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Abstract

In parliamentary elections biproportional divisor methods translate votes into seats so
that, for each district, fixed seat contingents are met and that every party receives as many
seats as the overall vote counts reflect. A set of district-divisors and party-divisors ensures
that proportionality is respected both within the districts and within the parties. The
divisors can be calculated by means of the alternating scaling algorithm (AS-algorithm)
which is formally introduced. It is the discrete variant of the iterative proportional fitting
procedure (IPF-procedure). The AS-algorithm iteratively generates scaled vote matrices
that after rounding alternately fulfill the district-contingents and the party-seats. Thus
it defines two sequences: the AS-seat-sequence and the AS-scaling-sequence. The central
question in this paper is under which condition the AS-algorithm is able to generate the
set of biproportional apportionments. The conjecture of Balinski & Pukelsheim (2006)
is proven stating that the AS-algorithm is effective for all biproportional apportionment
problems that come with at most a few ties. In the rare event that the set of bipro-
portional apportionments cannot be determined by the AS-algorithm, the complementary
AS-Tie&Transfer-combination puts things right. Its analysis leads to a constructive proof
of necessary and sufficient conditions for the existence of biproportional apportionments.
If these conditions are violated, the sequences generated by the AS-algorithms may have
more than two accumulation points. On the contrary, the IPF-procedure has at most two
accumulation points.

Keywords: alternate scaling algorithm, biproportional representation, biproportional
electoral system, divisor methods, iterative proportional fitting, controlled rounding.

1. Introduction and main results

In numerous parliamentary elections the electoral area is subdivided into several districts. For
example the election to the European Parliament takes place in 27 Member States and in Ger-
man federal elections seats are allocated to parties that campaign in 16 Lander. A bipropor-
tional electoral system, first introduced by Balinski & Demange (1989a,b) and Gassner (1989,
1991), secures proportionality with respect to the population figures of each district as well as
the parties’ total vote counts. It had its world premiere in 2006 during the Zurich municipal
election (Pukelsheim & Schuhmacher, 2004). Thereafter biproportional systems were applied
during the municipal elections in Schaffhausen 2008, Aarau 2009, and Zurich 2010, and cantonal
elections in Zurich 2007 and 2011, Schaffhausen 2009 and Aargau 2009 (Pukelsheim & Schuh-
macher, 2011). As an example table 2 displays vote counts and the resulting biproportional
apportionment for the Zurich cantonal election in 2011.

In Switzerland biproportional apportionments are determined by the algorithm of alternating
scaling (AS-algorithm). The AS-algorithm is a procedure for scaling rows and columns of an
input (k x £)-vote-matriz V = (vj),vi; > 0, so that the output biproportional apportionment
B = (bi;),bi; € Ny achieves row sums equal to a pre-specified vector of district-contingents
r = (r1,...,7%) € N¥_ and column sums equal to a pre-specified vector of party-seats s =
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(s1,...,80) € N'. District-contingents are generally determined in proportion to the districts’
population figures. Party-seats are generally determined in proportion to the votes cast across
the entire electoral area. The AS-algorithm performs what proportionality is about: Scale and
round! Scaling within electoral districts achieves proportionality among the parties campaigning
in that district. Scaling within parties secures parties to be handled proportionally across all
districts. A final rounding step is inevitable, as deputies come in whole numbers.

The AS-algorithm iteratively calculates the AS-scaling-sequence V(t) = (vi;(t)),t = 1,2, etc.,
which emerges from the vote-matrix V by scaling rows and columns. Furthermore, the AS-
algorithm generates the AS-seat-sequence A(t) = {A = (ai;) € NE¥ | a5; € [ui; (0]}t = 1,2,
etc., where [-] is a pre-specified rounding-rule. To make sure that the AS-seat-sequence fulfills
the district-contingents in odd steps 2t — 1 and complies with the party-seats in even steps 2t
the AS-scaling-sequence has to be chosen carefully. If the AS-seat-sequence converges then the
set of biproportional apportionments B(V,r,s) is determined, there exists a time ¢t such that
A(t) = B(V,r,s). Otherwise there exists at least two accumulation points. In practice the set
of biproportional apportionments is unique. However, ties are not impossible. If that should
happen the election supervisor draws lots or other—sometimes very peculiar—rules apply. From
a mathematical point of view ties are also very interesting. Amongst others they cause the rare
events in which the AS-algorithm fails to determine the set of biproportional apportionments.

We study the AS-algorithm’s convergence via an Li-approach, as do Balinski & Demange
(1989b). To this end we measure the progress of the AS-seat-sequence via the Lj-error

F@&) = FA) = air — il + > lay; — s,

i<k j<t

for any apportionment A = (a;;) € A(t), where a;4 and a4, indicate, respectively, the sum
of entries in row ¢, and column j. The Li-error is suggestive in that it counts along rows
and columns how many seats are not yet adjusted. Usually the AS-algorithm determines
exactly one apportionment in each step. Due to possible ties within the district or party
adjustments multiple solutions may arise. Even more, their Li-errors may vary. Therefore
we define the AS-seat-sequence so that it comprises only the apportionments that minimize
the Li-error. The first versions of the Augsburg free-software BAZI (2013) had flaws in the
minimizing procedure, such that data as in example 1 can only be handled since version 2012.07.
Due to the minimizing step the AS-seat-sequence’s Li-error is well-defined and monotonically
decreasing. Moreover it is bounded from below by the Li-minimal-error Apin. Li-minimal-error
vanishes if and only if a biproportional apportionment exists. Existence, in turn, is checked via
the flow-criterion (proposition 4). Consequently the Li-error converges to the AS-limit-error
Aas (proposition 5). The Lj-minimal-error and the AS-limit-error are essential for the AS-
algorithm’s analysis. In case the two figures coincide, Apnin = Aas, the AS-algorithm is called
effective. Otherwise the AS-algorithm is called ineffective and the AS-limit-error is bounded
from above by the ineffectiveness-error Aiﬁﬁ > AAS > Amin (proposition 6). Summing up, our
analysis concentrates on three different error terms:

(1) Li-minimal-error A\pin: The Li-error of the AS-seat-sequence is bounded from below by
the Lj-minimal-error, for all ¢ > 1 we get f(t) > Anin-

(2) AS-limit-error Aps: The Li-error converges to the AS-limit-error, there exists a time ¢
such that for all ¢ > ¢’ we have f(t) = f(t 4+ 1) = Aas > Amin-

(3) Ineffectiveness-error Aﬁﬁﬁz In case the AS-algorithm is ineffective, the AS-limit-error is

bounded from above by the ineffectiveness-error, if Aag > Apin then AR > ) AS.-

ineff =

Theorem 1 shows that the AS-algorithm is always effective, if the set of biproportional appor-
tionments comprises at most two ties, or if k- £ < 24 holds for the number of districts and
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the number parties. As ties are rare the AS-algorithm works fine for all practical purposes.
Thus theorem 1 substantiates the conjecture of Balinski & Pukelsheim (2006). In case the
flow-criterion is violated the AS-seat-sequence A(t) has two or more accumulation points (the-
orem 2). This result is somehow astonishing as the IPF-procedure—the continuous analogon
which gets along without rounding—has at most two accumulation points. Concerning the AS-
scaling-sequence V (t) theorem 3 states that convergence is on hand in case of ineffectiveness.
Otherwise V(t) may converge or diverge. Examples of the different scenarios are included in
section 4. A juxtaposition of the (discrete) AS-algorithm and the (continuous) IPF-procedure
is included in table 1.

*Effectivity / ¢L;-minimal-error/ 9AS- f AS-seat-sequence A(t)  9Scaling-sequence
bFlow-criterion  boundary/“Ineffectiveness V(¢)

AS-algorithm effective:

fulfilled AS = Amin =0 convergent convergent

violated AAS = Amin > 0 > 2 accumulation pts. div. or conv.
AS-algorithm ineffective:

fulfilled Ai;eﬁ > AAS > Amin =0 2 accumulation points convergent

violated Al g > Aas > Amin >0 2 accumulation points convergent
IPF-procedure:

ulfilled convergent

violated 2 accumulation pts.

“Theorem 1. ®Proposition 4. “Definition 3. *Definition 4. °Definition 6. f Theorem 2. 9Theorem 3.

Table 1: AS-algorithm. Effectivity, that is Axas = Amin: If the flow-criterion is fulfilled, then the
AS-seat-sequence determines the set of biproportional apportionments and the AS-scaling-sequence
converges. Otherwise the AS-seat-sequence has at least two accumulation points and the AS-scaling-
sequence either converges or diverges. Ineffectivity, that is Aag > Amin: Independent from the flow-
criterion the AS-limit-error is bounded from above by the ineffectiveness-error, the AS-seat-sequence
has two accumulation points and the AS-scaling-sequence converges. IPF-procedure: The flow-criterion
is fulfilled, if and only if the IPF-sequence converges. Otherwise it has two accumulation points.

1.1. Literature survey

An apportionment method is a mathematical provision to translate vote counts into seat num-
bers. On the basis of the apportionment problem in the American House of Representatives
the monograph by Balinski & Young (2001) elucidates different methods that were in use
throughout history. Furthermore it discusses their mathematical properties. The difficulty in
the translation of votes is the determination of integer seat numbers that are proportional to
the votes and that sum up to a given house size. For divisor methods the votes are divided by
a common divisor and the resulting quotients are rounded by a pre-specified rounding rule. In
order to comply with the given house size, the divisor has to be chosen carefully.

