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In this paper, we extend Aumann’s (1974) well-known solution of correlated equi-

librium to allow for a cost of disobedience for each player. Calling the new so-

lution costly correlated equilibrium (CCE), we derive the necessary and sufficient

conditions under which the set of CCE strictly expands when the players’ cost of

disobedience is increased by the mediator in any finite normal-form game. These

conditions imply that for any game that has a Nash equilibrium (NE) that is un-

pure, the set of CCE strictly expands with the addition of even arbitrarily small

cost of disobedience, whereas for games that have a unique NE in pure strategies,

the set of CCE stays the same unless the cost gets sufficiently high. We also study

the welfare implications and changes in the value of mediation with exogenous cost

changes. We find that strictly better social outcomes can be attained and the value

of mediation cannot decrease with an increase in the cost level. We also illustrate

how our model can be integrated with a cost-selection game where players non-

cooperatively choose their costs of disobedience before mediation occurs. We show

that there exist cost-selection games in which setting the cost of disobedience at

zero is a strictly dominated strategy for each player as well as games this strategy

becomes weakly dominant for everyone.
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1 Introduction

One of the goals of non-cooperative game theory is to explore the means by

which one can attain efficient and cooperative outcomes in a self-enforcing

way in strategic interactions. A distinctly remarkable tool to achieve this

goal in static environments where the Nash equilibrium (NE) concept is in-

adequate is the idea of mediation through self-enforcing correlation devices

introduced by Aumann (1974). According to this idea, in strategic situations

some outcomes that cannot arise in any NE can be implemented by appropri-

ately chosen correlated recommendations of a credible mediator, forming a

correlated equilibrium (CE).1 The CE concept has been appealing as it pro-

poses a correlated randomization over the set of strategy profiles that weakly

expands the set of NE and NE payoffs.2 However, while in some games (e.g.

the Chicken, Stag-Hunt or Battle of the Sexes) the CE outcomes strictly

improve upon the NE outcomes; in others (e.g. the Matching Pennies and

the Prisoners’ Dilemma) the set of CE is equal to the set of NE.3 Moreover,

in games where the set of CE strictly expands the set of NE, there may be a

limit to achieve the total welfare maximizing efficient outcome.4

1As a matter of fact, the presence of a mediator is not always needed for correlation.

Vanderschraaf (1995) shows that in games with at least three players correlations between

the players’ subjective probability distributions over their opponents’ actions is possible

without a mediator or an external event space.
2It is also appealing because of its behavioral justifications. For instance, Aumann

(1987) shows that CE as an expression of Bayesian rationality. And, Hart and Mas-Colell

(2000) and Hart (2005) prove the connection between the set of CE and the limit behavior

of regret-based heuristics.
3Rosenthal (1974) calls that a CE is good if there is a player who prefers CE to NE for

every NE of a two-person game. He shows that a game has no good CE if it is best-response

equivalent to a two-person zero-sum game. Moulin and Vial (1978), on the other hand,

propose a class of games called “strategically zero-sum games” for which no completely

mixed NE can be improved upon. Moreover, in the infinite game setting, Liu (1996) and

Yi (1997) show that the only CE in a large class of oligopoly games are mixtures of pure

Nash equilibria. This result is extended to potential games with smooth and concave

potential functions by Neyman (1997) and Ui (2008).
4For instance, in Aumann’s example (see Example 2 in Section 3.1), the total payoff of

the players cannot exceed 20/3 in a correlated equilibrium. Even though it is more than 6
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In this paper, we examine if the set of CE can be strictly expanded

through incorporating (even arbitrarily) small costs to disobeying the rec-

ommendations of the mediator in finite normal-form games. To this aim,

we extend Aumann’s (1974) well-known solution of CE to allow for a non-

negative cost of disobedience for each player, calling the new solution costly

correlated equilibrium (CCE). Our main finding indicates that for games that

have a NE that is not pure, the set of CCE strictly expands even with an

arbitrarily small increase in the cost of disobedience (if there is room for ex-

pansion). We also study the welfare implications of exogenous cost changes

on the value of mediation. We find that socially more efficient outcomes can

be attained and the value of mediation cannot decrease with an increase in

the cost level. As these findings imply that players may find it to their in-

terests to non-cooperatively commit to non-zero cost levels subsequently, we

also introduce and briefly study a cost-selection game under mediation.

The CE is a randomization over the strategy profiles that is commonly

known by all players and implemented by the recommendations of a reliable

mediator who informs each player privately of her recommended action based

on the realization of the lottery. It is ex ante optimal for each player to fol-

low this recommendation if each player believes that the others are doing so.

However, the findings of Cason and Sharma (2007) in laboratory experiments

indicate that players do not always obey recommendations that implement

CE outcomes because of the lack of mutual knowledge of beliefs. Incorpo-

rating some small costs to disobedience to the recommendations could be

perceived as one way to induce players to sustain mutual trust for following

the recommendations of the mediator (even though the costs are not realized

in equilibrium).

It is well-known that traffic lights may be viewed as a mediator who

sends private but correlated recommendations (based on the outcome of a

commonly known lottery) to the drivers at an intersection. And, everyone

follows the recommendations believing that every other is going to do so.

(the maximal total payoff that can be obtained by a Nash equilibrium), it is short of the

total payoff of 8 that is provided by the symmetric efficient outcome.
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However, in practice, there is often a cost of not obeying to the recommen-

dations of the mediator (such as a fine of passing at a red light even though it

is self-enforcing not to do so when everyone believes that everyone follows the

recommendations). Hence, we believe that incorporating some small cost for

disobeying the recommendations of the mediator could alleviate the issues

related with players’ trust to each other in following the recommendations

and potentially expand the set of CE (and thus the NE) in the direction

to attain Pareto improving outcomes. To illustrate a second benefit of dis-

obedience costs in mediation, we may consider mediatory institutions like

government agencies or independent international bodies (such as European

Convention and Court of Human Rights) giving recommendations to all rel-

evant parties that participate in issues such as environmental agreements,

legal negotiations etc.5 The CE notion puts no sanctions or punishments

if a player chooses not to follow the recommendations and s/he would get

information about the recommendations and thus what others may do even

though s/he chooses not to follow. However, in many such contexts, there

many be tangible or intangible costs of not following the recommendations

of these agencies, and these costs seem to have been ignored by the economic

theory so far to the best of our knowledge. In this study, we would like to

capture the implications of incorporating these costs on the set of equilibrium

outcomes.

There is a growing body of literature on how to expand the set of CE,

which is essentially concerned with strengthening of the commitment of the

players to follow the recommendations of the mediator. In particular, a

“simple extension” of CE was introduced by Moulin and Vial (1978), which

was later termed as “coarse correlated equilibrium” by Young (2004) and

“weak correlated equilibrium” (WCE) by Forgó (2010). Like CE, the solution

of WCE also picks the outcome of the game according to a commonly known

probability distribution. The difference in WCE is that each player must first

decide to commit or not to follow the strategy recommended by the mediator

before the mediator implements the randomization and they are required to

5See Moulin, Ray and Sen Gupta (2014) for a further discussion.
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do so if they choose to commit. A player who does not commit could choose

any strategy of her own but s/he cannot receive any information about the

outcome of the lottery. Again as in CE, it is ex-ante optimal to commit

to the expected outcome of the lottery if a player believes that every other

player is doing the same. Moulin and Vial (1978) show that it is possible

to improve upon a completely mixed NE by WCE in strategically zero-sum

games where CE cannot improve upon NE.6 In a more recent study, Forgó

(2010) proposes for finite games another generalization of CE, called soft

correlated equilibrium (SCE). He shows that neither SCE nor WCE is a

special case of the other, and in some normal-form games SCE can induce

Pareto-superior outcomes than does WCE. The only difference of the two

solutions is that in SCE players should either commit to the recommendations

of the mediator or choose some action other than the one suggested by the

mediator. Once again, it is ex-ante optimal for a player to commit to the

recommendation if everyone beliefs that every other does so. Forgó (2010)

shows that while WCE and CE cannot improve upon the unique NE in the

Prisoners’ Dilemma game, SCE could do so.

