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Abstract

A situation in which a finite set of agents can obtain certain payoffs by cooperation can
be described by a cooperative game with transferable utility, or simply a TU-game. In the
literature, various models of games with restricted cooperation can be found, in which only
certain subsets of the agent set are allowed to form. In this article, we consider such sets
of feasible coalitions that are closed under intersection, i.e., for any two feasible coalitions,
their intersection is also feasible. Such set systems, called intersection closed systems,
are a generalization of the convex geometries. We use the concept of closure operator for
intersection closed systems and we define the restricted TU-game taking into account the
limited possibilities of cooperation determined by the intersection closed system. Next, we
study the properties of this restricted TU-game. Finally, we introduce and axiomatically
characterize a family of allocation rules for games TU-games on intersection closed systems,
which contains a natural extension of the Shapley value.

Keywords: Cooperative game, linear basis, Intersection closed system, Shapley value.

1. Introduction

In its classical interpretation, a cooperative TU-game describes a situation in which
the members of each coalition can cooperate to form a feasible coalition and earn its
worth. Cooperative games on set systems are cooperative games in which the agents have
restricted cooperation possibilities, which are defined by a set system. The first model
in which the restrictions are defined by the connected subgraphs of a graph is due to
Myerson (1977). Since then, many other set systems have been used to model restricted
cooperation: Algaba et al. (2000, 2001) study cooperative games on union stable systems,
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Algaba et al. (2004) consider TU-games on antimatroids, Bilbao (1998) and Bilbao and
Edelman (2000) introduce TU-games on convex geometries, Bilbao (2003) studies TU-
games on augmenting set systems, and Lange and Grabisch (2009) consider TU-games on
regular set systems. More recently, van den Brink et al. (2011) consider TU-games on
union closed systems and Algaba et al. (2018) introduce TU-games on accessible union
stable systems.

The purpose of this article is to study TU-games on intersection closed systems. A set
system is intersection closed if the intersection of two feasible coalitions is still feasible.
Every convex geometry is intersection closed, but an intersection closed system is not
necessarily a convex geometry. To the best of our knowledge, Bilbao et al. (2000) is
the unique work involving intersection closed systems. They focus on set-valued solution
concepts while we investigate (single-valued) allocation rules.

Section 2 is a preliminary section in which we consider a new basis for the set of TU-
games. In most cases, the basis of upper TU-games, also called unanimity TU-games, is
used to analyze cooperative games on set systems. Here, the lower TU-games prove much
more appealing. Section 3 presents TU-games on intersection closed systems. Section 4
introduces the restricted TU-games on intersection closed systems through a closure op-
erator. We determine the image and the kernel of its operator. In particular, we provide
a basis for the image of this operator in terms of lower games and a basis for the kernel
of this operator in terms of Dirac TU-games. We then provide a formula to compute the
coordinates of the restricted TU-games in the basis of lower TU-games. We also derive
an expression of the closure operator in the basis of lower TU-games. Section 5 provides
an axiomatic study of allocation rules for TU-games on intersection closed systems. We
focus on allocation rules that are obtained by applying to the restricted TU-games an al-
location rule for classical TU-games. An instance of such allocation rules is the allocation
rule defined as the Shapley value (1953) on the restricted TU-game. We call it the Inter-
section rule. We combine three types of axioms. Some axioms describe the effect of the
intersection closed system on the allocation rule. Some axioms describe the impact of the
coalition function on the allocation rule. Finally, we invoke an axiom of consistency, which
is specific to the targeted allocation rule. The first axiomatic result is a characterization
of the Intersection rule that can be considered as close as possible to the classical charac-
terization of the Shapley value. The second axiomatic result characterizes any allocation
rule obtained by applying to the restricted TU-games an efficient and additive allocation
rule for classical TU-games. As a particular case, we thus obtain a second characterization
of the Intersection rule. These results exploit the properties found in section 4.

2. Preliminaries

For each finite set of elements S, the letter s denotes the cardinality of S. For a set
S and i ∈ S, we use the notation S \ i instead of S \ {i}. In the same way, S ∪ i stands
for S ∪ {i}. We use the notation ⊆ to denote weak set inclusion and ⊂ to denote proper
set inclusion. For a poset (P,≤) and x, y ∈ P such that x ≤ y, [x, y] denotes the set of
elements z ∈ P such that x ≤ z ≤ y. Given a finite poset, consider a linear extension of
P and define the p× p upper triangular matrix ζ by ζ(x, y) = 1 if x ≤ y and 0 otherwise.
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Since ζ(x, x) = 1 for each x ∈ P , ζ has an inverse, say µ, called the Möbius function.
In particular, if P is the collection 2N of all subsets of a finite set N and is endowed
with set inclusion, µ(S, T ) = (−1)t−s for S ⊆ T . Moreover, if g : (P,≤) −→ R and
f : (P,≤) −→ R are two functions on a finite poset (P,≤) such that g(x) =

∑
y≥x f(y),

then f(x) =
∑

y≥x g(y)µ(x, y). This operation is known as the Möbius inversion formula.
A situation in which a finite set of agents can obtain certain payoffs by cooperating

can be described by a cooperative game with transferable utility, or simply a TU-game,
being a pair (N, v), where N = {1, . . . , n} is a finite set of n ∈ N agents and v : 2N −→ R
is a coalition function on N such that v(∅) = 0. For any coalition S ∈ 2N , v(S) is the
worth of coalition S, i.e., the total payoff v(S) that the members of coalition S can obtain
by agreeing to cooperate. Since we take the agent set N to be fixed, we denote the game
(N, v) by its coalition function v. We denote the collection of all coalition functions on N
by GN . The null TU-game 0GN

is the TU-game such that, for each S ∈ 2N , 0GN
(S) = 0.