If an electoral area is subdivided into several districts, a monoproportional apportionment
method does not suffice. If fixed seat contingents are prescribed for the districts, a natural
claim is to secure proportionality within both, the districts and the parties. To this end a
biproportional divisor method secures a two-way proportionality. Votes are divided by party-
specific and district-specific divisors. The resulting quotients are rounded by a pre-specified
rounding rule. In order to fulfill both, district-contingents and party-seats, the divisors have
to be chosen carefully. To determine a feasible set of divisors Balinski & Demange (1989b)
introduce the Tie&Transfer-algorithm. Its analysis leads to the flow-criterion—a necessary and
sufficient condition for the existence of biproportional apportionments. The flow-criterion is
violated if the total number of seats of some set of parties exceeds the number of seats that are
rewarded to the districts in which these parties campaign.
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Balinski & Pukelsheim (2006) propagate the algorithm of alternate scaling (AS-algorithm).
Due to its intuitive line of action of alternately fitting district-contingents and party-seats
the AS-algorithm is more attractive than the Tie&Transfer-algorithm. However, Gaftke &
Pukelsheim (2008b) work out special problems for which the AS-algorithm fails to determine
the set of biproportional apportionments. Balinski & Pukelsheim (2006) conjecture that these
pathological instances only appear in case of especially complicated ties. Maier (2008) and
Maier et al. (2010) discuss the interplay between the AS-algorithm and the Tie&Transfer-
algorithm. Intensive simulations suggest that the hybrid algorithm, which starts with alternate
scaling and then switches to the Tie&Transfer-algorithm, is faster than the simple algorithms.
However, Maier (2008, page 49) ignores multiple solutions in his definition. Consequently his
Lq-error is not well-defined and its monotonicity is not sufficiently backed up.

The AS-algorithm is the discrete analogon of the IPF-procedure. The IPF-procedure was pop-
ularized by Deming & Stephan (1940). It may be applied in statistics to fit contingency-tables
to pre-specified marginals. In the continuous variant the entries of the output biproportional
fit B = (b;;) are nonnegative real numbers, b;; € [0, 00). It is well known that the IPF-sequence
converges if and only if a biproportional fit exists (Bregman, 1967; Csiszar, 1975). If a bipro-
portional fit does not exist, then the IPF-sequence has exactly two accumulation-points (Gietl
& Reffel, 2012). A biproportional fit is generally displayed in (rounded!) decimals. In order not
to violate the given marginals Cox & Ernst (1982) (see also Gassner (1989, 1991) in connection
with electoral systems) discuss controlled roundings. However, the resulting apportionments
are rarely comprehensible, verifiable and involve a complicated algorithm.

In contrast, the AS-algorithm permits a calculation of district-divisors and party-divisors.
Once suitable divisors are publicized the outcome may be easily double-checked. Omne only
needs to take the input weight of any cell, divide its row divisor and its column divisor, and
round the quotient according to the pre-specified rounding rule. Thus—and despite rare cases of
ineffectivity—we also advocate its application in statistics. BAZI (2013) is an open-software that
computes biproportional apportionments. The user may choose to run the AS-algorithm, the
Tie&Transfer algorithm, or hybrid combinations of the two, as well as many other algorithms.

SVP SP FDP Griine glp CVP EVP BDP EDU AL Distr.-

votes votes votes votes votes votes votes votes votes votes divisor
180 54 35 23 19 19 9 7 6 5 3

Zurich 5 7356 11528 7327 5752 4404 1863 574 0 364 939 7000
Kr. 1,2 0.9-1 1.4-1 0.9-1 0.7-1 0.6-1 0.3-0 0.1-0 0.1-0 0.2-0

Zirich 12 43229 62 846 16278 30034 21426 10762 5448 3561 1525 9990 15200
Kr. 3,9 2.51-3 3.47-3 0.9-1 1.8-2 1.3-1 0.7-1 0.4-0 0.3-0 0.2-0 0.8-1

Zurich 5 3503 11620 1851 6 287 3806 1131 396 0 110 3997 6300
Kr. 4,5 0.49-0 1.55-2 0.2-0 0.9-1 0.55-1 0.2-0 0.1-0 0.03-0 0.8-1

Ziirich 9 25336 46 638 18416 23212 18495 6068 3428 2537 1059 6537 14 000
Kr. 6,10 1.6-2 2.8-3 1.1-1 1.48-1 1.2-1 0.4-0 0.3-0 0.2-0 0.1-0 0.6-1

Zurich 6 13257 18816 15196 12849 9791 3597 1615 1614 388 1929 10000
Kr. 7,8 1.2-1 1.6-2 1.3-1 1.1-1 0.9-1 0.4-0 0.2-0 0.2-0 0.1-0 0.2-0

Zirich 12 45238 46 035 13978 18774 15810 10414 5787 3710 2707 3549 11300
Kr. 11,12 3.53-4 3.4-3 1.0-1 1.48-1 1.3-1 0.9-1 0.6-1 0.4-0 0.4-0 0.4-0

Dietikon 1T 55351 27477 25552 11641 8798 11970 5835 3036 1770 1838 13000
3.8-4 1.8-2 1.7-2 0.8-1 0.6-1 0.9-1 0.499-0 0.3-0 0.2-0 0.2-0

Affoltern 6 22553 11314 9566 7708 8021 2364 5529 3600 1957 311 13000
1.53-2 0.7-1 0.6-1 0.53-1 0.6-1 0.2-0 0.47-0 0.4-0 0.2-0 0.03-0

Horgen 15 114747 69270 66 809 34602 37419 30096 17654 14387 6212 1874 22500
4.49-4 2.6-3 2.495-2 1.4-1 1.502-2 1.3-1 0.9-1 0.9-1 0.4-0 0.1-0

Meilen 13 108013 45 805 78678 27687 42106 15133 8284 8997 8385 1438 25400
3.7-4 1.52-2 2.6-3 1.0-1 1.497-1 0.6-1 0.4-0 0.49-0 0.5002-1 0.1-0

Hinwil 12 87214 33077 23732 21943 22578 13890 13391 10313 16079 1455 20000
3.8-4 1.4-1 1.0-1 1.0-1 1.0-1 0.7-1 0.7-1 0.7-1 1.2-1 0.1-0

Uster 16 131223 72078 44 655 33690 54143 17558 10 546 28127 10376 3181 25000
4.6-5 2.4-2 1.501-2 1.2-1 2.0-2 0.7-1 0.47-0 1.54-2 0.6-1 0.2-0

Pfaeffikon 7 35166 14327 9793 10527 9055 2995 6 187 4820 4471 372 13600
2.3-2 0.9-1 0.6-1 0.7-1 0.6-1 0.2-0 0.51-1 0.49-0 0.498-0 0.03-0

Winterthur- 13 67083 67232 33605 45258 31774 18625 16519 8143 7136 8233 22000
Stadt 2.7-3 2.6-3 1.3-1 1.8-2 1.3-1 0.8-1 0.8-1 0.51-1 0.49-0 0.47-0

Winterthur- 7 38482 13294 10734 7994 9847 3768 6354 4292 3228 330 14000
Land 2.4-2 0.8-1 0.6-1 0.51-1 0.6-1 0.3-0 0.504-1 0.4-0 0.3-0 0.03-0

Andelfingen 4 14904 5046 4442 3817 2643 778 998 2527 1226 163 7000
1.9-2 0.6-1 0.53-1 0.49-0 0.3-0 0.1-0 0.2-0 0.49-0 0.3-0 0.03-0

Buelach 17 155561 71493 51130 32137 39438 17222 17081 21598 15889 3016 24000
5.7-6 2.503-3 1.8-2 1.2-1 1.48-1 0.7-1 0.8-1 1.2-1 1.0-1 0.2-0

Dielsdorf 10 66 891 22947 15321 12290 14946 6217 3398 3981 7583 546 13000
4.53-5 1.48-1 1.0-1 0.8-1 1.0-1 0.48-0 0.3-0 0.4-0 0.9-1 0.1-0
Party- 1.135 1.19 1.19 1.12 1.107 1 0.9 0.73 0.66 0.8

afvior I | | | | | | | | I

Table 2: Cantonal elections Zurich 2011. Votes are divided its district- and party-divisors. Decimals
below .5 are rounded downwards, decimals above .5 are rounded upwards. The resulting integers display
the biproportional apportionment. For example the SVP gained 7356 votes in the district of Zurich
Kreis 14+2. Divided by the respective divisors the quotient is 7356/(7000 - 1.135) = 0.9. Standard
rounding yields one seat. The set of feasible divisors is determined by the AS-algorithm after 72 steps
(variant ‘midpoint’). Source: Pukelsheim & Schuhmacher (2011).
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2. Divisor methods

Divisor methods determine apportionments, i.e. integer vectors or matrices with entries ob-
tained by rounding scaled votes. We shall first introduce the notion of rounding rules as
defined by Gaftke & Pukelsheim (2008a). Rounding rules come with a one-to-one correspon-
dence with signpost sequences. These designate dividing points below which quotients are
rounded downwards and above which quotients are rounded upwards. By definition, a signpost
sequence s(1),s(2), ... equips each integer interval [n — 1,n] with a signpost s(n) € [n — 1, n],
with the sole restriction that there is no pair of two subscripts (n,n’) € NxN with s(n) = n and
s(n') =n’—1. A signpost sequence defines a rounding rule [-] from the half-line [0, c0) into one-
or two-element integer subsets, through [0] := {0} and [v] :={b € Ny | s(b) <v <s(b+1)}
for all v > 0. For v > 0 the definition may be restated in terms of the basic-relation

bev] <= sb) <v<s(b+1). (1)

Rounding rules are monotonic in that 0 < v/ < v implies b’ < b for all ¥ € [v'] and b € [v].
The boundary value v = 0 is special as it is always rounded to the singleton {0}. For positive
arguments v > 0, a rounding rule returns the singleton {b} as long as v stays away from its
neighboring signposts, s(b) < v < s(b+ 1) implies [v] = {b}. Ties of the sort v = s(b) > 0
attract more attention. In such cases v lies in two intervals, [s(b— 1), s(b)] and [s(b), s(b+ 1)],
such that two options are at hand: v may be rounded downwards to b — 1, or rounded upwards
to b. Thus, the rounding rule returns a two-element set, [v] = {b — 1,b}.