The experimental literature on third-party recommendations in overcom-

ing coordination problems and studying the empirical validity of CE concept

with a mediator is also blooming.7 A common feature of these studies is that

they aim to identify whether (experimental) subjects follow the recommenda-

tions and the factors which make them more or less likely to do so. They all

find that subjects tend to follow recommendations but this tendency varies

significantly with variations in the games and treatments. For instance, Ca-

6WCE is also studied in infinite strategic games e.g. Gerard-Varet and Moulin (1978),

Ray and Sen Gupta (2013) and Moulin, Ray and Sen Gupta (2014). For instance, Moulin,

Ray and Sen Gupta (2014) analyze the concept of WCE in a class of symmetric two-person

games quadratic games (e.g. Cournot duopoly and the public good provision games) where

WCE can strictly improve upon NE payoffs while CE cannot.
7To the best of our knowledge, Moreno and Woorders (1998) is the first experimental

study which shows that subjects’ behavior can be explained with the coalition-proof CE

(incorporating the possibility that players could do small mistakes) when preplay commu-

nication is allowed (rather than incorporating a commonly known randomization device

whose realization is privately recommended to each subject by a mediator).
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son and Sharma (2007) find that recommendations were effective when the

subjects played against robots that always followed the recommendations,

rather than against other human subjects. They claim that the lack of mu-

tual knowledge of conjectures is why subjects fail to play the CE when facing

other human players, i.e. subjects do not want to choose the recommended

action as they believe that their opponent will not do so. Duffy and Feltovich

(2010) show that recommendations are more likely to be followed when they

induce a CE that payoff-dominates the available (mixed-strategy) NE. Bone,

Drouvelis and Ray (2012) similarly find that recommendations are typically

followed when the CE is not payoff dominated by some other outcome. How-

ever, Anbarci, Feltovich and Gurdal (2018) show that it is also necessary for

the CE either to be sufficiently payoff-equitable ex-post or for the cost of

unilaterally disobeying recommendations to be low for the recommendations

to be more effective. They examine different treatments where the equilib-

rium induced by the recommendations imply payoffs that are equal ex ante,

but unequal ex post. They find that as either payoff asymmetry increases or

the cost of disobeying an unfavorable recommendation decreases (meaning

that the loss in the payoff s/he would receive by disobeying), subjects (who

are sufficiently inequity-averse) are more likely to disobey recommendations

after the ones that ex-post unfavor them. Georgalos, Ray and Sen Gupta

(2019), on the other hand, investigates whether the subjects follow the WCE

by asking subjects to commit to a device that randomizes between three

symmetric outcomes (including the pure NE) with higher ex-ante expected

payoff than the pure NE payoff. They find that players tend to avoid com-

mitting to the device and choose to play the game by coordinating on the

pure NE. Their results also imply that the players do not like to commit to

follow the recommendations that lead to ex-post unequal payoffs.

The findings in the experimental literature points out to the need for

incentivizing players to follow the recommendations to coordinate on better

outcomes. In our paper we provide the missing incentives in the CE model by

introducing a non-negative cost of disobedience for each player, and thus gen-

eralize the notion of correlated equilibrium in normal-form games as “costly
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correlated equilibrium” (CCE). In this setup, we study how the set of CCE

is affected by increases in the cost of disobedience. We show that in case

the cost of disobedience is uniform for all players and exogenously set by the

mediator, an increase, however small, in its level expands the set of CCE if

and only if the boundary of this set contains an unpure equilibrium.

Moreover, we show that in situations where the mediator recommends a

socially optimal CCE, a sufficiently large increase in the cost of disobedience

may raise the social welfare unless the society of players is already enjoying an

outcome with the highest attainable welfare. We quantify the performance

of mediation under costly disobedience by extending the measures in Ashlagi

et al (2008). We say that the value of mediation at any cost level is equal

to the ratio between the total payoff obtained in any optimal CCE at that

cost level and the maximal total NE payoff obtained in the absence of any

mediation. Similarly, we say that the value of enforcement at any cost level

is the ratio between the total payoff obtained in any optimal CCE at that

cost level and the maximal total payoff in the game. We find that when the

cost changes the value of mediation and the value of enforcement move in

the same direction and they are always non-decreasing.

Lastly, we extend our model to a setup allowing for each player to choose

his/her cost of disobedience prior to mediation. In this setup, the mediator

first announces an optimal CCE rule that specifies a socially optimal CCE at

each possible cost profile, before the players choose their costs strategically

and non-cooperatively. This rule along with the game structure of the un-

mediated game induces for each player an expected utility function over the

set of possible cost profiles, hence a strategic-form game that we call “the

cost-selection game”. We show that there exist cost-selection games where

committing to zero (or some low levels of) cost is a strictly dominated strat-

egy for each player as well as games where this extreme strategy becomes

weakly dominant for each player.

The rest of the paper is organized as follows: Section 2 introduces the

model. Section 3 gives our results and Section 4 concludes.
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2 Model

We consider a normal-form (strategic-form) game G = [N, {Si}, {ui(.)}] that

specifies the set of players N = {1, . . . , n} where n ≥ 2 and for each player

i a set of pure strategies Si and a payoff function ui : ×
n
i=1Si → ❘ giving

the von Neumann-Morgenstern utilities. Let S = ×n
i=1Si. For each s ∈ S

and i ∈ N , we define si such that s = (si, s−i). Similarly, we define for each

i ∈ N , the set S−i such that S = Si × S−i.

For any integer k ≥ 1 and any set X ⊆ ❘
k, we denote by ∆(X) the

probability distributions over X. A correlated equilibrium (Aumann 1974)

is a probability distribution p over ∆(S) such that for all i ∈ N and for all

ri, ti ∈ Si the following is satisfied:

∑

s−i∈S−i

p(s−i, ri)ui(ri, s−i) ≥
∑

s−i∈S−i

p(s−i, ri)ui(ti, s−i). (1)

We use joint probabilities p(s−i, ri), instead of conditional probabilities p(s−i|

ri), therefore (1) is valid even when p(s−i|ri) is not defined for some ri and

si. Condition (1) requires that when a strategy profile r ∈ S is randomly

chosen by a mediator according to the probability distribution p and each

player i is only informed about ri and asked to play it, then no player can

obtain higher payoffs if s/he disobeys the recommendation and plays another

strategy ti instead. As shown by Aumann (1974), in finite games each Nash

equilibrium is a correlated equilibrium (with independent signals), and the

existence result for Nash equilibrium ensures the existence of a correlated

equilibrium.8

Now, suppose that disobedience to the recommendation of the media-

tor can be costly. Let c ≥ 0 denote the common cost of disobedience for

players.9 For any p ∈ ∆(S), i ∈ N , ri, ti ∈ Si, and c ≥ 0, we define the

difference between the expected payoff of a player from obeying to the rec-

8Hart and Schmeidler (1989) has a direct proof of existence based on linear duality.
9We assume a common cost of disobedience for the sake of simplicity. In general,

each player i ∈ N may bear a (possibly) distinct cost ci(ri, ti) when it deviates from a

recommended strategy ri ∈ Si to another strategy ti ∈ Si.
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ommended strategy ri and from deviating to the strategy ti, subject to the

cost of disobedience c, as follows

Di(p, c, ri, ti) =























∑

s−i∈S−i
p(s−i|ri) [ui(ri, s−i)− ui(ti, s−i) + c]

if
∑

s−i∈S−i
p(s−i|ri) > 0,

0 if
∑

s−i∈S−i
p(s−i|ri) = 0.

(2)

We say that the probability distribution p ∈ ∆(S) is a costly correlated

equilibrium (CCE) under the cost profile c if Di(p, c, ri, ti) ≥ 0 for all i ∈ N

and ri, ti ∈ Si. Let P(c) denote the set of all CCE under c. Clearly P(c) ⊆

∆(S) for any c ≥ 0. We use the signs ⊂ and ⊆ for strict and weak inclusion,

respectively. Analogously, for ⊃ and ⊇.

For some of our results and discussions, we will refer to the following

definitions. Let si ∈ Si be a possible strategy of player i ∈ N . A strategy si

is strictly dominated if there exists a mixed strategy σi ∈ ∆(Si) such that for

any possible combination of the other players’ strategies, s−i ∈ Si, player i

obtains strictly lower payoff from si than from σi, i.e., ui(si, s−i) < ui(σi, s−i)

for all s−i ∈ S−i. Similarly, a strategy si is weakly dominated if there exists

a mixed strategy σi ∈ ∆(Si) such that for any possible combination of the

other players’ strategies, s−i ∈ Si, player i obtains weakly lower payoff from

si than from σi, i.e., ui(si, s−i) ≤ ui(σi, s−i) for all s−i ∈ S−i, and s/he obtains

strictly lower payoff for some s−i ∈ S−i. On the other hand, a strategy si is

strictly (weakly) dominant if any other strategy in ∆(Si) is strictly (weakly)

dominated by si.

Finally, the following definition will be helpful. A probability distribution

p is called a vertex of ∆(S) if there exists i ∈ {1, 2, . . . , |S|} such that pi = 1

and pj = 0 for all j ∈ {1, 2, . . . , |S|} \ {i}. We let V(S) denote the set of

vertices of S.
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3 Results

We will study in Section 3.1 how the set of CCE of a normal-form game

may change when the cost of disobedience increases for all players. We will

consider welfare effects in Section 3.2 and a strategic game of cost selection

(as an extension for future research) in Section 3.3.