For each coalition S ∈ 2N \ ∅, define the Dirac game 1S as 1S(T ) = 1 if T = S, and
1S(T ) = 0 otherwise. Clearly, the collection

{
1S : S ∈ 2N \ ∅

}
of Dirac games forms a

basis for GN . It is often more convenient to use an alternative basis. To this end, for each
S ∈ 2N\∅, define the lower game `S as `S(T ) = 1 if T ⊆ S and T 6= ∅, and `S(T ) = 0
otherwise.

Lemma 1 The collection
{
`S : S ∈ 2N \ ∅

}
of lower games is a basis for the linear space

of all TU-games.

Proof. It is well-known that GN can be viewed as (2n − 1)-dimensional linear space.
Let S1, S2, . . . , S2n−1 be a fixed sequence of all non-empty coalitions such that n = s1 ≥
s2 ≥ . . . ≥ s2n−1 = 1. Further, let A = [aij ] be the (2n − 1) × (2n − 1) matrix defined as
aij = `Si(Sj) for each i and each j taken in {1, 2, . . . , 2n − 1}. By definition of the lower
games, it follows that A is an upper triangular matrix such that, for each i ∈ N , aii = 1.
Hence, the determinant of A is equal to 1. This implies that

{
`S : S ∈ 2N \ ∅

}
constitutes

a set of (2n − 1) independent TU-games in the linear space GN , and thus a basis for GN .
�

From Lemma 1, we deduce that for each v ∈ GN , there exist 2n − 1 real numbers νvS ,
S ⊆ N , S 6= ∅, uniquely determined, such that:

v =
∑

S∈2N\∅

νvS`S (1)

The numbers νvS are the coordinates of the game v with respect to the basis of lower games.
Thus for each coalition T , we have

v(T ) =
∑

S∈2N\∅

νvS `S(T ) =
∑
S⊇T

νvS

Using the Möbius inversion formula for (2N ,⊇) we get:

∀S ∈ 2N \ ∅, νvS =
∑
T⊇S

(−1)t−sv(T ) (2)

3



A payoff vector for a game is a vector x ∈ Rn assigning a payoff xi to each agent
i ∈ N . An allocation rule Φ is a function that assigns to any v ∈ GN a unique payoff
vector Φ(v) ∈ Rn. The most well-known allocation rule for GN is the Shapley value
(Shapley, 1953) denoted by Sh and defined as:

∀i ∈ N, Shi(v) =
∑

S⊆N\i

(n− s− 1)!s!

n!

[
v(S ∪ i)− v(S)

]
.

3. Cooperative games on intersection closed systems

A set system is a pair (N,Ω) where N represents a finite set of agents of N, and Ω ⊆ 2N

is a collection of feasible coalitions. A set system (N,Ω), ordered by set inclusion, is an
intersection closed system if:

1. ∅ ∈ Ω;

2. if T ∈ Ω and S ∈ Ω, then S ∩ T ∈ Ω.

If, moreover, N ∈ Ω, then (N,Ω) forms a complete lattice of sets where:

∀S ∈ Ω,∀T ∈ Ω, inf{S, T} = S ∩ T sup{S, T} =
⋂{

Q ∈ Ω : S ∪ T ⊆ Q
}
.

Throughout this article, we assume that the grand coalition N is feasible so that, for
a fixed set of agents N , Ω = {∅, N} is the smallest intersection closed system and Ω = 2N

is the largest one. Let CN be the collection of all such intersection closed systems on
2N . In case the empty set may not belong to a set system, an intersection closed system
is sometimes called closure space or closure system, Moore family, intersection ring (of
sets), protopology, topped intersection structure, intersection semilattice (see Caspard
and Monjardet, 2003).

An example of intersection closed system is pictured in Figure 1.

∅

3 4 5

{1, 2} {3, 4} {4, 5}

{1, 2, 3} {1, 2, 4}

{1, 2, 3, 4} {1, 2, 4, 5}

{1, 2, 3, 4, 5}

Figure 1.
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A well-known instance of an intersection closed system is a convex geometry (Edelman,
Jamison, 1985). A convex geometry is an intersection closed system which satisfies the
following extension property:

3. For each S ∈ Ω such that S 6= N , there exists i ∈ N\S such that S ∪ i ∈ Ω.

The intersection closed system in Figure 1 is not a convex geometry: {3, 4} ∈ Ω but
there is no i ∈ {1, 2, 5} such that {3, 4} ∪ i ∈ Ω. It can be checked that this intersection
closed system is neither an antimatroid, nor a union closed system, nor an accessible union
stable system, nor an augmenting system and nor a regular system. Below we point out
three relevant examples of intersection closed systems that are not convex geometries.

Example 1 (Matchings) Let M and W be two disjoint sets of agents of equal size such
that N = M ∪W . A matching is a bijective map µ : M −→ W . Given a matching µ,
define the set system (N,Ωµ) as:

Ωµ =

{
S ⊆ N : µ(S ∩M) ⊆ S and µ−1(S ∩W ) ⊆ S

}
.

