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Abstract

In an election in which each voter ranks all of the candidates, we consider the head-
to-head results between each pair of candidates and form a labeled directed graph,
called the margin graph, which contains the margin of victory of each candidate over
each of the other candidates. A central issue in developing voting methods is that there
can be cycles in this graph, where candidate A defeats candidate B, B defeats C, and
C defeats A. In this paper we apply the central limit theorem, graph homology, and
linear algebra to analyze how likely such situations are to occur for large numbers of
voters. There is a large literature on analyzing the probability of having a majority
winner; our analysis is more fine-grained. The result of our analysis is that in elections
with the number of voters going to infinity, margin graphs that are more cyclic in a
certain precise sense are less likely to occur.

1 Introduction

The Condorcet paradox is a situation in social choice theory where every candidate in an
election with three or more alternatives would lose, in a head-to-head election, to some other
candidate. For example, suppose that in an election with three candidates A, B, and C, and
three voters, the voter’s preferences are as follows:

First choice Second choice Third choice
Voter 1 A B C
Voter 2 B C A
Voter 3 C A B

There is no clear winner, for one can argue that A cannot win as two of the three voters
prefer C to A, that B cannot win as two of the three voters prefer A to B, and that C cannot
win as two of the three voters prefer B to C.

More formally, fix a set V = {v1, . . . , vn} of voters and a set C = {c1, . . . , c`} of candidates.
Let L = L(C) be the set of all linear orders on C; we think of such a linear order as a ranking

∗We thank Wesley Holliday and Eric Pacuit for extensive comments and discussions.
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of the candidates. A profile is a map P : V → L, mapping each voter v to a ranking P (v) of
the candidates; we call P (v) voter v’s ballot. So a profile is exactly the data we might get
from an election. We write c >P

v d if voter v prefers candidate c to d in the profile P .
Given a profile P , the margin of one candidate c over another d is the margin of vic-

tory/loss of c over d in a direct comparison:

MarginP (c, d) = #{v ∈ V : c >P
v d} −#{v ∈ V : d >P

v c}.

If MarginP (c, d) > 0 we say c is majority preferred to d. We will always consider the number
of voters to be odd so that for every pair of candidates, one is majority preferred to the
other. We can construct a labeled directed margin graph M(P ) whose vertices are the
candidates, and with an edge from c to d, labeled with MarginP (c, d), exactly when c is
majority preferred to d. For example, the margin graph of the profile described above is

A
1

��
B

1
// C

1

__

When we forget the margins of victory, we obtain a tournament which we call the majority
graph G(P ) of P .

Theorem 1.1 (Debord [Deb87]). For any labeled tournament M, such that all weights of
edges have the same parity, there is a profile P such that M is the margin graph of P .

The Condorcet paradox occurs when there is a cycle in the margin graph of a profile, so
that there are candidates c1, . . . , ck such that c1 is majority preferred to c2, c2 to c3, and so
on, and ck is majority preferred to c1. If there is no cycle in the margin graph of a profile P ,
then the margin graph is just a linear ordering of the candidates, and it is plausible that the
winner should be the greatest candidate according to this ordering. A central problem of
voting theory is to come up with a voting method—formally a function mapping each profile
P to a set of winning candidates (or sometimes to a ranking of all the candidates)—which
deals as well as possible with cycles in the margin graph.

Thus an important area of research has been to identify how often there occur cycles in the
margin graph, both in historical situations and theoretically under various assumptions on
the voters. Riker [Rik58] argues that various amendments in the Agricultural Appropriation
Act of 1953 in the US House of Representatives formed a cycle; Bjurulf and Niemi [BN78]
found similar situations in the Swedish parliament; Stensholt [Ste99] found a cycle in a de-
cision by the Norwegian national assembly; see also Van Deemen [Dee14], Kurrild-Klitgaard
[KK01], and Truchon [Tru98].

In this paper we take the more theoretical point of view where we assume that voters fill
out their ballot randomly according to some probability distribution, and we consider the
probability of a paradox occurring There is also a large literature of results here. The book
by Gehrlein [Geh06] is an excellent reference for what is known.

To begin, we must make an assumption about the probability distribution of ballots for
each voter. We assume for the rest of the paper that each voter is equally likely to pick any
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Table 1: Probability of a majority winner for n voters and ` candidates

`
n 3 4 5 6 7 8 9 10
3 0.94444 0.88889 0.84000 0.79778 0.76120 0.72925
5 0.93056 0.86111 0.80048 0.74865 0.70424 0.66588
7 0.92498 0.84997 0.78467 0.72908 0.68168 0.64090
9 0.92202 0.84405 0.77628 0.71873 0.66976
11 0.92019 0.84037 0.77108 0.71231 0.66238
13 0.91893 0.83786 0.76753 0.70194 0.65736
15 0.91802 0.83604 0.76496 0.70476 0.65372
...

...
...

...
...

...
...

...
...