A rounding rule is called pervious when the first signpost is positive, s(1) > 0, and impervious
when the first signpost is zero, s(1) = 0. A pervious rounding rule maps arguments below
s(1) > 0 to zero, v < s(1) implies [v] = {0}. An impervious rounding rule yields zero if and
only if the input is zero: v = 0 if and only if [v] = {0}.

For practical purpose rounding rules are often defined by stationary signpost sequences,
sr(n) :=n—1+r for r € [0,1]. The signpost sequence s1(n) := n defines rounding downwards
l-]], the signpost sequence so5(n) :=n —1/2 yields standard rounding (- ), and so(n) :=n—1
specifies rounding upwards [[-]]. For example we get

[15] = 1 (15) = {1,2} [15] = 2
12l = {12} (2) = 2 21 = {2,3}

2.1. Monoproportional apportionments

Let (v, h,[-]) define a monoproportional apportionment problem, where v = (v1,...,v¢) is a
positive vote-vector, h denotes an integer house-size, and [-] defines a rounding rule.

Definition 1 (Monoproportional apportionment). An integer vector b = (by,...,bs) € N§ is
called monoproportional apportionment (based on vote-vector v and house-size h) when there
exists a positive divisor D, such that the entries b; are obtained by scaling and rounding,
bj € [v;/D] for all parties j < ¢, and fit the house-size, by := by + --- + by = h. The set
b(v,h) is defined to include all monoproportional apportionments. A positive divisor D is
called feasible when there exists a monoproportional apportionment b = (b;) € b(v, h) so that
b; € [vj/D] for all parties j < £.

Let b = (b;) € b(v, h) be a monoproportional apportionment. The basic-relation (1) translates
to the min-maz inequality
s(b) o 80+ 1)

max < min ————~ (2)
i<t v T o<é v,
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With the convention v;/0 := oo all divisors taken from the divisor-intervall

’Uj . ’Uj
[ma gy ®

result in the same set of monoproportional apportionments. In the rare case that the divisor-
intervall is degenerated to a singleton, there exist two parties j; # jo with D = ﬁ = %

J1 2
For the quotients vj, /D and vj,/D the rounding rule is ambiguous,

[%] = (b, + D1 = (b s + 13 and - [22] = [s(b1)] = {b — 1,bi}-

For party j; the quotient v;, /D is rounded downwards and for party jo the quotient vj,/D is
rounded upwards. Pari passu the quotient v;, /D may be rounded upwards and the quotient
vj,/D may be rounded downwards. Hence V', defined by b := bj, + 1, b}, := bj, — 1 and
b;- := b; for j # ji,j2, is another monoproportional apportionment, b # b € b(v, h). In this
case the apportionments b and b’ are called ties.

Proposition 1 (Uniqueness). If a monoproportional apportionment ezists, then it is unique
up to ties.

Proof. Assume that two monoproportional apportionments do not result from the same divisor,
bj € [v;/D] and b € [v;/D'] for all j < £ and D # D'. If b # b', then there exists a party ji
with bj, > b . The rounding rule’s monotonicity implies D < D’. Since both apportionments
fulfill the house-size h, there exists another party j» with b;, < b, and thus D > D’. Hence we
get D = D’ which is a contradiction to our assumption. O

Proposition 2 (House-criterion). In case the rounding-rule is pervious there always exists a
monoproportional apportionment b € b(v, h). In case the rounding-rule is impervious a mono-
proportional apportionment b € b(v, h) exists if and only if h > £.

Proof. Let the rounding rule be impervious. For A = 1 the divisor D = max;<,v;/s(1) is
feasible. The case h > 1 follows by induction. Let the rounding rule be impervious. For h = £
all divisors D > max;<,v;/s(2) are feasible. The case h > ¢ follows by induction. O

2.2. Biproportional apportionments

Let (V,r,s,[-]) define a biproportional apportionment problem, where V = (v;;) is a non-
negative (k x f)-vote-matrix, 7 = (r1,...,7%) € N¥ a vector of integer district-contingents,
s = (s1,...,50) € N® a vector of integer party-seats, and [-] a rounding rule. Without loss of
generality we assume that v, = s; holds and that V is connected, i.e. permutations of rows
and columns do not allow a representation

\ J Je

V(IXJ) 0 s
0 V(ICXJC)

where at least one of the subsets I or J is non-empty and proper.

V: I
IC

Definition 2 (Biproportional apportionment). An integer matrix B = (b;;) € ngxé is called

biproportional apportionment (based on vote-matrix V', district-contingents r and party-seats s)
when there exists a set of district-divisors * = (x1,...,2,) > 0 and party-divisors y =
(y1,...,y¢) > 0 so that all entries b;; are obtained by scaling and rounding, b;; € [vi;/(x:y;)],
and fit the marginals, b; = bj; + -+ + by = r; and by 1= by; + ---by; = s; for all districts
i < k and for all parties j < £. The set B(V,r,s) is defined to include all biproportional ap-
portionments. A set of divisors (x,y) > 0 is called feasible when there exists a biproportional
apportionment B = (b;;) € B(V,r,s) so that b;; € [vi;/(z;y;)] for all ¢ <k and all j < £.
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Gaffke & Pukelsheim (2008a, Theorem 7.1) show that any apportionment A = (a;;) € NE*¢
is a biproportional apportionment if and only if it fulfills the critical inequalities

T7 2) o e Dy ) € supp(v), (4)

p<q  iede p<q Vip+17p

J1) = (i2, J1) = (32, J2) = ... = (ig, Jq) = (41, q) is a cycle on V so that

where (i(g), j(q)) : (i1,
= {(2 ]) | U’LJ 7& 0} and ZP ¢ {Zla'-- 7Z.p*1}ajp ¢ {jla"wjpfl} for allp g q.

Zp,]p € supp( )

In practice the set of biproportional apportionments is a singleton, B(V,r,s) = {B = (b;;)}.
In this case the critical inequalities (4) are strict and a set of divisors (z,y) can be chosen such
that the rounding of the quotient v;;/(x;y;) is unique for all parties in all districts,

s(bij) < —2 < s(bij+1) Vi<k, Vj<L

ZiYj

In theorie, however, there might be a cycle (i1, j1) — (i2,j1) = ... = (ig,Jq) — (i1,7q) such
that (4) holds with equality,

Uipjp Uip+1jp
—2 — 5(b; 5 and —F— =3s(b; ., +1 Vp < gq.
xipyjp ( Zp]p) xierlyjp p+1Jp )

For party j, in district i, the quotient v;,j,/(zi,y;,) is rounded upwards while in district i,1
the quotient v;,, ,j,/(%i,,y,) is rounded downwards. Pari passu the quotient v;,;, /(4,y;,) may
be rounded downwards and the quotient v;,,,;,/(%i,,,y,) may be rounded upwards. Hence
B’ = (b};), defined by

bij -1 if (17]) = (ip,jp) for one p < q,
béj =q0b;;+1 if (1,7) = (/ip+l7jp) for one p < g, (5)
bij otherwise,

is another biproportional apportionment, B # B’ € B(V,r,s). In this case the apportionments
B and B’ are called ties. Balinski & Demange (1989a) and Gaffke & Pukelsheim (2008a) show
that biproportional apportionments are unique up to ties.

Proposition 3 (Uniqueness). If a biproportional apportionment exists, then it is unique up to
ties.

Proof. Our proof relies on Pukelsheim’s (2012) proof of his first theorem which states that
a continuous biproportional fit is unique. Let B = (b;;) and B’ = (b};) € B(V,r,s) be two
biproportional apportionments with b;; € [vi;/(2:y;)] and b;; € [vij/(usv;)]. Since marginal
sums of B and B’ coincide, r; = by = bj, and s; = by; = b’+j, unequal entries in some cells
must be evened out through unequal entries in other cells. We construct a cycle on the support
of the matrix B — B’. As v;j = 0 implies b;; = b;j = 0 all entries v;; along the cycle are
positive. We start in a cell (i, j1) with b;,;, > bgl j- The rounding rule’s monotonicity implies
i Yj < ui,vj,. For party ji there exists a district 4o with b;,;, < b;Q j, and thus z4,y5, > wi,vj, .
Furthermore for district s there exists a party jo with b;,;, > bw]2 and thus z;,y, < ui,vj,,
etc. The cycle closes in a cell (Zl,jq) with by, 5, < blqu and x;,y;, > wi,v;,. We get

H ‘ripyjp S H uipvjp = H U’ip+1vjp S H 'rip+1yjp = H xipyjp'
p<q p<q p<q p<q p<gq

Thus the sets of divisors coincide, HpS ¢ TipYi, = Hpi g WipVjp for all p < ¢q. By construction
b, . =b; ; —1and ¥ =b; + 1 holds. Hence, B and B’ are ties. O

ipdp ipJp ipt1Jp ip+1Jp



KAI-FRIEDERIKE OELBERMANN 8

Next we want to establish whether a biproportional apportionment exists. The following
notations turn out to be helpful. The partial sum of entries r; over a subset I C {1,...,k} is
denoted by rr:= 3, ;. For vectors s = (s1,...,5¢) and subsets J € {1,...,/} the notation
extends to sy := ZjeJ sj. Sums over the empty set are taken to be zero, ry = sy = 0. For
keeping track of the nonzero entries in the vote-matrix V' we associate with every district subset
I C{1,...,k} the set of parties connected in V to I, Jy (1) :== {j < £ |v;; > 0 for some i € I}.
The complement Jy (1) := {1,...,¢}\Jy(I) embraces parties j with v;; = 0 in all districts
i € I. Hence the (I x Jy(I)¢)-submatrix of V' vanishes and the sum of its entries is zero. The
support-matrixz of V is defined to be

1 if (4,5) € supp(V),
E = (eij) with €ij ‘= ( j). pp( )
0 otherwise.
Let the rounding rule be pervious. If there exists a subset I C {1,...,k} with r; > Sy ()
then the total number of seats to be allocated in districts ¢ € I exceeds the number of seats
that parties j € Jy(I) are entitled to. Hence no biproportional apportionment exists. This
argument extends to the flow-criterion
r1 < S5,(D) VI C{1,...,k} if [] pervious, (6)
rr+erer ) < snm VIS {L,... k} if [] impervious.