3.1 The Effect of Cost of Disobedience on the Set of

CCE

We will first present several examples to gain some insight about when and

how the set of CCE is affected by a change in the players’ cost of disobedi-

ence. We will use these examples also to discuss our theoretical results.

Example 1. Consider the following normal-form game, known as the Match-

ing Pennies game.

H T

H 1,−1 −1, 1

T −1, 1 1,−1

Note that S1 = S2 = {H, T}, and S = {(H,H), (H,T ), (T,H), (T, T )}.

For any p ∈ ∆(S), let p = (p11, p12, p21, p22) where p11 = p((H,H)), p12 =

p((H,T )), p21 = p((T,H)), and p22 = p((T, T )). For any c ≥ 0, we can

calculate

P(c) =

{

p ∈ ∆(S) : (2 + c)p11 ≥ (2− c)p12, (2 + c)p12 ≥ (2− c)p22,

(2 + c)p22 ≥ (2− c)p21, (2 + c)p21 ≥ (2− c)p11.

}

Clearly, P(0) = {(0.25, 0.25, 0.25, 0.25)}= ∂P(0). For any c > 0, we have

(0.25, 0.25, 0.25, 0.25) ∈ P(c), implying P(c) ⊇ P(0). On the other hand, for

any c > 0, P(c) also contains the distribution p̂ = (p11, p12, p21, p22) such that

p11 = ap21, p12 = a2p21, p22 = a3p21 along with p21 = 1/(1 + a+ a2 + a3) and

a = (2 + c)/(2− c). Apparently, P(0) does not contain p̂. So, P(c) ⊃ P(0).
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More generally, for any c′, c′′ ≥ 0 such that c′′ > c′, one can easily check that

P(c′′) ⊃ P(c′). Moreover, for any c ≥ 2, we have P(c) = ∆(S). �

Example 1 suggests that there exist normal-form games in which any in-

crease in the costs of disobedience, however small, always expands the set of

CCE, unless this set is already as wide as ∆(S). What is most peculiar about

Example 1 is that the set of CCE, which consists of {(0.25, 0.25, 0.25, 0.25)}

at the cost level c = 0, starts to contain infinitely many probability distri-

butions once the cost of disobedience is increased even infinitesimally. P(0)

does not need to be a singleton set to observe these results, which we illus-

trate in the next example.

Example 2. Consider the following normal-form game, borrowed from Au-

mann (1974).

L R

U 5, 1 0, 0

D 4, 4 1, 5

Note that S1 = {U,D}, S2 = {L,R}, and S = {(U,L), (U,R), (D,L), (D,R)}.

For any p ∈ ∆(S), let p = (p11, p12, p21, p22) where p11 = p((U,L)), p12 =

p((U,R)), p21 = p((D,L)), and p22 = p((D,R)). For any c ≥ 0, we can

calculate

P(c) =

{

p ∈ ∆(S) : (1 + c)p11 ≥ (1− c)p12, (1 + c)p22 ≥ (1− c)p21,

(1 + c)p11 ≥ (1− c)p21, (1 + c)p22 ≥ (1− c)p12.

}

Clearly, for any c > 0 the set P(c) contains P(0) as well as the distribution

p̂ = (p11, p12, p21, p22) such that p11 = p22 = (1 − c)/(3 − c), p12 = 0, and

p21 = (1+c)/(3−c), whereas p̂ /∈ P(0). So, P(c) ⊃ P(0). More generally, for

any c′, c′′ ≥ 0 such that c′′ > c′, one can check that P(c′′) ⊃ P(c′). Moreover,

for any c ≥ 1, we have P(c) = ∆(S). �

We obtain P(c) ⊃ P(0) for any c > 0, as in Example 1. On the other

hand, in Example 2 neither P(0) nor ∂P(0) is a singleton set. For instance,
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the distributions (1, 0, 0, 0), (0, 0, 0, 1), (1/3, 0, 1/3, 1/3) are all in P(0) and

∂P(0). What is common in both examples is that ∂P(0) contains a proba-

bility distribution that is not a vertex of ∆(S).

Example 3. We will consider a modified form of Matching Pennies game,

in which player 2 (column player) has the additional strategy of not showing

(N) its coin to the other player. If s/he chooses this new strategy, s/he pays

player 1 a penalty fee of 2. The payoff matrix of this modified game is shown

below.

H T N

H 1,−1 −1, 1 2,−2

T −1, 1 1,−1 2,−2

Note that S1 = {H, T}, S2 = {H, T,N}, and S = {(H,H), (H,T ), (T,H),

(T, T ), (N,H), (N, T )}. For any p ∈ ∆(S), let p = (p11, p12, p13, p21, p22, p23)

where p11 = p((H,H)), p12 = p((H, T )), p13 = p((H,N)), p21 = p((T,H)),

p22 = p((T, T )), and p23 = p((T,N)). For any cost c ≥ 0, we can calculate

P(c) =











p ∈ ∆(S) : (2 + c)p11 ≥ (2− c)p12, (2 + c)p12 ≥ (2− c)p22,

(2 + c)p22 ≥ (2− c)p21, (2 + c)p21 ≥ (2− c)p11,

p13 = p23 = 0.











Clearly, P(0) = {(0.25, 0.25, 0, 0.25, 0.25, 0)}, and for any c > 0 we have

P(c) ⊇ P(0). On the other hand, for any c > 0, the set P(c) also contains

the distribution p̂ = (p11, p12, p13, p21, p22, p23) such that p13 = p23 = 0, p11 =

ap21, p12 = a2p21, p22 = a3p21 along with p21 = 1/(1 + a + a2 + a3) and

a = (2 + c)/(2− c). Apparently, P(0) does not contain p̂. So, P(c) ⊃ P(0).

More generally, for any c′, c′′ ≥ 0 such that c′′ > c′, one can check that

P(c′′) ⊃ P(c′). Moreover, for any c ≥ 2, we have P(c) = ∆(S). �

In Example 3, we should note that P(0) does not contain any proba-

bility distribution that is strictly positive. This is because of the fact that

player 2 has a strictly dominated strategy (N) that is never recommended
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by the mediator, hence the outcomes (N,H) and (N,T) are never realized,

implying that p13 and p23 are always zero. The absence of a strictly positive

equilibrium in P(0), or in P(c) for any c ≥ 0, does not prevent, however,

any change in the cost of disobedience to affect the set of CCE. We should

also note that neither in Example 1 nor Example 3, any vertex of ∆(S) can

become a CCE unless the cost of disobedience is sufficiently large, i.e., c ≥ 2.

On the other hand, in Example 2, two vertices of ∆(S) (corresponding to

two pure Nash equilibria) are contained by P(0). It seems that the lack or

the presence of a vertex element in P(0) is inconsequential. Our final exam-

ple shows what happens when the unique element of P(0) (and also ∂P(0))

is a vertex of ∆(S), which implies that the only NE and CE is a pure strategy.

Example 4. Consider the following Prisoners’ Dilemma game.

C D

C 2, 2 0, 3

D 3, 0 1, 1

Note that S1 = S2 = {C,D} and S = {(C,C), (C,D), (D,C), (D,D)}.

For any p ∈ ∆(S), let p = (p11, p12, p21, p22) where p11 = p((C,C)), p12 =

p((C,D)), p21 = p((D,C)), and p22 = p((D,D)). Given any c ≥ 0,

P(c) = {p ∈ ∆(S) : (1− c)(p11 + p12) ≤ 0 and (1− c)(p11 + p21) ≤ 0}.

It is easy to check that

P(c) =

{

{(0, 0, 0, 1)} if c < 1,

∆(S) if c ≥ 1.

Clearly, P(c) ⊃ P(0) = {(0, 0, 0, 1)} if and only if c ≥ 1. Similarly, for any

c′, c′′ ≥ 0 such that c′′ > c′, P(c′′) ⊃ P(c′) if and only if c′′ ≥ 1 > c′. �

Note in Example 4 that ∂P(0) = {(0, 0, 0, 1)} and ∂P(0) \ V(∆(S)) = ∅.

It seems that the lack of a non-vertex element in ∂P(0) (and thus in P(0))

prevents any cost change to have expansionary effects, unless it is sufficiently
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large. Notice that in Example 1-3, ∂P(0) \ V(∆(S)) 6= ∅, which implies that

the CCE with zero cost of disobedience has at least one element that is not

pure. After these observations, we are ready to present our results.

Lemma 1. Consider any normal-form game G = [N, {Si}, {ui(.)}]. For

any c′, c′′ ≥ 0 such that c′′ ≥ c, P(c′′) ⊇ P(c′).

Proof. Simply follows from (2).