∞ 0.9123 0.8245 0.7487 0.6848 0.6308 0.5849 0.5455 0.5113

of the `! linear orders on the ` candidates, an assumption referred to in the literature as the
Impartial Culture (IC) condition.1

An important probability is the probability PW (n, `) of having a Condorcet winner—a
single candidate who is majority preferred to each other candidate. Such a candidate can be
argued to be a clear winner, and an important class of voting methods, the Condorcet meth-
ods, select such a candidate as the winner. Using increasingly sophisticated methods, Sevcik
[Sev69], DeMeyer and Plott [DP70], Niemi and Weisberg [NW68], Garman and Kamien,
[GK68], and Gehrlein and Fishburn [GF76, GF79, Geh99] calculated these probabilities for
small numbers of voters and candidates. These values are included in Table 1. One can also
calculate other related probabilities, such as the probability PT (n, `) of having a transitive
majority graph. Gehrlein [Geh88, Geh89] calculated these values for various n and `.

As the number of voters becomes large, it is known that due to the central limit theo-
rem, the distribution of margin graphs approaches a multivariate normal distribution. Guil-
baud [Gui52] was the first to compute for three candidates the probability PW (∞, 3) =
limn→∞ PW (n, 3) = 0.9123 of having a majority winner, though he did not use the central
limit theorem. Niemi and Weisberg [NW68] and Garman and Kamien [GK68] noted the
limiting behaviour to a multivariate normal distribution and used this to calculate values
of PW (∞, `) = limn→∞ PW (n, `) for various numbers ` of candidates. These probabilities
are shown in Table 1 as well. Gehrlein and Fishburn [GF78] computed other probabilities
such as that of being transitive or having a Hamiltonian cycle. Most of these are numerical
approximations.

We quickly notice that the probability of avoiding a paradox is higher than one might
naively expect. Given three candidates, there are eight possible majority graphs: six linear
orders and two cycles. If these all occurred with equal likelihood, then we would expect the
probability PW (∞, 3) = 3/4 of having a Condorcent winner. In fact PW (∞, 3) is much higher
than this. Intuitively, this is because each voter’s ballot is linearly ordered, and this makes

1We note that there is a wide range of work on what happens under assumptions other than the Impartial
Culture condition. One can apply the same sort of analysis in this paper to these other assumptions, though
the covariance matrix Σ obtained will be different. It would be very interesting to compare the results
obtained. We leave this for future work.
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the majority graph of the whole profile more likely to be linearly ordered. More formally,
one can compute that the event that A beats B is positively correlated with the event that
A beats C.

So far most research has been on the probability of particular events occurring, such
as having a Condorcet winner, being transitive, having a Hamiltonian cycle, etc. In this
paper we will look at individual tournaments T , and the probability Pr(T ) of having that
tournament as the majority graph of a random election with a large number of voters n→∞.
We also have some results on the relative weighting of the edges in a majority graph.

As remarked above, as the number n of voters goes to infinity, the distribution of margin
graphs approaches a multivariate normal distribution. Such a distribution can be analyzed
using the covariance matrix which appears as a quadratic form in the probability density
function. This matrix is computed in Theorem 4.1. One can view the space of labeled
directed graphs as a vector space acted on by the covariance matrix. The vector space of
labeled directed graphs is known to split as a direct sum of the cycle space and cut space.
We show in Theorem 5.1 that these two spaces are exactly the eigenspaces of the covariance
matrix of our distribution, and that moreover, the eigenvalue of the former is smaller than
that of the latter. What this means is that:

The more cyclic a margin graph is, the less likely it is to arise.

By this we mean that the probability density function takes lower values on margin graphs
which are more cyclic.

Margin graphs are labeled, but to compute Pr(T ) for a tournament T we need to in-
tegrate the probability density function over all of the margin graphs compatible with T .
Unfortunately, such probabilities are not well-understood for five or more candidates, but
we formulate a conjecture which we check holds for up to five candidates.

Definition 1.2. Given a tournament T on ` vertices, we can assign a number to T which
we call the linearity of T :

lin(T ) =
1

2

∑
v

deg−(v)2 + deg+(v)2 =
∑
v

deg−(v)2 =
∑
v

deg+(v)2.

This value differs by a constant (depending on `) from the following value: for each pair of
edges meeting at a common vertex v, add 1/2 if the edge are either both into or both out of
v, and subtract 1/2 otherwise. Linearity is maximized by a linear order and is related the
the decomposition into cycles and cuts. We conjecture that the more linear a tournament
is, the more likely it is to arise as the majority graph of a random election.

Conjecture 6.3. If lin(T ) < lin(T ′), then Pr(T ) < Pr(T ′).

In Sections 5, 7, and 8 we compute the probability of obtaining each possible majority graph
in the cases of three, four, and five candidates respectively, and find that the probabilities
we compute agree with this conjecture.

This paper was motivated by a question of Holliday and Pacuit posed in Holliday’s 2019
seminar on Voting and Democracy at the University of California, Berkeley. Many voting
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methods are margin based in the sense that the set of winners of an election depends only on
the margin graph. Of these, some voting methods are majority based ; they chose a winner
based solely on the majority graph, that is, depending only on which candidates defeat which
other candidates head-to-head.

Holliday and Pacuit [HPa] define an intermediate category of qualitative-margin based
methods. We first need the following definition:

Definition 1.4. A qualitative margin graph is a pair (M,≺) where M is a majority graph
and ≺ is a strict weak order on the set of edges of M . The qualitative margin graph of a
profile P is the pair (G(P );≺P ) such that for any edges (a, b) and (c, d) in G(P ), we have
(a, b) ≺P (c, d) if MarginP (a, b) < MarginP (c, d).