In words, S ∈ Ωµ if each agent in M ∩S has his or her partner in S and each agent M ∩S
has his or her partner in S. The set system (N,Ωµ) is intersection closed but does not
satisfies the extension property since for each S ∈ Ωµ and each i ∈ N \ S, S ∪ i 6∈ Ωµ. So,
(N,Ωµ) is not a convex geometry. Interestingly enough, (N,Ωµ) is also union closed (i.e.
if S, T ∈ Ωµ, then T ∪ S ∈ Ωµ) but it does not satisfies the accessibility property saying
that if S ∈ Ωµ, then there is i ∈ S such that S \ i ∈ Ωµ. Therefore, (N,Ωµ) it is not an
antimatroid either. �

Example 2 (Forests) An undirected graph (or graph) (N,L) is given by a set N of
nodes (the agents) and a set L of pairs of nodes, i.e. L ⊆ {{i, j} : i, j ∈ N, i 6= j}, these
pairs being called edges. A path of (N,L) is a finite sequence (i0, i1, ..., ip) of nodes such
that for 0 ≤ k < p, {ik, ik+1} ∈ L and, for 0 < k < p, ik−1 6= ik+1. Two nodes i, j are
connected in (N,L) if there exists a path (N,L) between i and j, and the graph (N,L) is
connected if any two nodes are connected. The subgraph of (N,L) induced by a nonempty
coalition of nodes S ∈ 2N is the graph (S,L(S)) with L(S) = {{i, j} ∈ L : i, j ∈ S}. A
graph is cycle-free if there is at most one path connecting any pair of nodes. A coalition
of nodes S is connected if (S,L(S)) is connected. By convention, ∅ is connected. Let ΩL

denote the set of all connected coalitions in (N,L), which are the relevant coalitions in
Myerson (1977)’s model. If (N,L) is a cycle-free graph, then (N,ΩL) is an intersection
closed system, but it is a convex geometry only if (N,L) is also connected. �

Example 3 (Permission structures) A permission structure on N is a function P :
N −→ 2N which is asymmetric, that is, for each pair i, j ∈ N , if j ∈ P (i), then i 6∈ P (j).
The transitive closure of P is denoted by P̂ , and the members of P̂−1(i) are called the
superiors of i. In the conjunctive approach developed by Gilles et al. (1992), a coalition of
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agents can form only if all superiors of each coalition’s member also belong to the coalition.1

Formally, a coalition S is called autonomous if ∪i∈SP̂−1(i) ⊆ S. It is well-known from
Gilles et al. (1992, Proposition 3.2) that the set system (N,ΩP ) where ΩP is the set of
autonomous coalitions of the permission structure P is an intersection closed system (and
is also union closed). But, (N,ΩP ) is not always a convex geometry. As an example, set
N = {1, 2, 3}, P (1) = {3}, P (2) = {3} and P (3) = ∅. Then, ΩP = {{1}, {2}, {1, 2, 3}}
and (N,ΩP ) violates the extension property. �

In a TU-game v ∈ GN , any subset S ⊆ N is assumed to be able to form a coalition and
earn the worth v(S). However, in most applications not every set of participants can form
a feasible coalition. Therefore, cooperative game theory models have been developed that
take into account restrictions on coalition formation. This can be modeled by considering
a set of feasible coalitions Ω ⊆ 2N that needs not contain all subsets of the agents set N .

Formally, a TU-game on an intersection closed system is a pair (v,Ω) where v is TU-
game in GN and Ω in CN is an intersection closed system representing the set of feasible
coalitions.

An allocation rule for TU-games on intersection closed systems is a function Φ : GN ×
CN −→ Rn that assigns a payoff vector Φ(v,Ω) ∈ Rn to every pair (v,Ω) ∈ GN × CN .

The possible gains from cooperation as modeled by v ∈ GN and the restrictions on co-
operation reflected by the intersection closed system Ω are incorporated in an Ω-restricted
game (N, vΩ). To introduce the Ω-restricted game, we need the following definition. Given
Ω ∈ CN , define the operator c on 2N that assigns to each coalition S ∈ 2N the coalition
c(S) defined as:

c(S) =
⋂{

Q ∈ Ω : S ⊆ Q
}
.

Since Ω is a finite lattice of sets, c(S) is well-defined and corresponds to the smallest
feasible coalition that contains S. For each S ∈ 2N and each T ∈ 2N , we can easily verify
that the following properties hold:

1. S ⊆ c(S);

2. S ⊆ T implies c(S) ⊆ c(T );

3. c(c(S)) = c(S).

From points 1-3, we conclude that the operator c is a closure operator. It follows that a
coalition S ∈ 2N is feasible if and only if c(S) = S. Note also that:

sup{T, S} = c(S ∪ T ).

Given a pair (v,Ω) ∈ GN ×CN , we define the Ω-restricted game vΩ ∈ GN of (v,Ω) as:

1See also van den Brink (1997) for the disjunctive approach and Faigle and Kern (1992) for a closely
related model.
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∀S ∈ 2N , vΩ(S) = v(c(S)),

i.e. vΩ assigns to each coalition the worth of its closure, so that, for S ∈ Ω, vΩ(S) = v(S)
for each coalition S ∈ Ω.

4. Analysis

Fix an intersection closed system Ω ∈ CN . In this section, we address the properties
of the mapping

LΩ : GN −→ GN , v 7−→ vΩ (3)

Define the subspaces GN,Ω and GN,Ω of GN as:

GN,Ω =
{
v ∈ GN : ∀S ∈ N, v(S) = v(c(S))

}
and GN,Ω =

{
v ∈ GN : ∀S ∈ Ω, v(S) = 0

}
.

Proposition 1 The mapping LΩ is the projection of GN on the subspace GN,Ω along the
direction of GN,Ω. Furthermore, the sub-collection of lower TU-games

BΩ =
{
`S : S ∈ Ω \ ∅

}
forms a basis for GN,Ω, and the sub-collection of Dirac TU-games

1Ω =
{

1T : T ∈ 2N\Ω
}

forms a basis for GN,Ω.