Lemma 1 states that when the cost of disobedience increases, the set of

CCE weakly expands in any normal-form game. We will characterize condi-

tions under which this expansion is strict in Proposition 1 below. But, first

we need to present the following lemma that is to be used in its proof.

Lemma 2. Consider any normal-form game G = [N, {Si}, {ui(.)}]. Sup-

pose there exists c′ ≥ 0 such that P(c′) 6= ∆(S) and there exist p̂ ∈ ∂P(c′)

and Ŝ ⊆ S such that |Ŝ| > 1 and
∑

s−i∈Ŝ−i
p̂(s′i, s−i) > 0 if and only if s′ ∈ Ŝ.

Then, for any c′′ > c′, i ∈ N , and ri, ti ∈ Si it is true that Di(p̂, c
′′, ri, ti) = 0

if ri ∈ Si \ Ŝi and Di(p̂, c
′′, ri, ti) > 0 if ri ∈ Ŝi.

This lemma says that if there exists a probability distribution that is not

pure on the boundary of the equilibrium set for some cost level (when this set

is not already equal to the entire simplex), then for any higher cost level and

any player, the difference between the expected payoff received by follow-

ing the recommended strategy induced by this probability distribution (with

strictly positive weight) and choosing any other strategy is strictly positive.

This indicates that there is room for expansion under these conditions.

Proof. Consider any normal-form game G = [N, {Si}, {ui(.)}]. Suppose

that assumptions in Lemma 2 hold. Pick any c′ ≥ 0 such that P(c′) 6= ∆(S)

and pick any i ∈ N and c′′ > c. Also pick p̂ ∈ ∂P(c′) and Ŝ ⊆ S such that

|Ŝ| > 1 and
∑

s−i∈Ŝ−i
p̂(s′i, s−i) > 0 if and only if s′ ∈ Ŝ. Then for any ri, ti ∈
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Si, Di(p̂, c
′′, ri, ti) = 0 if ri ∈ Si \ Ŝi and Di(p̂, c

′′, ri, ti) = Di(p̂, c
′, ri, ti) +

(c′′ − c′) if ri ∈ Ŝi by (2). Also, p̂ ∈ ∂P(c′) implies Di(p̂, c
′, ri, ti) ≥ 0. Since

c′′ − c′ > 0, it follows that Di(p̂, c
′′
i , ri, ti) > 0 if ri ∈ Ŝi. �

Proposition 1. Consider any normal-form game G = [N, {Si}, {ui(.)}].

Suppose there exists c′ ≥ 0 is such that P(c′) 6= ∆(S). Then, for all c′′ > c′

we have P(c′′) ⊃ P(c′) if and only if ∂P(c′) \ V(∆(S)) 6= ∅.

Before presenting the proof, we would like to note that ∂P(c′)\V(∆(S)) =

∅ implies that ∂P(c′) must be a singleton set (hence, so is P(c′)) and the

unique equilibrium in ∂P(c′) is a vertex of ∆(S), which means it is pure. To

see this, take any p, p′ ∈ ∂P(c′) such that p 6= p′. Note that the convexity of

P(c′) implies that ∂P(c′) is convex. So, 0.5p+0.5p′ ∈ ∂P(c′)\V(∆(S)), con-

tradicting that ∂P(c′) \ V(∆(S)) = ∅. This means that for any normal-form

game, the necessary and sufficient condition of Proposition 1 is violated at

any c′ ≥ 0 if and only if ∂P(c′) is a singleton set and the unique equilibrium

in ∂P(c′) is a vertex of ∆(S), i.e. there exists a unique equilibrium in pure

strategies.

Proof. We will first prove the ‘if part’. Consider any normal-form game

G = [N, {Si}, {ui(.)}]. Suppose that the assumptions in Proposition 1 hold.

Pick c′ ≥ 0 such that P(c′) 6= ∆(S) and pick c′′ such that c′′ > c′. Also pick

p̂ ∈ ∂P(c′) such that p̂ is not in V(∆(S)). Let Ŝ be the largest subset of S such

that for any i ∈ N we have
∑

s−i∈Ŝ−i
p̂(s′i, s−i) > 0 if s′ ∈ Ŝ. Clearly, p̂(s′) = 0

if s′ ∈ S \ Ŝ. Note that Ŝ 6= ∅ since
∑

s∈S p̂(s) = 1 and |Ŝ| > 1 since p̂ is not a

vertex of ∆(S). The facts that P(c′) and ∆(S) are convex, p̂ is in ∂P(c′), and

|Ŝ| is larger than 1 together imply that there exists p∗ ∈ ∆(S) \ P(c′) such

that for any i ∈ N , we have
∑

s−i∈Ŝ−i
p∗(s′i, s−i) > 0 if and only if s′ ∈ Ŝ and

the set (p̂, p∗), i.e., the interior of the arc connecting p̂ to p∗, is nonempty

and contained by ∆(S) \ P(c′). Pick such a p∗. Consider the sequences

(αk) and (qk) such that for any positive integer k, we have αk = (1/2)k and

qk = αk p
∗ + (1 − αk) p̂. Pick any i ∈ N and ri, ti ∈ Si. By construction,
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it is true that for every integer k ≥ 1 we have qk(s
′) = 0 if s′ ∈ S \ Ŝ and

∑

s−i∈Ŝ−i
qk(s

′
i, s−i) > 0 if s′ ∈ Ŝ. Therefore, Di(qk, c

′′, ri, ti) = 0 if ri ∈ Si\ Ŝi

and Di(qk, c
′′, ri, ti) = Di(qk, c

′, ri, ti) + (c′′ − c′) if ri ∈ Ŝi by (2). Moreover,

limk→∞ Di(qk, c
′′, ri, ti) = Di(p̂, c

′′, ri, ti). Since c′′ > c′ and all assumptions

in Lemma 2 are satisfied for Ŝ and p̂, it is true that Di(p̂, c
′′, ri, ti) = 0 if

ri ∈ S \ Ŝi and Di(p̂, c
′′, ri, ti) > 0 if ri ∈ Ŝi. We have thus established that

limk→∞ Di(qk, c
′′, ri, ti) = 0 if ri ∈ Si \ Ŝi and limk→∞ Di(qk, c

′′, ri, ti) > 0

if ri ∈ Ŝi. Since Di(p, c
′′, ri, ti) is continuous in p, there exists a positive

integer ki(ri, ti) such that Di(qk, c
′′, ri, ti) > 0 for all k ≥ ki(ri, ti) if ri ∈ Ŝi.

Note that we can calculate ki(ri, ti) for any i ∈ N and ri, ti ∈ Si. Let

k̄ = maxi∈N maxri,ti∈Si
ki(ri, ti). Then, for any i ∈ N and ri, ti ∈ Si it is true

that Di(qk̄, c
′′, ri, ti) > 0 if ri ∈ Ŝi and Di(qk̄, c

′′, ri, ti) = 0 if ri ∈ S \ Ŝi.

Therefore, qk̄ ∈ P(c′′). Since qk̄ ∈ ∆(S)\P(c′), P(c′′) 6= P(c′). Finally, since

c′′ > c′, Lemma 1 implies that P(c′′) ⊇ P(c′). Therefore, P(c′′) ⊃ P(c′),

completing the proof of the ‘if part’. Now we will prove the ‘only if part’.

First, consider any normal-form game G = [N, {Si}, {ui(.)}]. Suppose

that there exists c′ ≥ 0 is such that P(c′) 6= ∆(S). Also suppose for

a contradiction that ∂P(c′) \ V(∆(S)) = ∅. This means that the neces-

sary and sufficient condition of Proposition 1 is violated at any c′ ≥ 0 if

and only if ∂P(c′) is a singleton set and the unique equilibrium in ∂P(c′)

is a vertex of ∆(S). So, pick any c′ > 0 such that |∂P(c′)| = 1 and

∂P(c′) \ V(∆(S)) = ∅. Let p∗ be the unique distribution in P(c′). De-

fine for any p ∈ ∆(S) \ {p∗} and i ∈ N the set Si(p, c
′) = {(ri, ti) ∈

Si × Si :
∑

s−i∈S−i
p(ri, s−i)[ui(ri, s−i)− (ui(ti, s−i) − c′)] < 0} and also the

set of individuals N(p, c′) = {i ∈ N : Si(p, c
′) 6= ∅} who find that (uni-

laterally) disobeying the recommendation of the mediator is strictly ben-

eficial. For any p ∈ ∆(S) \ {p∗}, we know that N(p, c′) is nonempty,

since p /∈ P(c′). Let k(c′) = maxp∈∆(S)\{p∗} maxi∈N(p,c′) max(ri,ti)∈Si(p,c′)

[ui(ri, s−i)− (ui(ti, s−i)− c′)]. Note that k(c′) < 0 since ∆(S) \ P(c′) 6= ∅.