A voting method is said to be qualitative-margin based if it selects the set of winners based
only on the qualitative margin graph. There are examples of voting methods which are
qualitative-margin based but not majority based, such as the Simpson-Kramer Minimax
method [Sim69, Kra77], Ranked Pairs [Tid87], weighted covering solutions [DL99, DBT00],
Beat Path [Sch11], and Split Cycle [HPc, HPa].

Holliday and Pacuit asked whether any qualitative margin graph, with the ordering on
the edges being total, is obtained with positive probability even as the number of voters goes
to infinity. We require that the ordering on edges be total because it is very unlikely, with
large numbers of voters, to have two different margins be equal. We show that the answer
to this question is positive:

Theorem 4.2. Let T be a tournament on a set of candidates C and let ≺ be an ordering of
the edges of T . There is a number N and a positive probability p > 0 such that: Given a set
V of voters with |V| ≥ N , the probability is at least p that the qualitative margin graph of a
randomly chosen profile P : V → L(C) is (T,≺).

Of course, this also means that any tournament is obtained as the majority graph with
positive probability.

Corollary 1.6. Let T be a tournament on a set of candidates C. There is a number N and
a positive probability p > 0 such that: Given a set V of voters with |V| ≥ N , the probability
is at least p that the majority graph of a randomly chosen profile P : V → L(C) is T .

As an immediate consequence of Theorem 4.2, most behaviours that a qualitative-margin
based voting method could have with a small number of voters will also happen with posi-
tive probability even with large numbers of voters. (The only exception is that with small
numbers of voters, there might be ties or two margins might be equal, and both of these
situations are unlikely with large numbers of voters.) There are too many applications of
this to list them all, but we will give two examples.

Holliday and Pacuit [HPc] were interested in whether their new voting method Split Cycle
satisfies a certain property of asymptotic resolvability for k > 3 candidates. As a consequence
of Theorem 4.2, it does not.

Theorem 1.7. Split Cycle does not satisfy asymptotic resolvability for k > 3 candidates:
As the number n of voters approaches infinity, there is a positive probability that Split Cycle
selects more than one winner.

5



See [HPc] for the proof of this using Theorem 4.2.
Another qualitative margin-based voting method is Minimax [Sim69, Kra77]. This selects

as the winners of an election all candidates whose greatest margin of defeat is the least among
all candidates. It is possible for a candidate to be the Condorcet loser, defeated head-to-
head by every other candidate, and yet still be chosen as the winner by Minimax. In the
following margin graph D is the Condorcet loser, but its greatest loss is only by 5. Each
other candidate is defeated by a margin of 7, 9, or 11, and so D is selected as the winner.

A
7

��

3

��

B 9 //

1 ��

C

11

__

5

��
D

.

This margin graph corresponds to the qualitative margin graph

A
γ

��

σ

��

B
β //

τ
��

C

α

__

ρ

��
D

with α � β � γ � ρ � σ � τ . We can then prove:

Theorem 1.8. As the number of voters approaches infinity, Minimax has a positive proba-
bility of choosing as the unique winner the Condorcet loser.

The final section of this paper includes brief remarks on performing Monte Carlo simula-
tions. Given a voting method, one might want to know, for example, how often it chooses a
unique winner, or how often it deviates from some other voting method. Such calculations
are performed for example by Holliday and Pacuit in [HPc], where for n voters they pick
n ballots at random and compute the margin graph. For large numbers of voters, one can
instead pick a random margin graph from the multinomial distribution on margin graphs
with large numbers of voters; this simply requires applying a linear transformation to inde-
pendent normal random variables. We describe this method and give sample computations
in Section 9. This method is faster than a voter-by-voter simulation with a number of voters
much larger than the number of candidates, and has already been used in [HPb].

2 Probability background

We begin with a quick review of multivariate distributions and the central limit theorem.
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Let X = (X1, . . . , Xk) be a k-dimensional random vector. We will define what it means
for X to have normal distribution X ∼ Nk(µ,Σ) with mean

µ = (µ1, . . . , µk) = E[X]

and k × k covariance matrix with entries

Σi,j = E[(Xi − µi)(Xj − µj)] = Cov[Xi, Xj].

The covariance matrix is always positive semi-definite, and it is positive definite if and only
if it is invertible.

If Σ is positive definite then we are in what is called the non-degenerate case, and the
distribution has probability density function

fX(x) =
e−

1
2
(x−µ)TΣ−1(x−µ)√

(2π)k|Σ|

where |Σ| is the determinant of Σ. Note that the level sets of fX are ellipses.
The book by Tong [Ton90] is a good reference for many properties of the multivariate

normal distribution distribution.

The importance of the multivariate normal distribution is due to the central limit theorem
for multivariate random variables. Let X1,X2,X3, . . . be i.i.d. k-dimensional random vectors
with mean µ and covariance matrix Σ. Define

Sn =
1

n

n∑
i=1

Xi.