Proof. First, the mapping LΩ is a linear mapping such that for each v ∈ GN,Ω, LΩ(v) = v,
and for each v ∈ GN,Ω, LΩ(v) = 0GN

. Next, consider any feasible coalition S ∈ Ω \ ∅. We

have `S ∈ GN,Ω. Now, consider any Dirac game 1T where T ∈ 2N\Ω. Obviously, we have
1T ∈ GN,Ω. Observe that GN,Ω ∩GN,Ω = {0GN

}. It follows that BΩ ∪ 1Ω is a collection of
(ω − 1) + (2n − ω) = 2n − 1 linearly independent elements of GN (recall that, by Lemma
1, the lower TU-games are linearly independent, and any sub-collection of distinct Dirac
TU-games are also linearly independent). Therefore BΩ ∪ 1Ω is a basis for GN , such that,
for each v ∈ BΩ, LΩ(v) = v, and, for each v ∈ 1Ω, LΩ(v) = 0G, showing the result. �

Given a coalition S ∈ 2N , let maxΩ S be the set of maximal sub-coalitions Q of S
belonging to Ω. Note that maxΩ S is non-empty since S contains the feasible set ∅. Given
a non-empty collection of coalitions Θ chosen in maxΩ S, QΘ denotes the intersection of
coalitions belonging to Θ, and θ stands for the number of elements of Θ. In the following,
`∅ stands for the null game 0GN

. Proposition 2 expresses each restricted lower TU-game
either as a linear combination of lower games or as the supremum of lower games.

Proposition 2 For each lower TU-game `S , S ∈ 2N \ ∅, it holds that:

`ΩS =
∑

∅⊂Θ⊆maxΩ S

(−1)θ−1 `QΘ
= sup

Q∈maxΩ S
`Q (4)

In particular, if S ∈ Ω, then `ΩS = `S .
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Proof. Pick any coalition S ∈ 2N \ ∅ and consider the lower TU-game `S ∈ GN and its
projection `ΩS ∈ GN,Ω. We first prove the first equality in (4). To this end, consider any
coalition T ∈ 2N \ ∅. We distinguish two cases:

(a) If maxΩ S = {∅}, then the right-hand side of the first equality in (4) reduces to the
null game. Moreover, c(T ) is not included in S, which implies that `ΩS (T ) = `S(c(T )) = 0.
Thus, both sides of the first equality are equal to zero.

(b) If maxΩ S contains at least one non-empty coalition. Two subcases arise.
(b1) If T is not a subset of S, then c(T ) is not a subset of S since c(T ) ⊇ T . On the

one hand, by definition of the lower TU-game `S , we obtain `ΩS (T ) = `S(c(T )) = 0. On
the other hand, since maxΩ S is a collection of subsets of S, we obtain `QΘ

(T ) = 0 for
each non empty subset Θ of maxΩ S. Thus, if c(T ) is not a subset of S, then

`ΩS (T ) =
∑

∅⊂Θ⊆maxΩ S

(−1)θ−1 `QΘ
(T ) = 0.

(b2) If T is a subset of S, then there are two possibilities.
(b2.1) In case T ⊆ Q for some Q ∈ maxΩ S, then c(T ) ⊆ Q ⊆ S since c(T ) is defined as

the smallest feasible coalition that contains T . On the one hand, by definition of the lower
TU-game `S , we obtain `ΩS (T ) = `S(c(T )) = 1. On the other hand, for each Q ∈ maxΩ S
such that T ⊆ Q, we have `Q(T ) = 1. Consider the set ∆TS formed with coalitions of
maxΩ S which contain T and so c(T ). For each non-empty collection of coalitions Θ ⊆ ∆TS ,
we have `QΘ

(T ) = 1. In case (maxΩ S) \∆TS is non-empty, we have `QΘ′ (T ) = 0 for each
non-empty collection Θ′ ⊆ (maxΩ S) \∆TS . Thus,

∑
∅⊂Θ⊆maxΩ S

(−1)θ−1 `QΘ
(T ) =

∑
∅⊂Θ⊆∆TS

(−1)θ−1 `QΘ
(T ) =

∑
∅⊂Θ⊆∆TS

(−1)θ−1

Keeping in mind that for each non-empty finite set S,
∑

T⊆S(−1)t = 0, we deduce

that
∑
∅⊂Θ⊆∆TS

(−1)θ−1 = 1, as desired.
(b2.2) In case there is no Q ∈ maxΩ S such that T ⊆ Q, then, for each subset Θ of

maxΩ S, `QΘ
(T ) = 0. Moreover, S does not contain c(T ) and so `ΩS (T ) = `S(c(T )) = 0, as

desired.
In the particular case when S ∈ Ω, then maxΩ S = {S} and the right-hand side of the

first equality in (4) reduces to `S .
It remains to prove that `ΩS = supQ∈maxΩ S `Q in equality in (4). It suffices to note

that, for each T ∈ 2N \ ∅, c(T ) ⊆ S if and only if there is Q ∈ maxΩ S such that Q ⊇ T .
It follows that

`S(T ) = sup
Q∈maxΩ S

`Q(T ) = 1

if and only if there is Q ∈ maxΩ S such that Q ⊇ T . �
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Proposition 3 Let (v,Ω) be a game with restricted cooperation and let vΩ ∈ GN,Ω be
the associated Ω-restricted game given by:

vΩ =
∑
S∈Ω\∅

νv
Ω

S `S .

Then, for each S ∈ Ω \ ∅, it holds that:

νv
Ω

S =
∑

T∈Ω:T⊇S

[ ∑
H⊇S:c(H)=T

(−1)h−s

]
v(T )

Proof.
From equality (2), we have:

∀S ∈ 2N \ ∅, νv
Ω

S =
∑
H⊇S

(−1)h−s vΩ(H).