Pick any c′′ > 0 such that c′ < c′′ < −k(c′). It follows that i ∈ N(p, c′′) if

and only if i ∈ N(p, c′). So, for any p ∈ ∆(S) \ {p∗}, N(p, c′′) 6= ∅, implying

that P(c′′) = {p∗} = P(c′). Thus, it is not true that P(c′′) ⊃ P(c′) for all
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c′′ > c′, completing the proof of the ‘only if’ part. �

Proposition 1 states that if at any level of the cost of disobedience, c, there

is any room for the set of CCE, P(c), to expand, then an increase in c can lead

to an expansion if and only if the boundary of P(c) contains an equilibrium

that is unpure, i.e., a non-vertex element of the probability simplex ∆(S).

One can easily check that in Examples 1-3, the (necessary and) sufficient

condition of Proposition 1 is satisfied, and therefore its prediction becomes

true. On the other hand, Example 4 illustrates how this prediction fails when

the necessary (and sufficient) condition of Proposition 1 does not hold. In

that example, P(c′) 6= ∆(S) and thus there is room for P(c′) to expand only

if c′ < 1. So, consider any c′ < 1. We saw that an increase in the cost level

from c′ to c′′ can be expansionary only if c′′ ≥ 1. This implies that for any

cost increase ǫ that is smaller than 1− c′, the set of CCE is not larger when

the cost of disobedience is c′′ = c′ + ǫ than when it is c′.

Proposition 1 also indicates when costly mediation leads to a coarser set

of CCE than costless mediation does.

Corollary 1. Consider any normal-form game G = [N, {Si}, {ui(.)}]. If

P(0) 6= ∆(S) and G has a Nash equilibrium that is not a vertex of ∆(S),

then P(c) ⊃ P(0) for any c > 0.

Proof. We suppose that the normal-form gameG = [N, {Si}, {ui(.)}] is such

that P(0) 6= ∆(S) and G has a Nash equilibrium σ that is in ∆(S)\V(∆(S)).

Pick any c > 0. If σ ∈ ∂P(0), then σ ∈ ∂P(0) \ V(∆(S)), and by Propo-

sition 1 we obtain P(c) ⊃ P(0). Now suppose that σ /∈ ∂P(0). Pick

any p ∈ ∂∆(S) such that p /∈ V(∆(S)). Since P(0) ⊆ ∆(S), it is true

that σ /∈ ∂∆(S), implying σ 6= p. Define q(α) = ασ + (1 − α)p for any

α ∈ (0, 1). Since P(0) is bounded and P(0) ⊆ ∆(S), there exists some

α̂ ∈ (0, 1) such that q(α̂) ∈ ∂P(0). Also, since {σ, p} ∩ V(∆(S)) = ∅,

it is true that q(α̂) /∈ V(∆(S)), implying q(α̂) ∈ ∂P(0) \ V(∆(S)). Since

∂P(0) \ V(∆(S)) 6= ∅, again we have P(c) ⊃ P(0) by Proposition 1. �
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The above corollary to Proposition 1 says that if any normal-form game

has an unpure (yet, not necessarily totally mixed) Nash equilibrium, then the

set of CCE is always strictly coarser when disobedience is costly than when

it is not. If, on the other hand, a normal-form game has only one equilibrium

in pure strategies, then the set of CEE does not strictly expand unless the

cost is sufficiently high. Thus, we can say that for any finite normal-form

game that has strictly dominant strategy equilibrium or that is dominance

solvable, adding small non-zero cost to disobedience does not affect the set

of CCE. The next result shows that in any normal-form game every proba-

bility distribution becomes a CCE, as expected, when disobedience becomes

sufficiently costly.

Proposition 2. For any normal-form game G = [N, {Si}, {ui(.)}], there

exists c̄ ≥ 0 such that P(c) = ∆(S) if and only if c ≥ c̄.

Proof. Pick any normal-form game G = [N, {Si}, {ui(.)}]. Let c̄ =

maxi∈N maxri,ti∈Si
maxs−i∈S−i

[ui(ri, s−i)− ui(ti, s−i)]. Then, equation (2) im-

plies that for any p ∈ ∆(S), c ≥ c̄, i ∈ N , and ri, ti ∈ Si we have

Di(p, c, ri, ti) ≥ 0. Thus, P(c) = ∆(S) if c ≥ c̄. To prove the ‘only if’

part, first assume that c̄ defined above is equal to zero. Since c < 0 is not

possible, it is true that P(c) = ∆(S) only if c ≥ 0. Now, suppose c̄ > 0.

Then, pick any c ∈ [0, c̄). The definition of c̄ implies that there exist i ∈ N ,

ri, ti ∈ Si, and s−i ∈ S−i such that ui(ri, s−i) − ui(ti, s−i) + c < 0. Pick

any such i ∈ N , ri, ti ∈ Si, and s−i ∈ S−i. Let p ∈ ∆(S) be such that

p(ri, s−i) = 1 and p(s) = 0 for all s ∈ S \ {(ri, s−i)}. Then, equation (2)

implies that Di(p, c, ri, ti) = ui(ri, s−i) − ui(ti, s−i) + c < 0, implying that

p /∈ P(c). Therefore, P(c) 6= ∆(S) if c ∈ [0, c̄), completing the proof. �

Note that in Examples 1 and 3 we have P(c) = ∆(S) if c ≥ 2 and in

Examples 2 and 4 we have P(c) = ∆(S) if c ≥ 1.

18



3.2 Welfare Effects

Now we will study how the social welfare in any mediated normal-form game

can be affected by the change in, as well as the presence/absence of, the cost

of disobedience. Given any disobedience cost c ≥ 0, we suppose that the

mediator has the task of implementing a CCE that maximizes the sum of

the expected utilities of all players. Since the solution to this maximization

problem may not be unique, we define the set of (socially) optimal CCE as

given by

SO(P(c)) =

{

p ∈ P(c) :
∑

i∈N

E[ui|p] ≥
∑

i∈N

E[ui|p
′] for all p′ ∈ P(c)

}

, (3)

where

E[ui|p
′] =

∑

s∈S

p′(s)ui(si, s−i). (4)

Note that all probability distributions in SO(P(c)) must lead to the same

expected utility sum for the players. For simplicity, we will denote this

sum by E[ui|SO(P(c))], by slightly abusing the notation. Also, we will use

SO(∆(S)) to denote the set of probability distributions in ∆(S) that maxi-

mize the sum of the expected utilities of all players.

Proposition 3. Consider any normal-form game G = [N, {Si}, {ui(.)}].

Pick c′, c′′ ≥ 0. It is true that

(i) if c′′ > c′, then
∑

i∈N E[ui|SO(P(c′′))] ≥
∑

i∈N E[ui|SO(P(c′))], and

(ii) if
∑

i∈N E[ui|SO(P(c′′))] >
∑

i∈N E[ui|SO(P(c′))], then c′′ > c.

Proof. Consider any normal-form game G = [N, {Si}, {ui(.)}]. To prove

part (i), pick any c′, c′′ ≥ 0 such that c′′ > c′. Lemma 1 implies P(c′′) ⊇

P(c′). Then, equations (3) and (4) imply that
∑

i∈N E[ui|SO(P(c′′))] ≥
∑

i∈N E[ui|SO(P(c′))]. To prove part (ii), pick any c′, c′′ ≥ 0 and assume

that
∑

i∈N E[ui|SO(P(c′′))] >
∑

i∈N E[ui|SO(P(c′))]. Then, it cannot be

true that SO(P(c′)) ⊇ SO(P(c′′)). It follows from equations (3) and (4)
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that P(c′) ⊇ P(c′′) cannot be true. Consequently, Lemma 1 implies that

c′ ≥ c′′ cannot be true, implying that c′′ > c, which completes the proof. �

The above proposition asserts that the total payoffs of players at an opti-

mal CCE cannot be lower whenever the cost of disobedience becomes higher

in the mediated game. Moreover, a cost change cannot increase the total

payoffs of players at an optimal CCE unless it is positive. However, whether

the total payoffs increase, when the cost of disobedience does so, depends on

the payoff structure of the game. To illustrate this point, let us first consider

the Matching Pennies Game in Example 1. Note that for any p ∈ ∆(S),

one can calculate that
∑

i∈N E[ui|p] = 0, implying SO(P(c)) = P(c) for

any c ≥ 0, i.e., any probability distribution in P(c) is optimal. Moreover,
∑

i∈N E[ui|SO(P(c))] = 0 for any c ≥ 0, implying that the optimal value

of the expected social welfare is independent from the cost of disobedience.