The multivariate central limit theorem says that
√
n (Sn − µ) converges in distribution to

the multivariate normal distribution with mean 0 and covariance matrix Σ:

√
n (Sn − µ)

D−→ Nk(0,Σ).

What we mean by convergence in distribution is: For a sequence of random vectors X1,X2, . . . ∈
Rk, we say that this sequence converges in distribution to a random k-vector X if for each
A ⊆ Rk which is a continuity set of X (i.e., A is a Borel and Pr(X ∈ ∂A) = 0),

lim
n→∞

Pr(Xn ∈ A) = Pr(X ∈ A).

See the book by van der Vaart [vdV98] as a reference on the central limit theorem.

3 Cycle and cut spaces in graphs

There is a homology theory for graphs in which one constructs for a graph G and field F a
quite simple chain complex

· · · → 0→ EF (G)
∂→ VF (G)→ 0→ · · · .

7



No knowledge of homology will be necessary as all of the objects we use are easily definable
in purely graph-theoretic terms. This material is contained in most books covering algebraic
graph theory, e.g., [Big93].

Fix for the rest of this section a graph G, which in this paper will always be the complete
graph Kn on n vertices, and the field F = R. As is usual in homology, we must fix an
orientation for each edge—for Kn the complete graph on v1, . . . , vn, we can think of an edge
between vi and vj as a directed edge vi → vj for i < j.

The edge space of G = (V,E) is the R-vector space E(G) = RE. We can think of each
element of E(G) as a formal sum

∑
e∈E ree, i.e., a labeling of each edge of the graph with

a real number. The orientation of an edge (u, v) is essentially just a choice to say that a
positive number assigned to the edge is going from u to v, and a negative number from v
to u; if we had chose the opposite orientation (v, u), then a positive number assigned to the
edge would be going from v to u, and a negative number from u to v. So if an edge has
orientation (u, v), we can define (v, u) = −(u, v).

The vertex space of G = (V,E) is similarly defined using formal sums of vertices: it is the
R-vector space V(G) = RV , and we think of each element of V(G) as a formal sum

∑
v∈V rvv.

There is also a boundary operator ∂ : E(G)→ V(G) which takes (u, v) to u− v.
The homology group H1(G) = ker ∂ is easily seen to be the cycle space of G. This is the

subspace C(G) of E(G) consisting of all of those elements of the edge space with the property
that, for each vertex, the sum of the numbers assigned to each incoming edge is equal to the
sum of the numbers assigned to each outgoing edge; i.e., those elements

∑
e∈E ree such that

for every vertex u, ∑
(u,v)∈E

r(u,v) −
∑

(v,u)∈E

r(u,v) = 0.

Using the convention (v, u) = −(u, v) described above, we can just write∑
(u,v)∈E

r(u,v) = 0.

If u1 → u2 → · · · → un → u1 is a cycle in G, then (u1, u2) + (u2, u3) + · · · + (un, u1) is an
element of the cycle space. In fact, the cycle space is generated by all such elements.

The cut space of G is the subspace C ′(G) of E(G) generated by the edge cuts of G. A cut
of G is a partition of the vertices of G into two sets S and T ; the cut-set of the cut is the
set of edges with one end in S and the other end in T . The cut space is generated by the
elements ∑

(u,v)∈E, u∈S, v∈T

(u, v)

where (S, T ) is a cut, and we again use the convention that (v, u) = −(u, v).
Let T be a spanning tree of G. We can use T to compute bases for the cycle space and

cut space. First, for each edge e = (u, v) not in T , there is a unique path in T from u to v;
together with e, this forms a cycle. We call the set of all such cycles the fundamental system
of cycles associated with T . It is not hard to see that these cycles are linearly independent,
because each of them contains an edge not contained by any of the others. In fact, they form
a basis for the cycle space. By counting, we see that

dim C(G) = |E| − |V |+ c(G)

8



where c(G) is the number of connected components of G. For the cut set, it will be easiest
to think about the case when G is connected, and this will be the only case we use in the
paper. Given an edge e of the spanning tree T , T−{e} splits into two connected components
S1 and S2 which partition V , forming a cut of G containing e (and no other edge of T ) in
its edge set. The set of all such cuts forms a basis for the cycle space, and

dim C ′(G) = |V | − c(G).

Note that dim C(G) + dim C ′(G) = dim E(G). In fact, we can equip the edge space with the
natural inner product, taking the edges as an orthonormal basis, and we have:

Theorem 3.1. The cycle space and the cut space are orthogonal complements, so that
E(G) = C(G)⊕ C ′(G).

As mentioned above, in this paper we will always take G to be the complete graph on
n vertices v1, . . . , vn and the orientation of each edge to be from vi to vj for i < j. As a
spanning tree, we can take the tree

v1

vv ~~ �� ((
v2 v3 v4 · · · vn

Then as a basis for the cycle space we can take the elements

(v1, vi) + (vi, vj) + (vj, v1) = (v1, vi) + (vi, vj)− (v1, vj)

for i < j. For the cut space, we take for each i ≥ 2 the element∑
j 6=i

(vi, vj),

i.e., the sum of all outgoing edges from vi.

