the linear-quadratic game of this section with b < 0, which includes

Cournot oligopoly,

(i) the consistent conjecture rC ∈ (0, 1) satisfying rC = c−brC
c−brC−(n−1)b is the unique evolu-

tionarily stable conjecture for infinite population;

(ii) the aggregate-taking conjecture r = 0 is the unique finite population evolutionarily

stable conjecture.
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4.2 Rent-seeking game

Consider the following rent-seeking game. Players choose expenditures xi ∈ R+. The

probability that Player i wins a prize of value V > 0 is xi∑n
j=1 xj

. The payoff of Player i is

ui(xi, X) =
xi
X
V − xi,

where X = x1 + . . .+ xn is the aggregate. If X = 0, let ui = 1/n.

An interior solution of the maximization problem of Player i with conjecture ri is char-

acterized by 1
XV − 1− xi

X2V ·B
[
dX
dxi

]
= 0, or

X − xiri
X2

V − 1 = 0.

The second order condition− (X−xiri)2Xri
X4 V < 0 is satisfied locally at the solution of the first-

order condition for ri > 0. The first-order condition can be rewritten as XV −xiriV −X2 =

0. If X−i = X − xi, the equation becomes −x2i + (V − riV − 2X−i)xi +X−i(V −X−i) = 0.

If V −X−i > 0, then there is unique root of this equation on R+, therefore the solutions of

the first-order condition is an optimal choice for Player i.

If ri = 0, then the first order condition becomes V/X − 1 = 0, or x∗i = V − X−i. If

xi < x∗i , then the left-hand side of the first order condition equation is positive, and if

xi > x∗i , the left-hand side is negative. Thus the solution of the first order condition is an

optimal choice in this case as well.

Consider the n − 1 players other than Player 1 having conjecture r. Adding up the

n − 1 first order conditions, (n − 1)XV − rV (X − x1) − (n − 1)X2 = 0. Then dX
dx1

=

− rV
(n−1)V−rV−2(n−1)X .

Suppose that all players have the same conjecture. Adding up the n first-order conditions

leads to nXV − rXV − nX2 = 0, or X = n−r
n V (assuming r < n to have the interior X).

The consistency condition for r is r = − rV
(n−1)V−rV−2(n−1)(n−r)V/n , or

r = − r

n− 1− r − 2(n− 1)n−rn
.

The condition further simplifies to n− 1− r − 2(n− 1)n−rn = −1, or (n− r)(2− n) = 0.

If n = 2, then the condition is satisfied for any r and thus any conjecture r is consistent.6

In Possajennikov (2009) it is shown that any r ∈ (0, 2) is then evolutionarily stable. If n 6= 2,

6Perry (1982) notes this result in the equivalent (in terms of payoffs) Cournot duopoly game with unit-

iso-elastic inverse demand function P (Q) = aQ−1 and constant marginal cost.
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then only r = n can be consistent. However, then X = 0 which is not an interior solution

and thus the analysis is not applicable to it since consistency is not well defined at the

boundary. Nevertheless, it can be said that no conjecture leading to an interior solution

can be evolutionarily stable for infinite population because no such conjecture is consistent.

To analyze the evolutionary stability in finite population, recall that only conjecture

r = 0 can be evolutionarily stable. Consider the maximization problem

max
r1

x∗1(r1, r−1)

X∗(r1, r−1)
V − x∗1(r1, r−1)−

x∗n(r1, r−1)

X∗(r1, r−1)
V − x∗n(r1, r−1) (9)

where the conjectures of n− 1 players r−1 = (0, . . . , 0).

The equilibrium values of X∗, x∗1 and x∗i are found from the conditions X∗V − x∗1r1V −
(X∗)2 = 0 and n − 1 conditions X∗V − (X∗)2 = 0 for i 6= 1. From the latter conditions

X∗ = V as the unique interior solution. Then the first condition becomes −x∗1r1V = 0.

If r1 > 0, then the equilibrium x∗1 = 0 and Player 1 gets 0 payoff. If r1 = 0, then

the equilibrium x∗1 can be positive but since X∗ = V , players with positive xj also have

0 payoff. Therefore r = (0, . . . , 0), although not evolutionarily stable, can be considered

neutrally stable: a player with any other conjecture ri > 0 does not get a higher payoff than

the player with rj = 0.

Proposition 5 In the symmetric rent-seeking game with probability of winning xi
X ,

(i) if n = 2, then any conjecture r ∈ (0, n) is consistent and evolutionarily stable for

infinite population; if n > 2, then no conjecture leading to an interior solution is

consistent or evolutionarily stable;

(ii) For finite population, no conjecture is evolutionarily stable; the aggregate-taking con-

jecture r = 0 is the unique neutrally stable conjecture for finite population.

5 Conclusion

In this paper I consider conjectural variations for aggregative games as beliefs about the

change in the aggregate in response to a (marginal) change in a player’s strategy. I show that

if players are endowed with such conjectures, play an equilibrium of the game with these

conjectures and obtain some payoff in this equilibrium, then only consistent conjectures can

be evolutionarily stable in infinite population. This means that a player with a different
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conjecture would get a lower payoff than a player with a consistent conjecture if players are

randomly matched in groups of n to play the game. An alternative interpretation is that if

the choice of conjecture was a conscious decision, then choosing a consistent conjecture is

a best response against any conjectures of the other players.

In a finite population, zero conjectures are evolutionarily stable. Zero conjecture here

means that a player does not expect the aggregate to change in response to a change in

the player’s own strategy. Such a conjecture commits the player to choose a behavior that

maximizes the difference between the player’s payoffs and the payoff of any other player (in

a symmetric game with the other players using the same strategy, it does not matter which

other player is considered). This is because in this situation the influence on player’s own

payoff and on another player’s payoff through the aggregate cancel out, thus if the player

is concerned about relative payoffs, the change in the aggregate can be ignored.

The results are illustrated on the examples of aggregative game settings that include

Cournot oligopoly and rent-seeking games. In the linear-quadratic Cournot oligopoly the

consistent conjecture leads to more production than the Nash equilibrium conjecture, which

implies zero response of the other players. This consistent conjecture is shown to be evo-

lutionarily stable. The zero conjecture leading to the aggregate-taking behavior (which

means price-taking behavior in this context) is finite population evolutionarily stable. In

rent-seeking games no conjecture leading to well-defined interior behavior is consistent if

the number of players n > 2, while if n = 2 any conjecture r ∈ (0, n) is consistent and evo-

lutionarily stable. Aggregate-taking behavior implied by the finite population (neutrally)

evolutionarily stable conjecture lead to full dissipation of the rent for any n.
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