As another example, let us now consider the Prisoners’ Dilemma Game in

Example 4, where the payoffs are not zero-sum. We can easily calculate

SO(P(c)) for any c ≥ 0 as follows:

SO(P(c)) =

{

{(0, 0, 0, 1)} if c < 1,

{(1, 0, 0, 0)} if c ≥ 1.

Clearly, for any cost levels c and c′′ such that 1 > c′′ > c′ ≥ 0, we have
∑

i∈N E[ui| SO(P(c′′))] =
∑

i∈N E[ui|SO(P(c′))] = 2. On the other hand,

for any c′ < 1, we can always find c′′ ≥ 1 such that
∑

i∈N E[ui|SO(P(c′′))] =

4 > 2 =
∑

i∈N E[ui|SO(P(c′))]. Note that the singleton set {(1, 0, 0, 0)}

is incidentally equal to SO(∆(S)), the set of probability distributions that

maximize the total payoffs (of two players) in ∆(S). These observations can

be generalized in the following result.

Proposition 4. Consider any normal-form game G = [N, {Si}, {ui(.)}].

Suppose c′ ≥ 0 is such that
∑

i∈N E[ui|SO(∆(S))] >
∑

i∈N E[ui| SO(P(c′))].

Then, there exists c′′ > c′ such that
∑

i∈N E[ui|SO(P(c′′))] >
∑

i∈N E[ui|

SO(P(c′))].
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Proof. Consider any normal-form game G = [N, {Si}, {ui(.)}]. Sup-

pose there exists c′ ≥ 0 is such that
∑

i∈N E[ui|SO(∆(S))] >
∑

i∈N E[ui|

SO(P(c′))]. Pick any such c′. Then, equations (3) and (4) imply that ∆(S) ⊃

P(c′). Proposition 2 implies that there exists some c′′ ≥ 0 such that P(c′′) =

∆(S), implying SO(P(c′′)) = SO(∆(S)). Hence,
∑

i∈N E[ui|SO(P(c′′))]

>
∑

i∈N E[ui|SO(P(c′))]. Then, Proposition 3(ii) implies that c′′ > c′, which

completes the proof. �

Proposition 4 implies that if in any normal-form game the cost of disobedi-

ence is at such a level that the total expected welfare obtained by the players

when they obey to play according to the recommendations of the mediator

implementing an optimal CCE is below the maximum total expected welfare

the players can ever obtain from this game, then the mediator can increase

the total expected welfare of the players by increasing the cost of disobedience

to a sufficiently high level. As a matter of fact, this is exactly the case in Ex-

amples 2 and 4. For instance, consider Example 2. Let p = (p11, p12, p21, p22)

for any p ∈ ∆(S). One can easily check that SO(∆(S)) = {(0, 0, 1, 0)} and
∑

i∈N E[ui|SO(∆(S))] = 8. Also,

SO(P(c))] =







{(

1−c
3−c

, 0, 1+c
3−c

, 1−c
3−c

)}

if c ∈ [0, 1)

{(0, 0, 1, 0)} if c ≥ 1

and
∑

i∈N

E[ui|SO(P(c))] =







20−4c
3−c

if c ∈ [0, 1)

8 if c ≥ 1.

Note that the sum
∑

i∈N E[ui|SO(P(c))] is increasing in c over (0, 1) and

limc→1−
∑

i∈N E[ui|SO(P(c))] = 8 =
∑

i∈N E[ui|SO(∆(S))]. So, for any

c′ ∈ [0, 1) and any c′′ ≥ 1 in Example 2, the claim of Proposition 4 becomes

true. What is more interesting is that this claim even becomes true for

any c′ ∈ [0, 1) and any c′′ > c′. That is, the mediator can raise the total

expected welfare of the players at an optimal CCE by increasing the cost

of disobedience even by an arbitrarily small amount as long as this cost is

sufficiently low (i.e., it is below 1).
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Example 2 reveals that there are normal-form games in which the social

benefit of mediation increases with the cost of disobedience, suggesting that

mediation in these games performs better when disobedience is more costly.

In fact, we can formally quantify the performance of mediation under costly

disobedience by extending the measures in Ashlagi et al (2008) proposed for

costless mediation. Given any normal-form game, we say that the value of

mediation, m(c), at cost level c is equal to the ratio between the total payoff

obtained in any optimal CCE at cost level c and the maximal total Nash

equilibrium payoff obtained in the absence of any mediation. Also, we say

that the value of enforcement, e(c), is the ratio between the total payoff ob-

tained in any optimal CCE at cost level c and the maximal total payoff in

the normal-form game. Given these definitions, Proposition 3 implies the

following result.

Corollary 2. Consider any normal-form game G = [N, {Si}, {ui(.)}]. Pick

c′, c′′ ≥ 0. It is true that

(i) m(c′′) ≥ m(c′) if and only if e(c′′) ≥ e(c′),

(ii) if c′′ > c′, then m(c′′) ≥ m(c′),

(iii) if m(c′′) > m(c′), then c′′ > c.

Proof. Directly follows from Proposition 3 and the definitions of m(.) and

e(.). �

Corollary 2 says that when the cost of disobedience c changes, m(c) and

e(c) always move in the same direction and they are always non-decreasing.

Whether they can be increasing at some (Lebesgue) measurable interval of

cost values depends on the structure of game. To see this, note that for

the normal-form game in Example 2, one can calculate that the value of

mediation and the value of enforcement are given by
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m(c) =















10− 2c

9− 3c
if c < 1

4

3
if c ≥ 1

and

e(c) =











5− c

6− 2c
if c < 1

1 if c ≥ 1

respectively. One may check that both m(c) and e(c) are increasing over the

interval (0, 1). In particular, we note that m(0) = 10/9 and m(c) = 12/9 for

any c ≥ 1. We note that m(c) is always above 1, implying that mediation is

always beneficial for the society. Also, we note that e(0) = 5/6, e(c) < 1 for

any c < 1, and e(c) = 1 for any c ≥ 1. The full enforcement is attained if

and only if c ≥ 1.

On the other hand, for the Prisoners’ Dilemma Game in Example 4, the

value of mediation and the value of enforcement are given by

m(c) =







1 if c < 1

2 if c ≥ 1

and

e(c) =











1

2
if c < 1

1 if c ≥ 1

respectively. We observe that both m(c) and e(c) are constant for c < 1

and c > 1 and they both jump to a higher value at c = 1. Mediation is

not beneficial (the value of mediation is not higher than 1) unless the cost

of disobedience is sufficiently large, i.e., c ≥ 1. Likewise, if c is less than 1,

mediation cannot enforce the players to any outcome that is not obtained as

a Nash equilibrium in the absence of mediation (let alone the outcome with

the maximal social welfare). Full enforcement is attained only if c ≥ 1, while
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very small changes in the value of c can increase enforcement only if it is

below, but also sufficiently close to, 1.

Clearly, there exist normal-form games (like the one in Example 2) in

which the payoff obtained by each player at an optimal CCE changes as

the cost of disobedience is varied. In these games, any rule (whether it is

optimal or not) used by the mediator to select an equilibrium from the set of

possible CCE would accordingly induce for each player a preference (or an

expected utility function) over the possible values of disobedience cost. These

preferences of players may result in strategic issues which we will investigate

in the next section.

3.3 An Extension for Future Research: Cost-Selection

Game under Mediation

Here we will introduce, and briefly study, an extension for future research.

Consider a situation where each player in the mediated game is asked, before

the game starts, to non-cooperatively select (and announce to the mediator)

the cost of disobedience that s/he has to bear in case s/he disobeys to any

recommendation made by the mediator. Suppose that before observing the

cost chosen by any player i, the mediator announces an equilibrium rule that

specifies a CCE for each possible cost profile reported by the society. Given

this rule, we assume that each player will choose his/her disobedience cost

given his/her conjectures about the choices of the others.

So, consider any normal-form game G = [N, {Si}, {ui(.)}] that players

face in the absence of any mediation. Let ci denote the cost of disobedience

(punishment fee) player i non-cooperatively chooses and announces to the

mediator, and let Ci = [0, c̄i] denote for each player i the set of all admis-

sible cost reports, where c̄i = maxri,ti∈Si
maxs−i∈S−i

[ui(ri, s−i)− ui(ti, s−i)].