In connection with the theorie of networks the first inequality is often named after the American
mathematicians David Gale (1921-2008) and Alan J. Hoffman (*1924) (see Gale (1957) and
Hoffman (1960)). Balinski & Demange (1989b) show that the flow-criterion is necessary and
sufficient for the existence of a biproportional apportionment.

Proposition 4 (Flow-criterion). Let (V,r,s,[-]) be a biproportional apportionment problem.
A biproportional apportionment exists if and only if the flow-criterion (6) is fulfilled.

Proof. Our proof in section 10 is based on the analysis of the AS-algorithm, whereas Balinski
and Demange’s proof is based on their Tie& Transfer-algorithm. O

3. Formalization of the AS-algorithm

kx£t
0

The AS-algorithm is initialized by those apportionments A € N3™° that are obtained from the

vote-matrix V' by rounding and that minimize the L;-error,
A(0) := {A = (ay) | aij € [[Uz‘j]]}-

In its first step the AS-algorithm defines p;(1) := 1 for all districts i € I=(0) :=={i < k | a;+ =
r; for all A € A(0)}. For the remaining districts ¢ € I=(0)¢ the AS-algorithm solves the mono-
proportional apportionment problem that arises from the district votes v;(0) := (vi1,. .., Vi)
and the district-contingent r;. To this end a feasible district-divisor p;(1) is determined, such
that the sum of the rounded quotients fulfills the district-contingent. We define V(1) = (v;;(1))
by vi;(1) := v;;/pi(1). Subsequently we identify those apportionments A that are obtained
from V(1) by rounding, that fulfill all district-contingents and that minimize the Li-error
f(A) =" lair — il + 32 < latj — sj|. That is, we define

A= {A= (o) L aig € Py (D], sy =ris f(A)= - min - F(B)}.

biy=r;
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In practice the roundings are unique. Accordingly the minimization is dispensable and the set
of apportionments is unique. In theorie, however, the minimization is essential. The appendant
algorithm is part of the Tie&Transfer-algorithm (Balinski & Demange, 1989b).

If the Li-error of A € A(1) vanishes, then the set of biproportional apportionments is deter-
mined. However, generally this is not the case. Some parties may have too many seats while
others have too little.

In the second step the AS-algorithm defines 0;(2) := 1 for all parties j € J=(1) := {j <
¢|ay;=sjforall Ae A(1)}. For parties j € J=(1)° the AS-algorithm solves the monopropor-
tional apportionment problem that arises from the scaled party-votes v;(1) := (v1;(1), ..., vg;(1))
and the party-seats s;. To this end a feasible party-divisor 0;(2) is determined. We define
V(2) = (vi(2)) by vi;(2) := v;(1)/0;(2) and identify those apportionments that minimize the
Lq-error,

A2): = {A = (aij) | aij € [vi;(2)], avj = sj, f(A) = B:(bij)g:;gﬂvij(2)]]7f(B)}-
byj=s;

For a general step t = 1,2, etc. the AS-algorithm generates incremental district-divisors p;(2t —
1) for all districts ¢ < k, and incremental party-divisors o;(2t) for all parties j < £. Those
identify cumulative district-divisors and cumulative party-divisors

22t — 1) == 2,(28) 1= pu(1) pu(3) - pi(2t — 1), 5(20) 1= g5 (2 + 1) 1= 05(2) 05 (4) - 5 (20).

The cumulative divisors in turn determine the AS-scaling-sequence

V) = (5(0) = (s ).

i(t)y; (1)

which is examined section 6. The AS-scaling-sequence generates the AS-seat-sequence A(t),

.A(Qt - 1) = {A = (aij) ’ Qg S [['Uij(zt - 1)]] y Qi = Ty, f(A) :B:(bij),bijng[[nvij(2t71)]],f(B)}7
b'H»:Ti
Aty = {A=(ay) | aij € Ly @D ay =55, f(A) = min - [(B)}.
byj=s;

which is scrutinized in section 7. The Lq-error of the AS-algorithm defined through

F&) = FA®) == f(A) =D air — il + > _lay; — 55| forany A€ A().

i<k <0

Note that f(t) does not depend on a particular apportionment, because all apportionments
A € A(t) come with the same Lj-error. In section 5 we proof that f(¢) is monotonically
decreasing.

For the analysis of the AS-algorithm the sets of over-represented, under-represented and
matching districts are essential,

o= J 14, rw= U rw, rw= () I(4),

ACA(t) A€ A(t) ACA(t)

with IT(A):={i <k|aix >ri}, [T(A) ={i<kl|ayw <ritand I7(A) :={i < k| air =r;}.
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Analogously the sets of over-represented, under-represented and matching parties, are given by

LJ JT(A LJ J- J=(t):= () J°(4

AEA(t AEA(t ACA(t)

As district-contingents are adjusted in odd steps we have I=(2t —1) = {1,...,k}. Analogously
we get J=(2t) = {1,...,¢}. Recall that A(t) comprises only those apportionments that min-
imize the Li-error. Hence the sets defined above are disjoint (Balinski & Demange, 1989b).
Without loss of generality let the house-criterion of proposition 2 hold for all monoproportional
apportionment problems. Therewith the incremental divisors can be chosen from the divisor-
intervalls that result from the max-min inequality (2). Let A € A(2t—1) be any apportionment.
The incremental district-divisors p;(2t — 1) satisfy

i (2t=2) < v(2t=2) p - _ e
pi(2t—1) € [maxjg slag, 1) TN < ~ (5 ] if i € I=(2t — 2)°, o
[1,1] if i € I=(2t — 2).

Let A’ € A(2t). The incremental party-divisors o;(2t) satisfy

{maXKk zlg;2t+11)),m1n <k U”SEZZ_)D] if j € J=(2t — 1),

O'j(Qt) S
1,1] it j e J=(2t— 1),

Algorithm 1 For all practical purposes the AS-algorithm determines the set of biproportional

apportionments.

Initialization: V(0) :=V, v;(0) := (vj1,..., ) Vi < k, and A(0) := {4 = (ai;) | aij € [vi4], f(A) =
minB:(bULbUEH’UMH f(B)}‘

Odd steps 2t — 1,¢t = 1,2,...: District-contingent adjustment. If i € I=(2t —2) := {i < k | a;4+ =
ri VA = (a;5) € A2t — 2)}, set p;(2t — 1) := 1. If ¢ ¢ I=(2t — 2), determine a feasible district-
divisor p;(2¢ — 1) for the monoproportional apportionment problem (v;(2t — 2),7;, []). Set

V(2t — 1) = (v5(2t — 1)) defined by v;;(2t — 1) 1= v;;(2t — 2) /p; (2t — 1),
At - 1) = {4 = (@) | ey € [@-Dlas = rf4) =
minB:(bU),bi‘jei[[:,zj(2t—1)]], f(B)},
vj(2t — 1) :;+(v1;(2t —1),...,05(2t - 1)) Vj < L.
Even Steps 2t: Party-seat adjustment. If j € J=(2t —1) := {j < £ | ay; = s; VA = (a;;) €

A2t — 1)}, set 0;(2t) := 1. If j ¢ J=(2¢t — 1), determine a feasible party-divisor ¢;(2t) for the
monoproportional apportionment problem (v;(2t — 1), s;, [-]). Set

V(Qt) = (Uij (2t)) defined by Uij(Qt) ‘= Uiy (Qt — 1)/0'3(215),
A(2t) == {A = (aij) | aij € [vij(20)] , av; = s;, f(A) = minp=(,,) b;;€[vs; (20)]. f(B)},

byj=s;

’Ui(2t) = (’Uil(2ﬁ), e ,’l)ig(2t)> Vi S k.

Output: AS-seat-sequence A(t), AS-scaling-sequence V(t), sequence of incremental divisors
(pi(2t — 1))i<k and (0,(2t)),<e, and sequence of cumulative divisors (x;(t));<x and (y;(t))j<e
for all t =1, 2, etc.
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4. Five examples

The AS-algorithm is implemented in BAZI (2013). The max-min-equality (2) implies that the
AS-scaling-sequence V' (t) and the AS-seat-sequence A(t) are not unambiguous, but depend on
the incremental divisors taken from the respective divisor intervalls. Relating to the divisors’
choice the BAZI-user may select one out of three variants. ‘Midpoint’ (mdpt): Divisors taken
from the middle of each interval. ‘Random’ (rand): Uniformly distributed point in each interval.
‘Extreme’ (extr): Interval’s lower bound for i € I~ (2t — 2) and j € J~ (2t — 1), and interval’s
upper bound for i € IT(2t —2) and j € J* (2t — 1).

The variant ‘weak’ seems also feasible: Interval’s upper bound for i € I~ (2t — 2) and j €
J~(2t — 1), and interval’s lower bound for i € IT(2t —2) and j € J*(2t — 1). However,
the upcoming example 1 reveals that it should be circumvented. The following five problems
exemplify the AS-algorithm. We analyse biproportional problems with a vanishing AS-limit-
error (example 1), with a positive AS-limit-error that coincides with the Li-minimal-error
(examples 2 and 3), and problems for which the AS-algorithm is ineffective (examples 4 and 5).
The different variants of the AS-algorithm are labeled with upper indices; e.g. pz(-mdpt)(Qt -1,

a§mdp t)(2t) for incremental divisors under variant ‘midpoint’.