The above expression can be decomposed as follows:

∑
H⊇S

(−1)h−s vΩ(H) =
∑

T⊇S:T∈Ω

[ ∑
H⊇S:c(H)=T

(−1)h−s vΩ(H)

]
.

For H ⊇ S such that c(H) = T , we have vΩ(H) = v(c(H)) = v(T ). Thus, we obtain:

νv
Ω

S =
∑

T⊇S:T∈Ω

[ ∑
H⊇S:c(H)=T

(−1)h−s

]
v(T ),

showing the result. �

Corollary 1 For each Ω-restricted lower game

`ΩS =
∑
T∈Ω\∅

ν
lΩS
T `T ,

we have:
∀T ∈ Ω \ ∅, ν

`ΩS
T =

∑
{H⊇T :∃Q∈maxΩ S,Q⊇H}

(−1)h−t (5)

Proof. Consider any S ∈ 2N \ ∅. First note that the decomposition

`ΩS =
∑
T∈Ω\∅

ν
`ΩS
T `T

9



follows from Proposition 1. Next, by Proposition 3, for each T ∈ Ω \ ∅, we have:

ν
`ΩS
T =

∑
R∈Ω:R⊇T

[ ∑
H⊇T :c(H)=R

(−1)h−t

]
`S(R)

=
∑

R∈Ω∩[T,S]

[ ∑
H⊇T :c(H)=R

(−1)h−t

]

=
∑
H⊇T

[ ∑
R∈Ω∩[T,S]:c(H)=R

(−1)h−t

]
.

For each H ⊇ T , there is at most one R ∈ Ω ∩ [T, S] such that c(H) = R and, moreover,
such a coalition R exists if and only if there exists Q ∈ maxΩ S such that Q ⊇ H. Thus,
the results follows. �

Remark 1 Note that equation (5) implies that ν
`ΩS
T = 0 whenever T is not contained in

S since, in this case, there is no H ⊇ T contained in some Q ∈ maxΩ S. Equation (5) also

implies that ν
`ΩS
T = 1 whenever T ∈ maxΩ S.

Remark 2 We now have two expressions of the decomposition of `ΩS in the basis BΩ of
GN,Ω:

`ΩS =
∑

T∈Ω, ∅⊂T⊆S

∑
{H⊇T :∃Q∈maxΩ S,Q⊇H}

(−1)h−t`T , and `ΩS =
∑

∅⊂Θ⊆maxΩ S

(−1)θ−1 `QΘ

To understand this coincidence, notice that each T ∈ Ω can be such that either T = QΘ

for different sets Θ ⊆ maxΩ S or for none of them.

The next result provides an expression of the linear operator LΩ in the basis of lower
TU-games.

Theorem 1 Let (v,Ω) be a game with restricted cooperation in GN × CN . The coordi-
nates of vΩ with respect to the basis of lower games are given by:

∀S ∈ Ω \ ∅, νv
Ω

S =
∑

T∈Ω:T⊇S
ν
lΩT
S ν

v
T .

Proof. The mapping which associates to each coalition function v ∈ GN the coordinates
νv

Ω

S , S ∈ Ω \ ∅ is linear. Because the collection {`H : H ∈ 2N \ ∅} is a basis for GN , it

suffices to prove the above equality for any lower game `H . Obviously, we have ν`HT = 1

for H = T , and ν`HT = 0 otherwise. So, consider any `H , H ∈ 2N \ ∅, and any S ∈ Ω \ ∅.
Two cases arise:
(a) For H ⊇ S, we have: ∑

T∈Ω:T⊇S
ν
`ΩT
S ν`HT = ν

`ΩH
S .
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(b) For H 6⊇ S, we have ∑
T∈Ω:T⊇S

ν
`ΩT
S ν`HT = 0 = ν

`ΩH
S ,

where the last equality comes from (5) and Remark 1. Thus, in both cases, we have the
desired result. �

5. The Intersection rule

There exist two main approaches to define a Shapley for TU-games on set systems.
In the first approach, the Shapley value consists in considering equally likely compatible
orderings of agents. An ordering is compatible with a set system (N,Ω) if it corresponds
to a maximal chain of Ω, that is, an ordered sequence of feasible coalitions ∅ ⊂ · · ·St ⊂
St+1 · · · ⊂ N , where St+1 \St contains exactly one element for each t. For each compatible
ordering, the agents enter a bargaining room one by one, and upon entering each agent is
paid his marginal contribution, and the Shapley value of (v,Ω) is the average, over all such
compatible orderings, of the marginal contribution vectors. This is the approach chosen,
for instance, by Bilbao (1998) and Bilbao and Edelman (2000), to define and axiomatize a
Shapley value on convex geometries. In case the set system does not contain a compatible
ordering of agents, which may be the case for intersection closed systems, this approach
is not very compelling. That is the reason why the second approach defines the Shapley
value for TU-games on a set system as the Shapley value of a restricted TU-game. This
approach is followed, for instance, by van den Brink et al. (2011) who define a Shapley
value for union closed systems. A set system (N,Ω) is union closed if:

1. ∅, N ∈ Ω;

2. if T ∈ Ω and S ∈ Ω, then S ∪ T ∈ Ω.

The Union rule for TU-games on union closed systems is defined as:

U(v,Ω) = Sh(vΩ).

The Ω-restricted game vΩ is as follows:

∀S ∈ N, vΩ(S) = v(int(S)),

where int(S) stands for the interior of S defined as the largest feasible coalition contained
in S.