Define C = ×i∈NCi, with c ∈ C denoting the cost profile for the set of all

players. As we said earlier, before the players choose their costs of disobe-

dience, the mediator announces a CCE rule f . Formally, f is a CCE rule if

f : C → ∆(S) is a function such that f(c) ∈ P(c) for all c ∈ C. Clearly,

given any CCE rule f , the utility function ui(.) of each player i over the set
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of strategies S in a given normal-form game G = [N, {Si}, {ui(.)}] induces a

utility function uf,G
i (.) over the set of strategies C such that uf,G

i (c) = E[ui|p]

for any c ∈ C, where p = f(c) and E[ui|p] =
∑

s∈S p(s)ui(si, s−i). Let

Gf = [N, {Ci}, {u
f,G
i (.)}] denote the cost-selection game obtained from G

under the rule f . Given a normal-form game G and a CCE rule f , we define

the best response correspondence of player i ∈ N in the cost-selection game

Gf as bfi : C−i → Ci that assigns to each profile c−i in C−i the set

bfi (c−i) = {ci ∈ Ci : u
f,G
i (ci, c−i) ≥ uf,G

i (c′i, c−i) for all c
′
i ∈ Ci}.

We say that a cost profile c∗ ∈ C is a Nash equilibrium of the cost-selection

game Gf if c∗i ∈ bfi (c
∗
−i) for all i ∈ N . Since for each i ∈ N , the set Ci ⊂ ❘ is a

nonempty, convex, and compact subset of an Euclidean space, we know by the

works of Debreu (1952), Glicksberg (1952), and Fan (1952) that (whenever

f is single-valued) a pure-strategy Nash equilibrium of Gf exists if uf,G
i (c) is

continuous in c and quasiconcave in ci.

Below, we will extend the game in Example 2, borrowed from Aumann

(1974), to a cost-selection game to gain some insights.

Example 5. Consider the normal-form game in Example 2. Suppose that

players can non-cooperatively choose their costs of disobedience. For any

p ∈ ∆(S), let p = (p11, p12, p21, p22) where p11 = p((U,L)), p12 = p((U,R)),

p21 = p((D,L)), and p22 = p((D,R)). One can easily check that for any cost

profile c = (c1, c2) ∈ C, the set of CCE can be calculated as

P(c) =

{

p ∈ ∆(S) : (1 + c1)p11 ≥ (1− c1)p12, (1 + c1)p22 ≥ (1− c1)p21,

(1 + c2)p11 ≥ (1− c2)p21, (1 + c2)p22 ≥ (1− c2)p12.

}

Clearly, for any c ∈ C such that c 6= (0, 0), we have P(c) ⊃ P((0, 0)). More

generally, for any c′, c′′ ∈ [0, 1]2 such that c′′ ≥ c′ with c′′i > c′i for some i ∈ N ,

one can easily check that P(c′′) ⊃ P(c′).

Now, suppose that the mediator announces a CCE rule f such that f(c) ∈

SO(P(c)) for any c ∈ [0, 1]. One can easily calculate that
∑

i∈N E[Ui|p] =
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6 + 2p21 for any p ∈ ∆(S), implying that

SO(P(c))] =







































{(

(1+c1)(1−c2)
3+c1+c2−c1c2

, 0, (1+c1)(1+c2)
3+c1+c2−c1c2

, (1−c1)(1+c2)
3+c1+c2−c1c2

)}

if c1, c2 ∈ [0, 1)

{(1−c2
2

, 0, 1+c2
2

, 0)} if c1 = 1 and c2 ∈ [0, 1)

{(0, 0, 1+c1
2

, 1−c1
2

)} if c1 ∈ [0, 1) and c2 = 1

{(0, 0, 1, 0)} if c1 = 1 and c2 = 1.

Since SO(P(c)) is always a singleton set, f(c) is uniquely determined. Noting

that E[U1|p] = 5p11 + 4p21 + p22 and E[U2|p] = p11 + 4p21 + 5p22 for any

p ∈ ∆(S), one can easily calculate that

E[U1|f(c)] =































10+8c1−2c1c2
3+c1+c2−c1c2

if c1 ∈ [0, 1) and c2 ∈ [0, 1)

9−c2
2

if c1 = 1 and c2 ∈ [0, 1)

5+3c1
2

if c1 ∈ [0, 1) and c2 = 1

4 if c1 = 1 and c2 = 1

and

E[U2|f(c)] =































10+8c2−2c1c2
3+c1+c2−c1c2

if c1 ∈ [0, 1) and c2 ∈ [0, 1)

9−c1
2

if c1 ∈ [0, 1) and c2 = 1

5+3c2
2

if c1 = 1 and c2 ∈ [0, 1)

4 if c1 = 1 and c2 = 1.

Thus, we have constructed the cost-selection game Gf = [N, {Ci}, {u
f,G
i (.)}].

For this game, we can calculate the best-response correspondences as bf1(c2) =

{1} for any c2 ∈ C2 and bf2(c1) = {1} for any c1 ∈ C1. Clearly, the cost profile

(0, 0) is not a Nash equilibrium of Gf . It is true that if player j ∈ {1, 2}

chooses his/her cost at cj = 0, player i 6= j can secure an expected utility of

9/2 by choosing ci = 1. As a matter of fact, (c1, c2) is never Nash equilibrium

when c1 ∈ [0, 1) or c2 ∈ [0, 1). The unique Nash equilibrium of Gf arises at
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(c1, c2) = (1, 1), at which both players obtain an expected utility of 4. �

Example 5 reveals the following.

Remark 1. There exist cost-selection games where selecting the cost of dis-

obedience at zero level (or below some positive level) is a strictly dominated

strategy for each player. In such games, it is to the interest of each player to

voluntarily commit to pay some positive penalty fee to the mediator in case

of disobedience.

Inspecting the expected utilities in Example 5 closely, we can observe that

for each i ∈ N , E[Ui|f(c)] is strictly increasing in the own cost level ci (for

any level of the opponent’s cost cj) below some threshold. This observation

leads us to note down another simple remark below. Let 0 denote the zero

cost profile c where ci = 0 for all i ∈ N .

Remark 2. Consider any normal-form game G = [N, {Si}, {ui(.)}] and

any CCE rule f . If there exists some i ∈ N such that E[Ui|f(c)] is in-

creasing in ci around 0, then c∗ = 0 is not a Nash equilibrium of the game

Gf = [N, {Ci}, {u
f,G
i (.)}].

The next example shows that the games in Remark 1 or Remark 2 are not

universal. There are also games where none of the players finds it beneficial

to voluntarily commit to pay positive penalty fees to the mediator in case of

disobedience.

Example 6. Suppose that the players in Example 4 can non-cooperatively

choose their costs of disobedience in the mediated game of Prisoners’ Dilemma.

For any p ∈ ∆(S), let p = (p11, p12, p21, p22) where p11 = p((C,C)), p12 =

p((C,D)), p21 = p((D,C)), and p22 = p((D,D)). For any cost profile,

c = (c1, c2) ∈ [0, 1]2, the set of CCE can be calculated as

P(c) = {p ∈ ∆(S) : (1− c1)(p11 + p12) ≤ 0 and (1− c2)(p11 + p21) ≤ 0}.
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It is easy to see that

P(c)=



















{(0, 0, 0, 1)} if c1, c2 ∈ [0, 1)

{p ∈ ∆(S) : p11 = p12 = 0, p21 + p22 = 1} if c1 ∈ [0, 1) and c2 = 1

{p ∈ ∆(S) : p11 = p21 = 0, p12 + p22 = 1} if c1 = 1 and c2 ∈ [0, 1)

∆(S) if c1 = 1 and c2 = 1.

Suppose that the mediator announces, before s/he observes the cost report

of players, a CCE rule f such that f(c) ∈ SO(P(c)) for any c ∈ [0, 1]2. One

can easily check that
∑

i∈N E[Ui|p] = 4p11+3p12+3p21+2p22 = 3+p11−p22

for any p ∈ ∆(S), implying that

SO(P(c)) =



















{(0, 0, 0, 1)} if c1 ∈ [0, 1) and c2 ∈ [0, 1)

{(0, 0, 1, 0)} if c1 ∈ [0, 1) and c2 = 1

{(0, 1, 0, 0)} if c1 = 1 and c2 ∈ [0, 1)

{(1, 0, 0, 0)} if c1 = 1 and c2 = 1.

Since SO(P(c)) is always a singleton set, f(c) is uniquely determined. Noting

that E[U1|p] = 2p11 + 3p21 + p22 and E[U2|p] = 2p11 + 3p12 + p22 for any

p ∈ ∆(S), one can easily calculate that

E[U1|f(c)] =



















1 if c1 ∈ [0, 1) and c2 ∈ [0, 1)

3 if c1 ∈ [0, 1) and c2 = 1

0 if c1 = 1 and c2 ∈ [0, 1)

2 if c1 = 1 and c2 = 1

and

E[U2|f(c)] =



















1 if c1 ∈ [0, 1) and c2 ∈ [0, 1)

0 if c1 ∈ [0, 1) and c2 = 1

3 if c1 = 1 and c2 ∈ [0, 1)

2 if c1 = 1 and c2 = 1.