Ezample 1 (Effectivity). Let us study the following biproportional problem with standard
rounding and vanishing Li-minimal-error, Apin = 0:

| _s1 52 S3 | 1 1 1

. . 1 vi1 vz vz — 1102 05 0.5

(V’ T8, << >>) ' T2 v21 w22 w23~ 1|05 0.2 0.2
T3 V31 V32 V33 1105 02 0.2

In the AS-algorithm’s first step district-divisors are determined given the restrictions from
equality (7), p1(1) € [1,1],p2(1) € [0.4,1] and p3(1) € [0.4,1]. For district-divisors under
variant ‘weak’ pgweak (1) = p2weak (1) = pgweak)(l) = 1, there exist two apportionments which

comply with the district-contingents and minimize the Li-error,
(weak) _ 0.2 05 0'5> (weak) :{(0 L 0) (0 0 1)} (weak) _
e = (g3 83 82 Ao ={0 8 8¢ ¢ 9F o=z

The only over-represented party is J"*)+ (1) = {1}. Under-represented parties are .J(Veak)= (1)
= {2,3}. In the AS-algorithm’s second step the incremental party-divisors are determined given
the restrictions from equation (8), 01(2) € [1,1], 02(2) € [0.4,1] and o3(2) € [0.4,1]. In case
we continue with variant ‘weak’, then the AS-scaling-sequence is constant, V = V(Wveak)(1) =
V(Weak)(Q) = ..., and the AS-seat-sequence has two accumulation-points, comprising two ap-
portionments each,

(weak) (op 1y _ [ (0 1 0) <0 0 1)} (weak) _{(0 1 1) (0 1 1)}
A=y ={({ g §).(t § ). a"9en={(F ¢ §.( ¢ §}-
As )\X’Vseak) = 2 > Anin = 0, the AS-algorithm is ineffective. Luckily, under variant ‘extreme’

both, the AS-scaling-sequence and the AS-seat-sequence remain unchanged once step 12 is
reached,

V(extr)(ll) 75 V(extr)(12) — V(extr)(13) — .= (gé §§ (8)§)
(Xtr) (xtr) L 0 0 1 0 1 0
Ay zataz == {(¢ ). (1808 D)@ 8 D)
Moreover the AS-limit-error coincides with the L;-minimal-error, )\Efgtr) = 0 = Amin. Hence,

the AS-algorithm is effective. Above all it determines the set of biproportional apportionments,
A(12) = B(V,r,s), and a feasible set of divisors (z(®")(12),7(®*%)(33)), where z(*%)(12) =
(1,0.4,0.4) and 3% (12) = (2.5,1,1). h
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Our second example studies a problem that comes with a positive Li-minimal-error. It turns
out that the accumulation-points of AS-seat-sequence vary under different variants.

Ezample 2 (Accumulation-points). Let us take a look at the following biproportional problem:

|13 5 11

2111 1.3 0 0
(Virs, () a)22 20 00 0
8| 1 1 37 39

For I = {1,2} we have r; =6 > 4 = s, (7). Thus the flow-criterion (6) is violated and the L;-
minimal-error is positive, Apin = 4. Under variant ‘random’ the AS-limit-error coincides with
the L;-minimal-error, Aggnd) = Amin = 4. The AS-scaling sequence and the AS-seat-sequence

have seven accumulation-points each,

U A1) = {(

t=10,11,...

U A = {(

t=10,11,...
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Under variant ‘midpoint’ the AS-scaling-sequence and the AS-seat-sequence generate merely

two accumulation-points each: those listed first respectively. As above )\ngpt) = Amin = 4

holds and the AS-algorithm is effective. il

[=lelle)
wWNoo
at

Our third example points out that convergence of the AS-scaling-sequence does not necessarily
imply convergence of the AS-seat-sequence.

Ezample 3 (Divergence & convergence). Let us consider to following problem:
[1 1 1 1 1 1 1 1

3(05 05 05 05 0 0 0 0
(Viorys,(-)): 3|05 05 05 05 0 0 0 O
1/01 02 03 04 05 05 05 05
1104 03 02 01 05 05 05 05

For I = {1,2} we get r; = 6 > 4 = s;,(;). Again the flow-criterion is violated and the L;-
minimal-error is positive, Apin = 4. In the first step all district-divisors—independent of the
AS-algorithm’s variant—are equal to one, pi(1) = --- = py(1) = 1. That is, for every district-
adjustment at least two weights coincide with a signpost, of which one has to be rounded
upwards and one has to be rounded downwards. This yields V = V(1), f(1) = 4 and

L1100 0 0 0N i,
Av=1(0 § 44 888D enEma
an
000 00 0 1 0 0/ % o
Analogously, in step two all incremental party-divisors are equal to one, 01(2) = -+ = 0g(2) =

1, yielding V =V (1) =V (2), f(1) = f(2) =4 and

1 N
A(2) = {(8 0>  (L2hx (L) } :
0 1 {3,4}x{5,6,7,8}
Thus the AS-scaling-sequence V (t) is constant and the AS-seat-sequence A(t) has two accu-
mulation-points,

[evlenlenloy
[elelelig
oOoO—O
o—OO
OoO—OO
OoO—OO
o

A(l) if ¢t odd,

V)=V Vvt=1,2,... d At) =
(® o () {A(Z) if ¢ even.

For the AS-limit-error we get Aas = 4 = Amin, so that the AS-algorithm is effective. il
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For the fourth example we modify the above example 3 such that the Li-minimal-error van-
ishes. All the same, the AS-scaling-sequence V (t) remains constant. However, this time the
AS-limit-error is strictly larger than the Li-minimal-error.

Example 4 (Ineffectivity I). Let us consider:

(1 1 1 1 1 1 1 1

3105 05 05 05 04 03 02 0.1

(Vyrys,{(-)): 305 05 05 05 01 02 03 04

1101 02 03 04 05 05 05 05

1104 03 02 01 05 05 05 05
With all weights being positive the Li-minimal-error vanishes, Aniy, = 0. Analogously to
example 3 the AS-scaling-sequence is constant and the AS-seat-sequence has two accumulation-
points. This yields Ays = 4 > 0 = Apin such that the AS-algorithm is ineffective. i

Our last example illustrates that the AS-algorithm may also be ineffective if the L;-minimal-
error is positive.

Ezample 5 (Ineffectivity II). Let us consider:

| 1 1 1 1 1 1 1 1

3/05 05 05 05 01 0 0 0
(Vorys,(-)): 3|05 05 05 05 02 0 0 O
1101 02 03 04 05 05 05 05
1[04 03 02 01 05 05 05 05

With I = {1,2} we have r; = 6 > 5 = s, () such that the Li-minimal-error is positive,

Amin = 2. Analogously to examples 3 and 4 the AS-scaling-sequence is constant and the
AS-seat-sequence has two accumulation-points. This yields Aas = 4 > 2 = Apin and the
AS-algorithm is once more ineffective. il

5. L;-minimal-error and AS-limit-error

The upcoming proposition shows that the Li-error of the AS-seat-sequence is monotonically
decreasing and bounded from below by the Li-minimal-error.

Definition 3 (L;-minimal-error). The Lj-minimal-error is defined by
N o JAXIC(L k) 2(r1 — 85,.(1)) if [-] pervious
min -~ . . .
maxyc(i,.. k} 2(rr + ere gy (1) — SJV(I)) if [-] impervious.

Note that the L;-minimal-error vanishes if and only if the flow-criterion (6) is fulfilled. The
upcoming proposition corrects Maier (2008). We show that the Lj-error of the AS-seat-sequence
is monotonically decreasing.

Proposition 5 (Monotonicity). For the Li-error of the AS-seat-sequence we have
2h> f(1) 2 (1) = f(E+1) = Aain VE=2,3,...

Proof. Without loss of generality let A" € A(2t) be any apportionment with matching party-
seats. The upper bound follows from

f(Ah :Z]ang —ri| < Za;++r+ = sy + 714 = 2h.
i<k i<k
To prove the lower bound let I C {1,...,k} be an arbitrary subset. We get
FAY) =D i —aiy |+ lajy =il =D (ri—al)+ Y (afy — i)
il iele icl icle
1) (2)
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Rearranging expressions (1) and (2) results in

(1) =rr = apy,(y =71 = oy ) = Qe () =71 = S0, + Gpe gy (1))

(2) = afe gy, (1) + Qe gy (rye = 710 = Qe gy 1y + S e — T+ —71)

= aICJV(I) + (54 = sp) = (e =r0) =711 = 85,0) + a/ICJV(I)'

For pervious rounding rules the lower bound follows as f(A") > (1) + (2) = 2(r; — s, (1) +
e T 1)) >2(rr—s T ( 1)). For impervious rounding rules the assertion follows analogously from
alchV(I) 2 erey (1)

To prove monotonicity we study the passage from A(2t — 1) to A(2t). If f(2t —1) = f(2t) =
Amin the situation is obvious. Otherwise let A = (a;;) € A(2t — 1) be any apportionment with
matching district-contingents and let f; := |ai; — s;| describe the Li-error for party j. We
show that for any apportionment A" = (al.) € A(2t) and any fixed party j the differences

tj

aij — ZJ, i < k, have the same sign. We first construct an apportionment A:

(1) Case j e J~(2t—1): If 0j(2t) < 1 the rounding rule’s monotonicity implies a;; < a;; for
all a;; € [vi;(2t)] and all districts ¢ < k.

If 0j(2t) = 1 then v;;(2t — 1) = v;;(2t) for all ¢ < k. Moreover there exist districts
i1,...,%f; such that the scaled votes are rounded downwards in step 2¢ — 1 and rounded
upwards in step 2¢. Hence there exists an apportionment (aij,...,ax;) € ([vi;(2t)],...,

[or; (20)]) with

L +1 ifdie {ir,... ip}
v Qij otherwise.

Hence, the vector (aij,...,ax;) complies with the party-seats and a;; < a;; follows for all
districts 7 < k.

(2) Case j € J*(2t —1): The existence of some (ayj,...,ax;) € ([vi;(2t)], ..., [vk(2t)])
with a4; = s; and a;; > a;; for all i < k follows analogously to case (1).

(3) Case j € J=(2t —1): With o;(2t) = 1 define (ay;, ..., ax;) == (a1j,- .., ak;).