In this spirit, we introduce and axiomatize an allocation rule for TU-games on inter-
section closed systems. This allocation rule applies the Shapley value to the Ω-restricted
game. Formally the Intersection rule, denoted by I, is defined as:

∀(v,Ω) ∈ GN × CN , I(v,Ω) = (Sh ◦ LΩ)(v) = Sh(vΩ) (6)

We present several axioms that can be satisfied by allocation rules Φ on GN × CN .
The first two axioms are straightforward generalizations of the well-known Efficiency and
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Additivity axioms for GN .

Efficiency. For each (v,Ω) ∈ GN × CN , it holds that:∑
i∈N

Φi(v,Ω) = v(N).

Additivity. For each (v, u,Ω) ∈ GN ×GN × CN , it holds that:

Φ(v,Ω) + Φ(u,Ω) = Φ(v + u,Ω),

where the TU-game v + u ∈ GN is defined as (v + u)(S) = v(S) + u(S) for each S ⊆ N .

The next axiom states that in a TU-game on an intersection closed system where the
worth of each feasible coalition is null, then agents receive identical payoffs.

Equality. For each (v,Ω) ∈ GN × CN such that v ∈ GN,Ω̄, it holds that:

∀i, j ∈ N, Φi(v,Ω) = Φj(v,Ω).

We can prove the following preliminary result, which characterizes the structure of an
allocation rule satisfying Efficiency, Additivity and Equality.

Proposition 4 If an allocation rule Φ on GN × CN satisfies Efficiency, Additivity and
Equality, then, for each (v,Ω) ∈ GN × CN , it holds that Φ(v,Ω) = Φ(vΩ,Ω).

Proof. Consider any allocation rule Φ satisfying Efficiency, Additivity and Equality.
Pick any (v,Ω) ∈ GN × CN , and consider the TU-game v − vΩ. We have, v − vΩ ∈ GN,Ω̄
and, in particular, (v − vΩ)(N) = 0. By Efficiency and Equality, we obtain:

Φ(v − vΩ,Ω) = (0, . . . , 0) (7)

On the other hand, since v = v − vΩ + vΩ, by Additivity, we have:

Φ(v,Ω) = Φ(v − vΩ + vΩ,Ω) = Φ(v − vΩ,Ω) + Φ(vΩ,Ω).

Applying (7), we get:
Φ(v,Ω) = Φ(vΩ,Ω),

as desired. �

In order to single out specific allocation rules, we introduce two axioms relying on TU-
games in which the worth of any coalition equals the worth of its closure. In a TU-game
v ∈ GN , two agents i and j are equal if, for each S ⊆ N \ {i, j}, v(S ∪ i) = v(S ∪ j). It
is well-known that the Shapley value on GN treats equally equal agents. The Intersection
rule I does not satisfies this axiom on GN × CN . However, it satisfies the weaker axiom
requiring the same payoff for equal agents in TU-games where the worth of any coalition
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equals the worth of its closure.

Equal treatment of equal agents for intersection closed systems. For each (v,Ω) ∈
GN × CN where v ∈ GN,Ω, and for each pair of equal agents in v, it holds that:

Φi(v,Ω) = Φj(v,Ω).

An agent i is null in a TU-game v ∈ GN if, for each S ⊆ N\{i}, v(S ∪ i) = v(S).
Similarly as before, the Shapley value assigns a null payoff to null agents on GN . This is
not the case of the Intersection rule, unless the domain is restricted to TU-games where
the worth of any coalition equals the worth of its closure.

Null agent for intersection closed systems. For each (v,Ω) ∈ GN × CN where
v ∈ GN,Ω, and for each null agent in v, it holds that:

Φi(v,Ω) = 0.

Theorem 2 The allocation rule I on GN × CN is the unique allocation which satisfies
Efficiency, Additivity, Equal treatment of equal agents for intersection closed systems, Null
agent for intersection closed systems and Equality.

Proof. (Uniqueness) Consider any allocation rule Φ satisfying Efficiency, Additivity,
Equal treatment of equal agents for intersection closed systems, Null agent for intersection
closed systems and Equality. We have to show that Φ is uniquely determined on GN×CN .
Consider any (v,Ω) ∈ GN ×CN . By Proposition 4, we know that Φ(v,Ω) = Φ(vΩ,Ω). By
Lemma 1, we know that vΩ admits the following linear decomposition:

vΩ =
∑
S∈Ω

νv
Ω

S `S ,

where the coordinates νv
Ω

S , S ∈ Ω, are uniquely determined. Thus, by Additivity,

Φ(v,Ω) = Φ(vΩ,Ω) =
∑
S∈Ω

Φ(νv
Ω

S `S ,Ω).

It remains to show that, for each S ∈ Ω, Φ(νv
Ω

S `S ,Ω) is uniquely determined. By Propo-
sition 2, for each constant b ∈ R and each S ∈ Ω, we know that b`S ∈ GN,Ω. Now, for
S = N , since all agents are equal in b`N , Efficiency and Equal treatment of equal agents
for intersection closed systems yield

∀b ∈ R, ∀i ∈ N, Φi(b`N ,Ω) = b/n. (8)

Next, for each S ∈ Ω\N , define the game vS ∈ GN as

vS = νv
Ω

S (`S − `N ),
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and note that vS(N) = −νvΩ

S . Since GN,Ω is a vector space, vS ∈ G(N,Ω). Moreover,
it is easy to check that the agents in S are null in vS and that the agents in N \ S are
equal in vS . Thus, an application of Null agent for intersection closed systems yields that
Φi(vS ,Ω) = 0 for each i ∈ S. In addition, by Equal treatment of equal agents for inter-

section closed systems and Efficiency, we obtain that Φi(vS ,Ω) = −νvΩ

S /(n − s) for each

i ∈ N \ S. Hence, by Additivity, we obtain Φ(νv
Ω

S `S ,Ω) = Φ(νv
Ω

S `N ,Ω) + Φ(vS ,Ω). Using

(8), we get Φi(ν
vΩ

S `S ,Ω) = νv
Ω

S /n if i ∈ S and Φi(ν
vΩ

S `S ,Ω) = νv
Ω

S (1/n − 1/(n − s)) if
i ∈ N \ S. This completes the proof of uniqueness.