Thus, we have constructed the extended game Gf = [N, {Ci}, {u
f,G
i (.)}]

where Ci = [0, 1] for any i ∈ N . Note that for this game, the payoffs can be
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simply represented as follows:

c2 = 1 c2 ∈ [0, 1)

c1 = 1 2, 2 0, 3

c1 ∈ [0, 1) 3, 0 1, 1

We can calculate the best-response correspondences for Gf as bf1(c2) = [0, 1)

for any c2 ∈ [0, 1] and bf2(c1) = [0, 1) for any c1 ∈ [0, 1]. Clearly, the cost

profile (0, 0) is a Nash equilibrium of the extended game Gf . In general, it is

true that any c ∈ [0, 1]2 is a Nash equilibrium of Gf if and only if c1 ∈ [0, 1)

and c2 ∈ [0, 1). �

Example 6 shows that the players that face a situation of Prisoners’

Dilemma (between cooperation and defection, say, in reporting that they

are guilty) when the game played is not mediated, remain to face a similar

dilemma (between cooperation and defection in reporting that their costs

of disobedience are not less than 1) also when their game is mediated if

they non-cooperatively select the penalty fees they commit to pay in case

they disobey the mediator’s recommendations. Interestingly, any cost profile

c ∈ [0, 1]2 that is arbitrarily close to, but smaller than, (1, 1) is a Nash equi-

librium of the cost selection game in Example 6, while it yields a payoff of 1 to

each player. On the other hand, each player could obtain a payoff of 2 if the

mediator were to interfere and slightly increase the cost of disobedience for

each player to a level equal to 1. It seems that the discontinuities in the value

of mediation and the value of enforcement at the cost level (1, 1) –that we

already calculated for the Prisoners’ Dilemma Game in Section 3.2– create a

strategic barrier for the players that cannot be overcome non-cooperatively.

Example 6 also suggests the following.

Remark 3. There exist cost-selection games where selecting the cost of dis-

obedience below some positive level, hence at zero level, is a weakly dominant

strategy for each player. In any Nash equilibrium of these games the payoff

of any player is equal to what s/he obtains when each player reports his/her
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cost of disobedience as zero.

The discontinuity of the expected utlity functions in Example 6 illustrates

that their continuity is, as already known, not essential but just sufficient for

the existence of a pre-strategy Nash equilibrium in Gf . As a matter of fact,

E[Ui|f(c)] is constant for each i ∈ N and higher in the own cost level ci

below the threshold of 1 (but constant and lower in the opponent’s cost level

cj below the same threshold). This makes zero cost profile weakly dominant.

However, if the players were to choose a cost level for their opponents (not

for themselves) non-cooperatively, then we would get zero cost profile strictly

dominated as in the previous example. Indeed, one may simply extend this

observation to predict that in dominance solvable games with a strictly domi-

nant strategy profile, in order to achieve efficiency, players should be enforced

to select the disobedience costs of their opponents. In this regard, Exam-

ples 5 and 6 together suggest that given any normal-form game a mediator

who has the capacity to calculate the expected utility of each player at all

admissible cost profiles can profitably investigate whether the socially effi-

cient outcome can be attained through a correlated equilibrium of a mediated

game when, prior to this game, the disobedience cost of each player will be

non-cooperatively selected by some player, not necessarily himself/herself.

4 Conclusions

In this paper, we have extended the notion of correlated equilibrium in

normal-form games to a notion of costly correlated equilibrium (CCE) by

allowing players to involuntarily or voluntarily bear a cost whenever they

disobey recommendations of the mediator. In case the cost of disobedience

is involuntary and common for all players, we have showed that the set of

CCE at any cost level expands (whenever there is a room for it) if and only if

the boundary of this set contains an unpure equilibrium, i.e., a non-vertex el-

ement of the probability simplex associated with the normal-form game. We

have also showed that if the payoffs of a normal-form game and the cost of
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disobedience are such that the total expected payoff of the players (the social

welfare) at an optimal CCE is lower than the maximal total expected payoff

they can ever get in the game, then the mediator can increase the social wel-

fare by raising the cost of disobedience to a sufficiently high level. We have

also discussed how our model can be extended, for a profitable investigation

by future research, to a setting where the cost of disobedience is strategically

chosen by each player. In more detail, we have considered a cost-selection

game (prior to every mediated normal-form game) in which each player non-

cooperatively chooses his/her cost after the mediator announces a CCE rule

that specifies an optimal CCE for each possible cost profile of the players.

We have showed that there exist cost-selection games in which choosing the

cost of disobedience at zero level (or below some positive level) is a strictly

dominated strategy for each player as well as games this strategy becomes

weakly dominant for each player.

Future research may also extend the notion of costly correlated equilib-

rium in a number of directions. For example, using the generalization of

correlated equilibrium by Hart and Schmeidler (1989) for infinite games, the

notion of CCE can be extended to any game with infinitely many strate-

gies. In particular, one can investigate the implication of disobedience costs

in potential games –a special class of infinite strategy games, introduced by

Monderer and Shapley (1994) and first studied within the context of corre-

lated equilibrium by Neyman (1997). Also, given the two well-known, and

generally unrelated, generalizations of correlated equilibrium in normal-form

games, namely the weak (coarse) correlated equilibrium (also known as the

simple extension) of Moulin and Vial (1978) and the soft correlated equilib-

rium of Forgó (2010), one can respectively define and study the weak costly

correlated equilibrium (WCCE) and the soft costly correlated equilibrium

(SCCE) taking the cost of disobedience into consideration. Another line

of research can integrate the cost of disobedience to a refinement of corre-

lated equilibrium known as “acceptable correlated equilibrium” introduced

by Myerson (1986) as the analogue of trembling-hand perfection.

Finally, one can experimentally investigate whether in mediated normal-
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form games the presence of a cost of disobedience for each player increases

the performance of the recommendations of the mediator in overcoming co-

ordination problems.
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Forgó, F. (2010). A Generalization of Correlated Equilibrium: A New Pro-

tocol. Mathematical Social Sciences 60, 186-190.

Georgalos, K., Ray, I. and Sen Gupta, S. (2020). Nash versus Coarse Corre-

lation. Experimental Economics, forthcoming.

32



Gerard-Varet, L. A. and Moulin, H. (1978). Correlation and Duopoly. Jour-

nal of Economic Theory 19, 123-149.

Glicksberg, I. L. (1952). A Further Generalization of the Kakutani Fixed

Point Theorem with Application to Nash Equilibrium Points. Proceedings of

the National Academy of Sciences 38, 170-174.

Hart, S. (2005). Adaptive Heuristics. Econometrica 73, 1401-1430.

Hart, S. and Mas-Collell, A. (2000). A Simple Adaptive Procedure Leading

to Correlated Equilibrium. Econometrica 68, 1127-1150.

Hart, S. and Schmeidler D. (1989). Existence of Correlated Equilibria. Math-

ematics of Operations Research 14, 18-25.

Liu, L. (1996). Correlated Equilibrium of Cournot Oligopoly Competition.

Journal of Economic Theory 68, 544-548.

Monderer, D. and Shapley L. S. (1996). Potential Games. Games and Eco-

nomic Behavior 14, 124-143.

Moreno, D. and Wooders, J. (1998). An Experimental Study of Communi-

cation and Coordination in Noncooperative Games. Games and Economic

Behavior 24, 47–76.

Moulin, H., Ray, I. and Sen Gupta, S. (2014). Improving Nash by Coarse

Correlation. Journal of Economic Theory 150, 852-865.

Moulin, H. and Vial J.-P. (1978). Strategically Zero-sum Games: The Class

of Games Whose Completely Mixed Equilibria Cannot be Improved Upon.

International Journal of Game Theory 7, 201-221.

Myerson, R. (1986). Acceptable and Predominant Correlated Equilibria.

International Journal of Game Theory 15, 133-154.

Neyman, A. (1997). Correlated Equilibrium and Potential Games. Interna-

tional Journal of Game Theory 26, 223-227.

Ray, I. and Sen Gupta S. (2013). Coarse Correlated Equilibria in Linear

Duopoly Games. International Journal of Game Theory 42, 541-562.

33



Rosenthal, R. W. (1974). Correlated Equilibria in Some Classes of Two-

Person Games. International Journal of Game Theory 3, 119-128.

Ui, T. (2008). Correlated Equilibrium and Concave Games. International

Journal of Game Theory 37, 1-13.

Vanderschraaf, P. (1995). Endogenous Correlated Equilibria in Noncoopera-

tive Games. Theory and Decision 38, 61-84.

Yi, S.S. (1997). On the Existence of a Unique Correlated Equilibrium in

Cournot Oligopoly. Economics Letters 54, 235-239.

Young, H.P. (2004). Strategic Learning and Its Limits. Oxford University

Press.

34