4 Random profiles

We begin by fixing some notation for the rest of the paper. Earlier we fixed a set of `
candidates C = {c1, . . . , c`}. Let G be the complete graph whose vertices are the candidates
C, and choose the natural orientation for the edges: ci → cj if i < j. We often write i for ci
when we are thinking of it as a vertex of G and write ci only when we need to be especially
clear.

Given a voter v, under the IC assumption, v chooses a ballet, i.e., a ranking of the
candidates, uniformly at random. We can associate with this a random vector Xv = (Xv

i,j)i<j
with Xv

i,j = 1 if v prefers ci to cj, and Xv
i,j = −1 if v prefers cj to ci. We can think of Xv

as a random {1,−1}-valued element of the integral edge space EZ(G). For convenience, we
write Xv

j,i = −Xv
i,j. Note that the mean is µ = E[Xv] = 0. We next compute the covariance

matrix Σ of Xv by computing the covariances of the variables Xv
i,j.
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The covariance matrix Σ of Xv is an `(`−1)
2
× `(`−1)

2
matrix whose rows and columns are

indexed by edges of the graph G, with

Σ(i,j);(r,s) = Cov(Xv
i,j, X

v
r,s).

The entries of the matrix Σ are indexed only by the edges of G with the orientation we have
fixed, i.e., with i < j and r < s. We make the convention that we write Σ(j,i);(r,s) = −Σ(i,j);(r,s)

and Σ(i,j);(s,r) = −Σ(i,j);(r,s). This is compatible with the convention for the Xv
i,j in the sense

that we have
Σ(i,j);(r,s) = Cov(Xv

i,j, X
v
r,s)

for arbitrary i, j, r, s.

Lemma 4.1. We have, for i, j, k, ` all distinct:

Σ(i,j);(i,j) = Cov(Xv
i,j, X

v
i,j) = Var(Xv

i,j) = 1

Σ(i,j);(j,k) = Cov(Xv
i,j, X

v
j,k) = −1

3
Σ(i,j);(k,`) = Cov(Xv

i,j, X
v
k,`) = 0.

Using our convention that Xv
i,j = −Xv

j,i, we see that

Σ(i,j);(i,k) = Cov(Xv
i,j, X

v
i,k) =

1

3
and Σ(i,k);(j,k) = Cov(Xv

i,k, X
v
j,k) =

1

3
.

Proof of Lemma 4.1. We omit the superscript v for this proof.
First,

Var(Xi,j) = E(X2
i,j)− E(Xi,j)

2 = 1

since X2
i,j is always 1, and in exactly half of the linear orders L ∈ L(C) we have ci >L cj, so

that E(Xi,j) = 0.
For i, j, r, and s all distinct, we have

Cov(Xi,j, Xr,s) = E [Xi,j ·Xr,s]− E [Xi,j] · E [Xr,s] = E [Xi,j ·Xr,s] .

Then Xi,j and Xr,s are independent and have covariance 0; indeed, among all of the linear
orders L ∈ L(C) with ci >L cj, exactly half of them have cr >L cs, and the other half have
cs >L cr.

Finally, given i, j, k distinct, we have

Cov(Xi,j, Xj,k) = E [Xi,j ·Xj,k]− E [Xi,j] · E [Xj,k] = E [Xi,j ·Xj,k] .

Half of the linear orders have ci > cj. Of these, 1
3

have ci > cj > ck,
1
3

have ci > ck > cj,
and 1

3
have ck > ci > cj. Similarly, half the linear orders have cj > ci, and of these, 1

3
have

cj > ci > ck,
1
3

have cj > ck > ci, and 1
3

have ck > cj > ci. So

Cov(Xi,j, Xj,k) = E [Xi,j ·Xj,k] =
1

6
(1− 1− 1− 1− 1 + 1) = −1

3
.
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Now suppose we want to generate a random profile P using n voters V = {v1, . . . , vn}. If
each voter chooses a ballot uniformly at random, then the random margin graph we obtain
is a random variable equal to Xv1 + · · · + Xvn ; this is again an element of the integral edge
space EZ(G). The Xvi are i.i.d. with mean µ = 0 and covariance matrix Σ. As we see below
in Theorem 4.3 (where we compute the inverse) or in Theorem 5.1 (where we compute the
eigenvalues), Σ is invertible and hence positive semi-definite; we leave the proofs to later
as they are heavily computational. Let Sn = 1

n

∑n
i=1 Xvi . By the central limit theorem,√

n · Sn converges in distribution to the multivariate normal distribution N (0,Σ) with the
same mean and covariance matrix, which has probability density function

f(x) =
e−

1
2
xTΣ−1x√

(2π)k|Σ|
.

That is, if Pn is a random variable which represents a random profile given by n voters
choosing a ballot under the IC assumption, then 1√

n
Pn converges in distribution to N (0,Σ).

Let Y ∼ N (0,Σ). Then we think of Y as an element of the real-valued edge space ER(G)
which represents the margin graph of a random profile with a very large number of voters,
with the edge weights normalized by a factor of

√
n. From this, without even making any

further analysis of Σ, we can already make several conclusions. For example, the margin of
victory of one candidate over another is usually on the order of

√
n.

The fact that f(x) is always positive for every x means that, given Y ∼ N (0,Σ) and
any region R ⊆ ER(G) with positive measure, Pr(Y ∈ R) > 0. As a consequence, for any
tournament, we get a positive probability of that tournament being the majority graph of a
random profile. Moreover, we can prove Theorem 4.2 which says that the same is true for
qualitative margin graphs.