(Existence) We show that the Intersection rule satisfies all axioms in the statement of
Theorem 2.
Additivity and Efficiency. The allocation rule I inherits these axioms from the Shapley
value and the fact that LΩ is a linear operator such that LΩ(v)(N) = v(c(N)) = v(N) for
each (v,Ω) ∈ GN × CN .
Equal treatment of equal agents for intersection closed systems. Consider any
situation (v,Ω) ∈ GN × CN such that v ∈ GN,Ω. Therefore, we have:

I(v,Ω) = Sh(vΩ) = Sh(v).

The fact that I satisfies Equal treatment of equal agents for intersection closed systems
follows from the fact that Sh satisfies Equal treatment of equal agents on GN .
Null agent for intersection closed systems. Consider any situation (v,Ω) ∈ GN×CN
such that v ∈ GN,Ω. Therefore, we have:

I(v,Ω) = Sh(vΩ) = Sh(v).

The fact that I satisfies Null agent for intersection closed systems follows from the fact
that Sh satisfies Null agents on GN .
Equality Consider any situation (v,Ω) ∈ GN × CN such that v ∈ GN,Ω̄. Then, the Ω-

restricted game vΩ coincides with the null game 0GN
. Therefore,

I(v,Ω) = Sh(vΩ) = Sh(0GN
) = (0, . . . , 0),

where the last equality follows from the additivity of Sh. We conclude that I satisfies
Equality. �

Logical independence of the axioms.

• The null allocation rule satisfies all axioms except Efficiency.

• The equal division value ED, which assigns to each (v,Ω) ∈ GN × CN and each
i ∈ N the payoff EDi(v,Ω) = v(N)/n satisfies all axioms except Null agent for
intersection closed systems.

• The allocation rule Φ such that Φ(v,Ω) = I(v,Ω) if there is at least one null agent
in v and Φ(v,Ω) = ED(v,Ω) otherwise satisfies all axioms except Additivity.
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• For a given permutation π on N , denote by Sπi the agents preceding i in π. The
allocation rule Φ which assigns to each (v,Ω) ∈ GN ×CN and each i ∈ N the payoff
Φi(v,Ω) = vΩ(Sπi ∪{i})−vΩ(Sπi ) satisfies all axioms except Equal treatment of equal
agents for intersection closed systems.

• The allocation rule Φ such that Φ(v,Ω) = Sh(v) satisfies all axioms except Equality.

In addition to this first characterization result, which is as close as possible to the
classical axiomatization of the Shapley value, it is possible to provide a second character-
ization of the Intersection rule as a corollary of a more general result. More specifically,
the principle behind the Intersection rule can be extended to any allocation rule f for
classical TU-games, and not only to the Shapley value. So, for any allocation rule f on
GN , we can construct the allocation rule Φf on GN × CN such that

∀(v,Ω) ∈ GN × CN , Φf (v,Ω) = f(vΩ).

Obviously, ΦSh = I. Our second axiomatic result characterizes a family of allocation rules
Φf . As in Theorem 2, the axioms of Efficiency, Additivity and Equality are invoked in
addition to two new axioms.

The first axiom also considers a TU-game where the worth of any coalition equals the
worth of its closure. As soon as the allocation rule depends on an exogenous structure,
it is natural to wonder about structural changes that preserve the payoff allocation. The
axiom below belongs to this category. It states that if a modification in the intersection
closed system has no impact on the worth of all coalitions, then the resulting allocation
should not change.

Invariance from irrelevant changes in intersection closed systems. For any
(v,Ω,Ω′) ∈ GN × CN × CN such that v ∈ GN,Ω ∩GN,Ω′ , it holds that :

Φ(v,Ω) = Φ(v,Ω′).

Observe that the case Ω ⊂ Ω′ is possible. In this situation, the axiom specifies how an
intersection closed system can be augmented without changing the payoff allocation.

The final axiom imposes that if the intersection closed system is complete, then the
allocation rule on games on intersection closed systems should coincides with an alloca-
tion rule on classical TU-games. The rationale behind this axiom is the aim to extend an
allocation rule on classical TU-games to the richer class of games on intersection closed
systems.

f-consistency. For a given allocation rule f on GN , it holds that

∀v ∈ GN Φ(v, 2N ) = f(v).

A similar axiom is invoked in Alonso-Meijide et al. (2007, 2014), in which an allocation rule
for games with a coalition structure is called Coalitional f -value if it coincides with a value
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f for TU-games when the coalition structure trivially contains all singletons. The next
result delineates the family of allocation rules Φf which are characterized by Efficiency,
Additivity, Equality, f -consistency and Invariance from irrelevant changes in intersection
closed systems.

Theorem 3 There is a unique allocation rule Φ on GN ×CN satisfying Efficiency, Addi-
tivity, Equality, f -consistency and Invariance from irrelevant changes in intersection closed
systems if and only if f is an allocation rule on GN satisfying Efficiency and Additivity
on GN . Moreover, Φ = Φf .

In particular, we have the following corollary.