Hence A = (@1j, ..., a;)j<e fulfills the party-seats and for any party j the differences a;; —
a;;,% < k, have the same sign. Therewith we get

FEE=1) = fA) = lay;— sl =YD (ag —aig)| = DD laij — ayj] -

j<t j<t i<k j<t i<k

Finally the triangle inequality implies

@2 - 1) =33 Jay —ayl = Y3 (@ —aip)| = Y fasy — il = £(A) = f20). (9)

i<k j</t i<k j<Cl i<k

The last inequality is due to the algorithm’s definition, according to that only apportionments
are considered that minimize the Li-error. The passage from A(2t) to A(2t 4 1) follows anal-
ogously. O

The Li-error takes integer values only, it is bounded from below by the Li-minimal-error
and it is monotonically decreasing. For this reason there exists a minimal step such that the
Li-error remains unchanged thereafter. We call tas := min{t | f(t) = f(t+1) = ---} the
AS-boundary-step. The Li-error at the AS-boundary-step is the AS-limit-error.

Definition 4 (AS-limit-error). The AS-limit-error is defined by Aas := f(tas)-
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The upcoming definition distinguishes between biproportional problems that come with an
AS-limit-error that coincides with the Li-minimal-error, and those whose AS-limit-error is
strictly larger.

Definition 5 (Effectivity). The AS-algorithm is called effective if the AS-boundery-error coin-
cides with the Li-minimal-error, Agag = Amin. Otherwise the AS-algorithm is called ineffective.

For the eight biproportional problems that arose in Switzerland between the years 2006 and
2012 the AS-algorithm is effective with all Li-minimal-errors equal to zero. Simulations fore-
bode that the AS-algorithm is always effective as long as the set of biproportional apportion-
ments comes with at least a few ties (Balinski & Pukelsheim, 2006; Gaftke & Pukelsheim,
2008b). The following theorem substantiates this conjecture.

Theorem 1 (Effectivity). Let (V,r,s,[-]) be a biproportional problem.
(1) Let the Ly-minimal-error vanish, Amin = 0.

(i) If k- £ < 24 holds for the number of districts and the number parties, then the
AS-algorithm is effective.

(ii) If the set of biproportional apportionments comes with less than four ties, then the
AS-algorithm is effective.

(2) Let the Li-minimal-error be positive, Apin > 0.

(i) If k- ¢ < 32 holds for the number of districts and the number parties, then the
AS-algorithm is effective.
(i) If the sets B(V,r,s") and B(V,r',s) with 37, [ri =il = 32,18} — 8j| = Amin each

come with less than four ties, then the AS-algorithm is effective.

Proof. — (1i) and (2i): The proofs of part (1i) and part (2i) follow from the upper bound of
the AS-limit-error, see section 8.

— (1i1) and (2ii): The proofs of part (1ii) and part (2ii) follow from the analysis of the AS-
TT-combination which may be applied in case the AS-algorithm is ineffective, see section 8. [J

6. AS-seat-sequence

If the AS-limit-error vanishes, Axag = 0, then the AS-algorithm determines the set of bipro-
portional apportionments and the AS-seat-sequence converges, A(tas) = A(tas+1) = -+ =
B(V,r,s). If the AS-limit-error is positive, Aag > 0, then the AS-algorithm generates appor-
tionments that alternately fulfill district-contingents and party-seats. Hence there exist at least
two accumulation-points. The upcoming theorem 2 subsumes a recapitulatory result on the
convergence of the AS-seat-sequence. We distinguish between three cases. I: In case the AS-
algorithm is effective and the Li-minimal-error vanishes, the AS-seat-sequence converges. II: In
case the AS-algorithm is effective and the Li-minimal-error is positive, the AS-seat-sequence
has at least two accumulation-points. III: In case the AS-algorithm is ineffective, the AS-
seat-sequence has—independent from the Lj-minimal-error—exactly two accumulation-points,
A" = lim A(2t — 1) and A® := lim A(2t).
t—o0 t—o0

Theorem 2 (AS-seat-sequence).
(1) Let the AS-algorithm be effective, Aas = Amin-

(i) If the Li-minimal-error vanishes, Amin = 0, then the AS-seat-sequence converges,
A(tas) = A(tas+1) =---=B(V,r,s,).

(i) If the Ly-minimal-error is positive, Amin > 0, then the AS-seat-sequence has at least
two accumulation-points.
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(2) Let the AS-algorithm be ineffective, Aas > Amin. The AS-seat-sequence has—independent

from the Li-minimal-error—two accumulation-points, A" := tlim A2t — 1) and A° =
—00

lim A(2t).

t—o00

Proof. — (1i): The statement follows directly from the definition.

— (1ii): As the AS-limit-error is positive and district-contingents and party-seats are adjusted
alternately, there exist at least two accumulation-points.

— (2): Theorem 3 hereafter shows that the AS-scaling-sequence V' (t) converges in case the
AS-algorithm is ineffective. As the AS-limit-error is positive, Aag > 0, the existence of exactly
two accumulation-points is established. O

7. AS-scaling-sequence

If the AS-limit-error vanishes, Aag = 0, all incremental divisors are equal to one as soon as
the AS-boundary-step tag is reached. Hence, not only the AS-seat-sequence A(t) but also the
AS-scaling-sequence V' (t) converges. In general we have

Theorem 3 (AS-scaling-sequence). (1) Let the AS-algorithm be effective, Aas = Amin-

(i) If the Ly-minimal-error vanishes, Amin = 0, the AS-scaling-sequence converges.

(i) If Amin > 0, then the AS-scaling-sequence either converges or diverges.

(2) Let the AS-algorithm be ineffective, Agg > Amin. The AS-scaling-sequence converges,
tg :=min{t | V() =V({Et+1) =} < o0
We call ¢t the constant-step and V (tx) the boundary-matriz.

Proof. — (1i): The statement follows from the AS-algorithm’s definition.

— (173): For a positive Li-minimal-error examples 2 and 3 show that the AS-scaling-sequence
either converges or diverges.

— (2): Let us first show that the set of under-represented districts and the set of over-
represented districts are disjoint for all ¢,¢' > [tag /2]. The same holds for the set of under-
represented parties and the set of over-represented parties,

I—2t)ynIt2t)=0 and J (2t—-1)NnJH 2t -1)=0. (10)

As Aag > 0 the sets I~ (2t), IT(2t), J(2t—1), and J*(2¢t—1) are not empty for all ¢ > [tas /2].
Thus there exists an up&down-cycle (i), j(q)) defined through

(i1,71) € 17 (2t) X J+(2t+1) (i2,71) € I~ (2t +2) X J+(2t+1)
(i9,72) € I" (2t +2) x JT(2t +3) (i3,j2) € I~ (2t +4) X JT(2t + 3)

. (i1,7q) € I~ (2t +q+ 1) x JT(2t +q).
Analogously there exists an up&down-cycle (i, ji(y)) such that

(i1,71) € I7(26)¢  x JT(2t+1)° (i, 1) € I~ (2t +2)° x JT(2t + 1)¢
(i2,42) € I (2t +2)° x JT(2t +3)¢ (i3, o) € [~ (2t +4)° x JT(2t 4 3)°
(i1, J¢) €I (2t + ¢ + 1) x JT (2t + ¢')".

Given the proof of proposition 5 we know that for any fixed party j the differences (a;; —a; j), 1 <

()

k, all carry the same sign. With f(A) = f(A’) the triangular inequality (9) holds with equality,

> lai—ail = Z(Z%‘ - ajj

i<k j<t i<k j<t
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Thus also for any fixed district ¢ the differences (a;; — a;j), j < £, all carry the same sign.
Hence, for all up&down-cycles (i(),j(g)) and (i(q),J(y)) the row-sets are mutually disjoint,
I=(2t+p)NI(2t+p')¢ =0 for all p,p’ < q. The same holds for the column-sets, J (2t +p) N
JT(2t + p')¢ = for all p,p’ < q. This establishes (10).

Let us next define the non-trivial set of districts that are under-represented once the AS-
boundary-step is reached. Analogously we define the non-trivial set of parties that are over-
represented,

I_ = Ut>|—tAS /2'| I_(2t) and J+ = Ut>|—tAS /2'| J+(2t — ].)

With equations (7), (8) and (10) we get

<1 ifiel, <1 ifje(Jh)e,
pi(2t — 1) e o;(2t) e (+) (11)
>1 ifie ()" >1 iftjeJ .

To complete the proof suppose that the AS-scaling-sequence V(t) diverges. With equa-
tion (11) the entries of the AS-scaling-sequence V(t) are monotonically increasing in block
I~ x(J1)¢, and monotonically decreasing in block (I7)¢x J*. However, the entries are bounded
from below and above. Hence, for any apportionment A = (a;;) € A(2t — 1), t > [tas /2], we
get

vij=aij =0 V(i,5) eI~ x(J")°, aj= V(i,j) e (I) x Jt.

0 if [] pervious
eij if [-] impervious

As the Li-error of A coincides with the AS-limit-error we get

2 o B f . .
Aas = f(A) = (r- = 1)) 1 I Perwou-s
2(r1- + er-ye sy (1-) = Say (1)) if [-] impervious,
maxrcqi,..k} 2011 — Sp(1) if [-] pervious _
S . . . — )\min .
maxycqi,.. ky 201 + eregy (1) — Say(r))  if [-] impervious,
This is a contradiction to the AS-algorithm’s ineffectiveness, i.e. to Aas > Amin- O

To be safeguarded against ineffectivity the following lemma transpires to be an essential tool.