Theorem 4.2. Let T be a tournament on a set of candidates C and let ≺ be an ordering of
the edges of T . There is a number N and a positive probability p > 0 such that: Given a set
V of voters with |V| ≥ N , the probability is at least p that the qualitative margin graph of a
randomly chosen profile P : V → L(C) is (T,≺).

Proof. For a given set V of n voters, randomly choose a profile P : V → L(C) by choosing,
for each voter v ∈ V , a ballot P (v) ∈ L(X) uniformly among all possible ballots with each
ballot being chosen by a particular voter with probability 1

n!
. Taking the margin graph of

P , and dividing by the number n of voters, we generate a random vector Sn from ER(G) as
above. As n → ∞,

√
n · Sn converges in distribution to the multinormal distrubtion with

probability density function

f(x) =
exp(−1

2
(x− µ)TΣ−1(x− µ))√

(2π)k|Σ|
.

Let Y = (Yci>cj)i<j be a random variable with probability density function f . Since Σ is
positive-definite, so is Σ−1; and so f(x) > 0 for all x.

Write Sn = (Sni,j)i<j. Now the probability that the qualitative margin graph of P will be
T is the same as the probability that:

• for each edge (ci, cj) of T , Sni,j > 0 (using the convention Sni,j = −Snj,i); and
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• if the edge (ci, cj) of T is ranked higher by ≺ than the edge (cs, ct), then Sni,j > Sns,t.

Note that these are all properties that are invariant under scaling; the margin graph of the
random profile P is actually nSn.

As the number n of voters goes to ∞, this probability converges to the probability that:

• for each edge (ci, cj) of T , Yi,j > 0;

• if the edge (ci, cj) of T is ranked higher by ≺ than the edge (cs, ct), then Yi,j > Ys,t.

Because ≺ is a total order, this defines a region of the sample space of positive volume, and
so this probability is positive as f(x) > 0 for all x.

We return to computing the inverse of Σ.

Theorem 4.3. The inverse of Σ is the matrix Γ = Σ−1 with entries

Γ(i,j),(i,j) =
3(`− 1)

`+ 1

Γ(i,j),(i,k) = − 3

`+ 1
,

and for i, j, r, s all distinct,
Γ(i,j),(r,s) = 0.

We again use the convention that Γ(i,j),(r,s) = −Γ(j,i),(r,s) = −Γ(i,j),(s,r) = Γ(j,i),(s,r), so that,
e.g.,

Γ(i,j),(j,k) =
3

`+ 1
.

Proof. We check that ΓΣ is the identity matrix by checking entry by entry. For i < j,

(ΓΣ)(i,j),(i,j) =
∑
(r,s)

Γ(i,j),(r,s) · Σ(r,s),(i,j)

= Γ(i,j),(i,j) · Σ(i,j),(i,j) +
∑
k 6=i,j

Γ(i,j),(i,k) · Σ(i,k),(i,j) +
∑
k 6=i,j

Γ(i,j),(j,k) · Σ(j,k),(i,j)

= 1 · 3(`− 1)

`+ 1
− 2 · (`− 2) · 1

3
· 3

`+ 1

= 1.

Note that for k < i, the middle terms on the second line are really Γ(i,j),(k,i) · Σ(k,i),(i,j) but
this is equal to Γ(i,j),(i,k) · Σ(i,k),(i,j), and similarly for the last terms when k < j. We will
make the same kind of adjustments throughout the proof.
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For i, j, k distinct, we have

(ΓΣ)(i,j),(i,k) =
∑
(r,s)

Γ(i,j),(r,s) · Σ(r,s),(i,k)

= Γ(i,j),(i,k) · Σ(i,k),(i,k) + Γ(i,j),(i,j) · Σ(i,j),(i,k) + Γ(i,j),(j,k) · Σ(j,k),(i,k)

+
∑
t6=i,j,k

Γ(i,j),(i,t) · Σ(i,t),(i,k)

= −1 · 3

`+ 1
+

1

3
· 3(`− 1)

`+ 1
+

1

3
· 3

`+ 1
− (`− 3) · 3

`+ 1
· 1

3

= 0

One of course must note, from the first line, that our normal convention still holds in the
sense that, e.g., (ΓΣ)(i,j),(i,k) = − (ΓΣ)(j,i),(i,k).

Now given i, j, r, s all distinct, we have:

(ΓΣ)(i,j),(r,s) =
∑
(u,v)

Γ(i,j),(u,v) · Σ(u,v),(r,s)

= Γ(i,j),(i,r) · Σ(i,r),(r,s) + Γ(i,j),(i,s) · Σ(i,s),(r,s) + Γ(i,j),(j,r) · Σ(j,r),(r,s) + Γ(i,j),)(j,s) · Σ(j,s),(r,s)

=
3

`+ 1
· 1

3
− 3

`+ 1
· 1

3
− 3

`+ 1
· 1

3
+

3

`+ 1
· 1

3

= 0

So ΓΣ is the identity matrix, and Γ = Σ−1.