Corollary 2 The Intersection rule I is the unique allocation rule on GN ×CN satisfying
Efficiency, Additivity, Equality, Sh-consistency and Invariance from irrelevant changes in
intersection closed systems.

Proof. (Theorem 3) Suppose that there is an allocation rule Φ on GN ×CN that satis-
fies Efficiency, Additivity, Equality, f -consistency and Invariance from irrelevant changes
in intersection closed systems. We start by showing that f must satisfy Efficiency and
Additivity on GN . For each v ∈ GN , Efficiency and f -consistency imply∑

i∈N
fi(v) =

∑
i∈N

Φi(v, 2
N ) = v(N),

proving that f also satisfies Efficiency on GN . Similarly, for each (v, u) ∈ GN × GN ,
Additivity and f -consistency implies that

f(v + u) = Φ(v + u, 2N ) = Φ(v, 2N ) + Φ(u, 2N ) = f(v) + f(u),

proving that f also satisfies Additivity. Hence, if f violates either Efficiency or Additivity
on GN , then there is no allocation rule Φ on GN × CN that satisfies Efficiency, Additiv-
ity, Equality, f -consistency and Invariance from irrelevant changes in intersection closed
systems.

Next, let us show that if f satisfies Efficiency and Additivity, then there is a unique
allocation rule Φ on GN ×CN that satisfies Efficiency, Additivity, Equality, f -consistency
and Invariance from irrelevant changes in intersection closed systems.
(Uniqueness) As in the proof of Theorem 2, we build on Proposition 4 and Lemma 1 in
order to write that

Φ(v,Ω) =
∑
S∈Ω

Φ(νv
Ω

S `S ,Ω),

for each (v,Ω) ∈ GN × CN . By Additivity, it is enough to prove that Φ(νv
Ω

S `S ,Ω) is

uniquely determined for each (v,Ω) ∈ GN ×CN and each S ∈ Ω. Since νv
Ω

S `S ∈ GN,Ω, for
each T ∈ 2N , it holds that(

νv
Ω

S `S
)Ω

(T ) = νv
Ω

S `S(T ) =
(
νv

Ω

S `S
)2N

(T ),
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which implies that νv
Ω

S `S ∈ GN,2N and thus νv
Ω

S `S ∈ GN,Ω ∩ GN,2N . By Invariance from
irrelevant changes in intersection closed systems and f -consistency, we get

Φ(νv
Ω

S `S ,Ω) = Φ(νv
Ω

S `S , 2
N ) = f(νv

Ω

S `S).

Thus, Φ(νv
Ω

S `S ,Ω) is uniquely determined for each (v,Ω) ∈ GN × CN and each S ∈ Ω.
This completes the uniqueness part.

(Existence) Consider the allocation rule Φf where f is an allocation rule on GN satisfying
Efficiency and Additivity.
Additivity and Efficiency. It is obvious that Φf inherits Efficiency and Additivity on
GN × CN from the fact that f satisfies these two axioms on GN .
Equality. Suppose that v ∈ GN,Ω̄, or equivalently vΩ = 0GN

. Because f satisfies Addi-
tivity, we obtain

∀i ∈ N, Φf
i (v,Ω) = fi(v

Ω) = fi(0GN
) = 0,

which proves that Φf satisfies Equality.
f-consistency. For each v ∈ GN , it holds that Φf (v, 2N ) = f(v2N ) = f(v).
Invariance from irrelevant changes in intersection closed systems. Suppose that
v ∈ GN,Ω ∩GN,Ω′ for some (v,Ω,Ω′) ∈ GN ×CN ×CN . Thus vΩ = vΩ′ , and so Φf (v,Ω) =
f(vΩ) = f(vΩ′) = Φf (v,Ω′), as desired. �

Logical independence of the axioms. In what follows, f ′ is an allocation rule on
GN that satisfies Efficiency and Additivity, and which differs from the allocation rule f
appearing in the axiom of f -consistency, which satisfies Efficiency and Additivity too.

• The allocation rule Φ such that, for each i ∈ N ,

Φi(v,Ω) = f(vΩ) +
∑

S∈2N\Ω

(
v(S)− vΩ(S)

)
(9)

satisfies all axioms except Efficiency.

• The allocation rule Φ such that, for each i ∈ N , Φi(v,Ω) = f(vΩ) if v ∈ GN,Ω and
Φi(v,Ω) = f ′(vΩ) otherwise satisfies all axioms Additivity.

• The allocation rule Φ such that Φ(v,Ω) = f(v) for each (v,Ω) ∈ GN × CN satisfies
all axioms except Equality.

• The allocation rule Φ such that Φ(v,Ω) = f ′(vΩ) for each (v,Ω) ∈ GN ×CN satisfies
all axioms except f -consistency.

• From each (v,Ω) ∈ GN ×CN , construct the game zv,Ω ∈ GN such that, for each S ∈
2N , zv,Ω(S) = v(S)× |Ω|/2n if |S| = 1 and zv,Ω(S) = v(S) otherwise. The allocation

rule Φ which assigns to each (v,Ω) ∈ GN × CN the payoffs Φ(v,Ω) = f((zv,Ω)Ω)
satisfies all axioms except Invariance from irrelevant changes in intersection closed
systems.
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6. Conclusion

We would like to conclude this article by pointing out that the axiom system invoked
in Theorem 3 has the potential to be applicable to other set systems than the intersection
closed systems. Similarly, our axiomatic results might be adapted to other specification
of the restricted TU-game obtained from an intersection closed system. Finally, it might
be interesting to design an allocation rule specifically for our framework, that is, not
extending an allocation rule from classical TU-games to TU-games on intersection closed
systems. These lines of research are left for future work.
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