Jt (JH)e
) I~ * T cpi(2t—1) <1
V2t—2): ()¢ f . p(2t—1)> 1 Vit > [tas /2].
o;(2t) >1 :0;(2t) <1

Figure 1: AS-scaling-sequence in case Aags > 0. For all steps t > tag entries labeled with ‘1’ are
monotonically increasing, while entries labeled with ‘]’ are monotonically decreasing. Entries
labeled with ‘x’ are alternately increasing and decreasing. As entries are bounded from below
and from above, there either exists a step tx with V(tx) = V(tx +1) = - -, or entries labeled
with ‘|’ converge to 0 (resp. e;; in case [-] is impervious) and for entries labeled with ‘7 we
have v;; = 0. Thus accumulation-points of the AS-seat-sequence only differ in ‘+’-entries.
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Lemma 1. Let the AS-algorithm be ineffective.
(1) For any apportionment A = (a;;) € A" we have

(Z) Vie ™ E]jl,jg eJt: Vijy (tK) = s(aijl), Vijo (tK) = s(aijQ + 1),
(ZZ) Vj e Jt Fiel Uij(t}() = s(aij).

(2) For any apportionment A" = (aj;) € A® we have

(i) Viel- 3FjeJt: vij(tx) = s(ag; +1),
(@) YjeJt Ziis el vy ltn) = s(al;), vii(tx) = s(aj,; +1).

Analogous assertions hold for the sets of over-represented districts IT := Ut>’—tAS/2-| I*(2t)
and under-represented parties J~ = Ut>“AS/2] J(2t—1).

Proof. The proof exploits that all apportionments A, A € A" and A’, A € A® emerge from the
boundary-matrix V (tx) and that they only differ on the blocks I~ x J* and (I7)¢ x (J1)¢,

aij,&ij,agj,aij € [[Uij(tK)]] Vi <k, Vj </, (12)
Qij = (~l¢j = a;j = Qyj V(’L,]) el x (J+)CU (I_)c x JT.

— (1i): Let i € I~ be an under-represented district. Then there exists an apportionment
A = (a;j) € A® such that a;4 < r;. With equation (12) there exists a party j; € J* such that
vij, = S(aj,) = s(a@;j, +1). Due to the constant AS-scaling-sequence there exists another party
Jjo such that v;j, = s(aij, +1). As the Li-error is minimal we have js € JT.

— (1ii): Let j € J* be an over-represented party. If j € J*(A), then ay; > s; holds and
with equation (12) there exists a district ¢ € I~ such that v;; = s(a;;). If j € J=(A), then
sj = a4; holds and there exists an apportionment different from A, A # A= (a;5) € A" such
that j € J*(A) and d;; > ay; = s;. With equation (12) there exists a district i1 € I~ such
that v;,; = s(@i,;) = s(as,; —1). Due to the constant AS-scaling-sequence and the minimal
Lq-error there exists another district io € I~ such that v;,; = s(ai,; ).

— (2): Analogously to (1). O

8. Ineffectiveness-error

In section 5 we have seen that the AS-limit-error is bounded from below by the L;-minimal-
€rTor, AAS = Amin. In this section we give an upper bound for the AS-limit-error.

Definition 6 (Ineffectiveness-error). The ineffectiveness-error is defined by

0 if min{k, ¢} <3,

ARE = L a([e/2] (Lk/2) — 1)) — Lk/2) i [€/2] ([k/2] — 1) < [k/2] (1/2] - 1),
2([k/21)(1€/2) —1) — [£/2] otherwise.

For all 3 <k <16 and all 4 < ¢ < 16 the ineffectiveness-error is displayed in table 3.

Proposition 6 (Ineffectiveness-error). The AS-limit-error is bounded from above by the mai-

mum of the ineffectiveness-error and Li-minimal-error, Aag < maX{Al;’iﬁ, Amin } -

Proof. In case the AS-algorithm is effective, Aas = Amin, nothing is to be shown. Let the AS-
algorithm be ineffective and let A € A" and A’ € A® be two apportionments. The AS-limit-error
may be paraphrased as

)\AS =2 (ajqut — a/jf(]Jr) . (13)
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We maximize the right hand side of equation (13) under the condition that A and A’ both
emerge from the constant boundary-matrix V(tx). For any district ¢ € I~ there must exist
at least one party j € JT such that the boundary-weight v;;(tx) coincides with a signpost
and is rounded downwards. Consequently, there are at most #I~(#J7 — 1) weights v;;(tx)
in block I~ x JT that coincide with a signpost and are rounded upwards. Here, #1 and #.J
indicate, respectively, the number of elements of any subset I C {1,...,k} and J C {1,...,/¢}.
Analogously, for every party j € J+ there must exist at least one district ¢ € I~ such that
the boundary-weight v;;(tx) coincides with a signpost and is rounded upwards. Thus in block
I~ x JT at least #J weights that coincide with a signpost are rounded upwards. This
vields Aas < 2 (#I (#J1 — 1) — #J7). Analogously we get Aag < 2 (#J ~(#IT — 1) — #I7).
Maximization over #1—, #I11 and #J~,#J " establishes the assertion. O

With proposition 6 the proof of theorem 1 (1i, 2i) follows immediately.

Proof of theorem 1. — (1i): Proposition 6 yields Aag < maX{Aﬁﬁﬁ, Amin} = Ai{ﬁiff for all bipro-
portional problems with vanishing Li-minimal-error. For k - ¢ < 24 we have Aﬁiiﬁ = 0. Hence,
the AS-algorithm is effective.

— (2i): For k- ¢ < 32 we have Aﬁﬁﬂ < 2. As the Lj-minimar-error is positive we get

k . .
Aas < maX{Airﬁﬁ, Amin} = Amin. With Aag > Apin the assertion follows. O

| ¢=4 5 6 7 8 9 10 11 12 13 14 15 16

k=3 0o 0 0 0 0 0 0 0 0 0 0 0 o0

1 0 0 2 2 4 6 6 8 8 10 10 12 12

5 2 2 4 4 6 6 8 & 10 10 12 12

6 6 6 10 10 14 14 18 22 22 26 26

7 10 10 14 14 18 18 22 22 26 26

8 16 16 22 22 28 28 34 34 40

9 22 22 28 28 34 34 40 40

10 30 30 38 38 46 46 54

11 33 38 46 46 54 54

12 48 48 58 58 68

13 58 58 68 68

14 70 70 82

15 82 82

16 96

k¢

imef- The AS-limit-error is bounded from above. Proposition 6

Table 3: Ineffectiveness-error A

. k¢
establishes Aas < max{A; ¢, Amin}-

9. AS-TT-combination

In case of effectivity the AS-algorithm determines a biproportional apportionment if and only
if the flow-criterion is accomplished. Otherwise the AS-TT-combination, introduced hereafter,
generates a biproportional apportionment if and only if the flow-criterion is true. Moreover,
the analysis of the AS-TT-combination is the crux for the owing proofs of proposition 4 and
theorem 1.

In linear programming the AS-algorithm is a cyclic coordinate method. That is, in every
iteration the generated apportionments either comply with the district-contingents or with the
party-seats. For cyclic coordinate methods criterion for convergence are well known. Bazaraa,
Sherali & Shetty (2006, page 285) (see also Gaffke & Pukelsheim (2008b) in connection with the
AS-algorithm) show that a cyclic coordinate method converges if every step is unambiguous. To
circumvent ineffectivity Bazaraa, Sherali & Shetty (2006, page 287) advocate a pattern-search-
step. We extracts such a step from Balinski & Demange’s (1989b) Tie& Transfer-algorithm.

Let us first take a look at the hybrid AS-TT-algorithm introduced by Maier (2008). Sim-
ulations by Maier et al. (2010) suggest that the set of biproportional apportionments can be
determined as fast as possible if the procedure is initialized by the AS-algorithm and switches
to the Tie&Transfer-algorithm as soon as the Li-error remains unchanged for two steps.
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Firstly because run times do not matter for practical purposes, and secondly because the
Tie&Transfer-algorithm is less intuitive than the AS-algorithm, we suggest to switch only in
case of the AS-algorithm’s ineffectivity. We call this option the AS-TT-combination. Similar
to the AS-algorithm, the AS-TT-combination generates sequences of apportionments, scaled
weights, incremental and cumulative divisors, under-represented districts and over-represented
parties. We label those objects with an index T, e.g. Ap(n) denoting the AS-TT-seat-sequence.

Let the AS-algorithm be ineffective, let V(tx) be the boundary-matrix, and let A" and
A? denote the two accumulation-points of the AS-seat-sequence. The AS-TT-combination is
initialized by A%(0) := A", A3(0) := A%, Ap(0) := A" U A°, Vp(0) := V(tk), 17(0) := I~
and J(0) := J*. In the first step the weight-matrix Vr(0) is scaled such that entries (i, j) €
I:(0) x J#(0)¢ are increased and entries (i,7) € I-(0)¢ x J£(0) are decreased, while the
remaining entries are not modified and the two accumulation-points of the AS-seat-sequence
may still be determined by rounding the scaled weights (see figure 2). Moreover, there shall
exist an entry (i, j) € I (0) x J; (0)¢ that after being scaled coincides with the signpost next in
size, or an entry (i, j) € I (0)° x J; (0) that after being scaled coincides with the next smaller
signpost. To this end let A € A(0) be any apportionment and define £(1) := max(e(1)",e(1)7)
through

T
(0 A
e(1)T = max v”i(), e(1)” = max S(Ta”).
(i.j)ely (0)x JF ()¢ S(aij + 1) (i.4)ely (0)ex. 7 (0) Vi;(0)

By theorem 2 all apportionments A € A(0) coincide on I~ x (J)¢ and (I7)¢ x J*. Hence,
(1) does not depend on any particular A € A(0). We define the vote-matrix Vp(1) = (vg(l))
by

vE(0)/e(1) if (4,5) € 17 (0) x JF(0)¢,
v (1) = quh(0) - (1) if (i,5) € I7:(0)° x J;(0),

v (0) otherwise.
Subsequently we identify those apportionments that are obtained from V7 (1) by rounding, that

minimize the Lj-error, and either comply with all district-contingents or all party-seats. That
is, we define Ap(1) := A%(1) U A%(1), where

Ar(1)i={A=(ay) |y € [T, @iy =ri fA)=  min f(B)},
B=(bs;)bije[vE ()]
A1) i={A=(ay) lay € [FO], ars=s5 f(A)=  min f(B)}.