5 Eigenvalues and eigenvectors

We know that each tournament has a positive probability of being obtained as the majority
graph of a random election. But which tournaments are more likely than others?

Let Pn be a random variable which represents a random margin graph given by n voters
choosing a ballot under the IC assumption. We know that 1√

n
Pn converges in distribution

to N (0,Σ), with probability density function

f(x) =
e−

1
2
xTΣ−1x√

(2π)k|Σ|
.

So to understand what a random margin graph looks like with a large number of voters,
we want to understand this distribution. We view this distribution as taking values in the
real-valued edge space ER(G). In particular, we view Σ and its inverse Σ−1 as acting on
ER(G).

The geometry of the probability density function is determined by the quadratic form
xTΣ−1x. We analyse this by computing its eigenvalues and eigenvectors. This is where the
cycle space and cut space make an appearance.

Covariance matrices are always positive semidefinite, and as Σ is invertible it is positive
definite. So the eigenvalues of Σ are all positive. The inverse Σ−1 has the same eigenspaces
with reciprocal eigenvalues. Because Σ is symmetric, its eigenspaces will be orthogonal.
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Theorem 5.1. Σ has two eigenvalues:

• λ1 = 1
12

with eigenspace the cycle space CR(G); and

• λ2 = 1
4

+ `−2
12

with eigenspace the cut space C ′R(G).

Recall that the cycle space and the cut space are orthogonal. The inverse Σ−1 has the
same eigenspaces with eigenvalues 1/λ1 and 1/λ2 respectively.

Proof of Theorem 5.1. Consider a cycle (ci, cj) + (cj, ck) + (ck, ci) ∈ ER(G). Then Σ acts on
this as

Σ · ((ci, cj) + (cj, ck) + (ck, ci)) =
∑
r<s

(
Σ(i,j);(r,s) + Σ(j,k);(r,s) + Σ(k,i);(r,s)

)
· (cr, cs).

So the coefficient of any (cr, cs) is

Σ(i,j);(r,s) + Σ(j,k);(r,s) + Σ(k,i);(r,s).

The coefficient of (ci, cj) is

Σ(i,j);(i,j) + Σ(j,k);(i,j) + Σ(k,i);(i,j) = 1− 1

3
− 1

3
=

1

3
.

A similar argument works for (cj, ck) and (ck, ci). If r and s are distinct from i, j, k, then
the coefficient of (cr, cs) is clearly

Σ(i,j);(r,s) + Σ(j,k);(r,s) + Σ(k,i);(r,s) = 0 + 0 + 0 = 0.

If, say, r = i and s is distinct from i, j, k, then

Σ(i,j);(i,s) + Σ(j,k);(i,s) + Σ(k,i);(i,s) =
1

3
+ 0− 1

3
= 0.

So we conclude that

Σ · ((ci, cj) + (cj, ck) + (ck, ci)) =
1

3
((ci, cj) + (cj, ck) + (ck, ci)) .

So one eigenvalue of Σ is 1
3
, and each element of the cycle space is an eigenvector.

Now consider for a fixed i the cut
∑

j 6=i(ci, cj). Σ acts on this as

Σ ·

(∑
j 6=i

(ci, cj)

)
=
∑
r<s

∑
j 6=i

Σ(i,j);(r,s)(cr, cs).

For a fixed k 6= i, the coefficient of (ci, ck) is∑
j 6=i

Σ(i,j);(i,k) = 1 +
`− 2

3
.
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Indeed, for j = k, Σ(i,j);(i,k) = 1, and for j 6= i, k, Σ(i,j);(i,k) = 1
3
. For r, s distinct from i, the

coefficient of (cr, cs) is ∑
j 6=i

Σ(i,j);(r,s) = 0

since, for j = r, Σ(i,j);(r,s) = Σ(i,r);(r,s) = −1
3
, for j = s, Σ(i,j);(r,s) = Σ(i,s);(r,s) = 1

3
, and for

j 6= r, s, Σ(i,j);(r,s) = 0. So

Σ ·

(∑
j 6=i

(ci, cj)

)
=

(
1 +

`− 2

3

)
·

(∑
j 6=i

(ci, cj)

)
.

Thus another eigenvalue of Σ is 1 + `−2
3

, and each element of the cut space is an eigenvector.
Since the cut space and the cycle space are orthogonal complements, we have found all of
the eigenvalues and eigenvectors.

To get some visual picture of what is going on so far, let us consider the simplest case
where there are only three candidates A, B, and C. Each voter picks one of the six linear
orders on these three candidates. Now G is the graph on these three vertices, and we choose
the natural orientation

A

�� ��
B // C

The covariance matrix is

Σ =


1 −1

3
1
3

−1
3

1 1
3

1
3

1
3

1


with inverse

Σ−1 =


3
2

3
4
−3

4

3
4

3
2
−3

4

−3
4
−3

4
3
2

 .
The cycle space has dimension one and is generated by the cycle (A,B) + (B,C) + (C,A).
This is the eigenspace of Σ corresponding to the eigenvalue λ1 = 1

12
, and the corresponding

eigenvalue of Σ−1 is 12. The cut space has dimension two and contains the elements (A,B)+
(A,C), (B,A)+(B,C) , and (C,A)+(C,B). It is the eigenspace corresponding to the eigenvalue
λ2 = 1

4
+ `−2

12
= 1

3
of Σ and 3 of Σ−1.