B=(bij)bije[vE (D]

To conclude, we identify the sets of under-represented districts and over-represented parties,

L= | @ ad JO:= [J JTA.
A€ As(1) A€AL (1)

Note that all apportionments A € Ap(1) come with the same Lj-error. Thus the Lj-error
fr(1) := f(A) is well-defined.

Lemma 2. (1) Fore(1) we get (1) > 0.

(2) The Li-error in step one is not larger than the AS-limit-error, fr(1) < Aas.
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01

170
Vr(0) : I;T( . :1/2(1)

J1(0) T (0)°
4

/]\
: 5_(1)

=

Figure 2: AS-TT-combination. (1) is determined in order to increase the entries labeled with
‘7, to decrease the entries labeled with ‘|’, and to leave entries labeled with ‘=" unchanged.

Proof. — (1): Let A € A° C A(0) be any apportionment with adjusted party-seats. Suppose
e(1)™ = e(1)” = 0. With ¢(1)” = 0 we get a(;-yey+ = 0 in case of a pervious rounding-rule
and a(j-yej+ = €(-)cs+ in case of an impervious rounding-rule. This yields

ol B T .
Aps = 2 Z (Ti - aiJr) - Q(TI e )) 1 [[ ]] .perVIOu.S7 < Anin -
(17~ = Sp,(1-) T €q-yes+) if [-] impervious,

This however contradicts to the ineffectivity of the AS-algorithm, i.e. Apas > Amin.

— (2): By definition we have s(a;;) < vz;»(l) < s(a;j + 1) for all districts @ < k, all parties
j < ¢, and all apportionments A € Ap(0). Thus all apportionments A € A(0) may also be
obtained from Vr(1) by rounding and fr(1) < Aag follows trivially. O

The following proposition shows that the AS-scaling-sequence is also constant for the bipro-
portional problem that emerges from the first AS-TT-step. In addition, it states that all
generated apportionments come with at least four ties.

Algorithm 2 The AS-TT-combination determines the set of biproportional apportionments in case
the AS algorithm is ineffective. AS-TT steps trace back to Balinski & Demange (1989b).

Initialization: Set A7.(0) := A", A5.(0) := A°, Ar(0) :== A"UA", Vp(0) := V(tk), I7(0) := I~ and
JE(0) = J+.

AS-TT step n=1,2,...: Let A € Apr(n — 1) be chosen arbitrary. Determine the scaled vote-matrix
Vr(n) = (vk(n)) defined by

)

ofin=1)/e(n) it (i,9) € I (n = 1) X Jf (n — 1)
UZ;(’I’L) = Uljl(n —1)-e(n) if (4,5) € Iz (n—1)¢ x Jf(n—1)
v;;(n—1) otherwise,

for e(n) := max(e(n)*,e(n)~), where

vl(n—1 .
e(n)t = max L), g(n)” = max TS(L]).
(i.)ely (n—1)xJE (n—1)e 8(aij +1) (iJ)€ly (n—1)ex JF (n—1) V;;(n — 1)

Identify Ap(n) := AL(n) U A% (n) where

Ar(n) == A = (a;;) | a;; viTj n)l|, a=ry A) = min B);,
(n) = {4 =(ay) | aiy € T O], aiy =, i S )}
Ar(n) = {A = (@) lay; € [l 0], arj=s;, fA)=  min_ f(B)}.

B=(bi;),bi; €[v;(n)]
Define the set of under-represented districts and over-represented parties
L= (J I'4 ad Ji1):= J JH(A4)
A€A5(1) A€ AL (1)
Set fr(n):= f(A) for any apportionment A € Ar(n).
If fr(n) = Amin set nas.rr := n and break. If fr(n) > Apin run AS-TT-step for n:=n + 1.
Output: AS-TT-seat-sequence Ag(n), AS-TT-scaling-sequence Vr(n) and sequence of divisors e(n).
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Proposition 7 (AS-TT-step).
(1) The AS-scaling-sequence is constant for the biproportional problem (Vp(1),r,s,[-]).

(2) For all apportionments A € Arp(1) there exist two cycles such that both admit a seat-
transfer. Thus #Ar(1) > 4 holds.

£(1)~. Hence there exists a cell
Virj, (0)/e(1)F = s(aij, + 1) for

1171

Proof. — (1): Without loss of generality let e(1) = ¢(1)" >
(i1, 41) € I7(0) x JF(0)¢ such that vﬂjl(l) = ijl(O) e(l) =

all A € Ar(0). By definition we get

o5 (1) =v}(0)  V(i,4) € I7:(0) x JF(0) U I (0)° x JF(0)°. (14)
By Lemma 1 and equation (14) there exists a party jo € J;(0) and an apportionment A =
(aij) € A%(0), such that jo € JT(A) and vileQ(l) = ’UZ-TU-2 (0) = s(ai, j,). For the apportionment
C = (cij), defined through ¢; 5, = a5, + 1, ¢iyjp, = aiyj, — 1 and ¢;; := a;; otherwise, we
get ¢;p = r; for all districts i < k and fp(1) < f(C) < fr(0). Analogously there exists an
apportionment C’ = (c;;) with ¢, ; = s; for all parties j < £ and f(C') = f(C).

Without loss of generality let fr(1) = f(C) = f(C"), and thus C € A%(1) and C’ € A3.(1).
If f(1) = 0, then there is nothing to be shown. Otherwise let i € (ﬂAeAr}(o) I:(A)) . With

lemma 1 and equation (14) there exist two parties j1, jo such that

vk (1) = vl (0) = s(cij;) and vl (1) = vl (0) = s(cijy +1).

1 1 j2 j2
&
Analogously for any party j € (ﬂAeATT(O) J= (A)) there exist two districts i}, #, such that
T T T T
vir (1) = v ;(0) = s(cjy;) and vy (1) = vy ;(0) = s(cjy ; +1).

Hence the incremental divisors are all equal to one and the AS-scaling-sequence is constant.
— (2): Let C' € A%(1) and i1, j1,j2 be defined as in the proof of part (1). With lemma 1
and equation (14) there exists a district i € I7,(0) such that vgjz(l) = vl . (0) = s(cipjp)-

1272

Moreover, there exists a party js € J(0) such that U;-Z;jg(l) = vz;j3 (0) = s(ciyjy +1), etc. Thus,
we can construct a cycle (i1, ja) — (i2,j2) — -++ = (ig,j1) on I7(0)~ x Jp(0)*, such that a
seat-transfer is feasible. Likewise there exists a cycle on block (I7(0)7)¢ x (Jp(0)™)°. O

By proposition 7 (1) further steps of the AS-TT-combination are well defined as long as the
Lq-error does not coincide with the Li-minimal-error. The time the Li-error coincides with the
Li-minimal-error is called AS-TT-final-step. We denote it by nas.rr := min{n € N | fp(n) =
Amin}. We call Ap(n),n = 1,...,nas1T, the AS-TT-seat-sequence. Its Li-error is given by
fr(n) := f(A) for any apportionment A € Ap(n). Given the incremental divisors

Ty )1 ificl(n-1) o g J1 ifjettn-1)
pi(n)‘_{l/g(n) if i € I (n—1)° and J()‘_{s(n) ifi € Jf(n—1)°,

and the respective cumulative divisors

zl (n) = p! ()py (2)---p{ (n) and y](n):=0;(1)---0] (n),
the AS-TT-scaling-sequence Vr(n) is given by

o) = vg(n -1) 1)3;(0) _ Vij ‘ 1
VU pE(n) o () al(n) yf(n)  wilti) yi(tx) 2l (n) yl(n)’

where z;(tx) and y;(tx) denote the cumulative divisors of the AS-algorithm at time tx. The
following proposition shows that the AS-TT-final-step is reached after finitely many iterations.
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Proposition 8 (AS-TT-combination).

(1) Let the Li-minimal-error vanish, Amin = 0. The AS-TT-combination determines the
set of biproportional apportionments after finitely many steps, i.e. nagrr < o0 and

Ar(nas-rr) = B(V,r,s).

(2) Let the Ly-minimal-error be positive, Amin > 0. The AS-TT-combination generates after
finitely many steps a set of apportionments that comes with an Li-error equal to the Lq-
minimal-error, i.e. nas.rr < 0o and Ap(n) = B(V,r,s')UB(V,r',s) for some v’ and s
such that 37, i Iri — il = 3254 18" — 8| = Amin-

Proof. — (1) and (2): We show that the Lj-error decreases after at most k + ¢ AS-TT-steps.
Let n be such that fr(n) = fr(n+1) > Anin.

Case e(n+1) = e(n+1)" > &(1)7: As in the proof of proposition 7 (1) there exists a cell
(i1,1) € I17(0) x J£(0)¢ and a matrix C € Arp(n + 1) such that ¢;,j, = a;,j, + 1 for all
A€ Ar(n). As fr(n) = fr(n+ 1) we have j; € J5(n). Consequently we get

=I;(n) If(n+1) =1f(n) IF(n+1) =I5
Jin+1)2Jf(n) Jr(n+1)=Js(n) Jr(n+1) < J7(n).

I(n+1)2
Ip(n+1) =

holds. As #I7(n) + #J5(n) is bounded by k + ¢ the Li-error decreases after finally many
steps. ]

10. Proof of proposition 4 and theorem 1 (1ii, 2ii).

Proof of proposition 4. In case the AS-algorithm is effective the AS-algorithm determines a
biproportional apportionment if and only if the flow-criterion is fulfilled, see theorem 1. In case
the AS-algorithm is ineffective the AS-TT-combination determines a biproportional apportion-
ment if and only if the flow-criterion is fulfilled, see proposition 8. O

Proof of theorem 1 (14, 2ii). Proposition 7 (2) and proposition 8 imply that all apportionments
that are generated by the AS-TT-combination come with at least four ties. O
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