Now consider the probability density function

f(x) =
e−

1
2
xTΣ−1x√

(2π)k|Σ|
.
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Write x as a linear combination of cycles and cuts, say x = y + z with y ∈ C(G) an element
of the cycle space and z ∈ C ′(G) an element of the cut space. The vectors y and z are
orthogonal, and so

xTΣ−1x =
1

λ1
||y||2 +

1

λ2
||z||2 = 12 · ||y||2 + 3 · ||z||2.

The larger xTΣ−1x is, the smaller f(x) is; so, given that ||x||2 = ||y||2 + ||z||2, for a fixed
value of ||x||, f(x) is maximized for x in the cut space and minimized for x in the cycle
space; and in general, the closer x is to being a cut, and the further it is from being a cycle,
the larger f(x) is.

Now let us consider the geometry of the level sets of f(x). These level sets are ellipsoids,
and the lengths of the axes are 1/

√
λ1 = 1/

√
12 and

√
λ2 = 1/

√
3, with λ1 < λ2. So the

cycle space corresponds to the minor axis of the ellipsoid, and the cut space corresponds to
the major axis. We plot one of these level sets, xTΣ−1x = 1, in the three-candidate case,
in Figure 1. What we see is that the ellipsoid is shorter in two of the octants, as the minor
axis of the ellipsoid is along the vector (A,B) + (B,C) + (C,A) which is the diagonal vector
of an octant.

Now an octant corresponds to choosing a direction for each edge of the graph G, i.e., to
a tournament on the candidates. There are eight tournaments on three candidates, the first
six of which are the linear orders, and last two of which are cycles.

Linear orders Cycles

A

�� ��

A

��

A

��

A

��
B // C B

??

// C B Coo

__

B // C

__

A

�� ��

A A A

��
B Coo B

??

// C

__

B

??

Coo

__

B

??

Coo

The minor axis of the ellipsoid is within the two octants corresponding to the cycles, and the
major axis (which has dimension two) is orthogonal to this. Now this means that the volume
of the ellipsoid within each of the two cycle octants is less than its volume within each of
the other six. As f(x) decreases as one gets further away, this means that the integral of
f(x) over each of the six octants will be larger than the integral of f(x) over the two cycle
octants.

This means that for a fixed tournament T , the probability that T is the majority graph
of a random profile is larger when T is a linear order than it is when T is a cycle. Since there
are six linear orders and two cycles, the probability that the majority graph is a linear order
(i.e., that there is a Condorcet winner) is at least 3

4
, and the probability that the majority

graph is a cycle (i.e., that the paradox of voting occurs) is at most 1
4
.
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Figure 1: xTΣ−1x = 1.

In the case of three candidates, there are exact expressions for the probabilities of lying in
a particular octant and hence of obtaining each of these tournaments [NW68, GK68]. E.g.,
for

Σ =

1 a b
a 1 c
b c 1


the probability of being in the positive orthant is

p =
arccos(−a)

4π
+

arccos(−c)
4π

− arccos(b)

4π
.
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For each of the six linear orders, this gives us a probability of

p =
arccos(−1/3)

4π
= 0.1520 . . .

and for the each of the two cycles, the probability is

p =
arccos(1/3)

2π
− arccos(−1/3)

4π
= 0.0439 . . . .

With more candidates, the same sort of analysis works, except that there are more possible
tournaments, and the ellipsoid sits in a higher-dimensional space, e.g., with four candidates
it sits in six dimensional space and with five candidates in ten dimensional space. Unfortu-
nately there are exact expressions for orthant probabilities in higher dimensions only in very
particular special cases.

6 Decomposing into cycles plus cuts

Recall that if we write x ∈ ER(G) as a linear combination of cycles and cuts, say x = y + z
with y ∈ C(G) an element of the cycle space and z ∈ C ′(G) and element of the cut space, we
have

xTΣ−1x =
1

λ1
||y||2 +

1

λ2
||z||2.

So it is natural to try to compute ||y||2 and ||z||2 from x.
Given x =

∑
(ci,cj)

x(ci,cj)(ci, cj) ∈ ER(G) and a candidate ci, we introduce the value

flowx(ci) =
∑
(ci,cj)

x(ci,cj).

We think of this as the net flow out of the vertex ci, counting flow out of ci positively and
flow into ci negatively. It is not hard to see that for a fixed ci, flowx(ci) is a linear function
of x. Moreover, if x is part of the cycle space, then flowx(ci) = 0; one can easily see this by
checking that it is true for the basic cycles (ci, cj) + (cj, ck) + (ck, ci) and extends linearly to
the whole cycle space.

Then we can compute:

Theorem 6.1. Let x ∈ ER(G) be x =
∑

(ci,cj)
x(ci,cj)(ci, cj). Write x = y + z with y ∈ C(G)

an element of the cycle space and z ∈ C ′(G) an element of the cut space. Then

z =
∑
(ci,cj)

flowx(ci)− flowx(cj)

`
(ci, cj).

Moreover,

||z||2 =
2

`
·

∑
(ci,cj)

x2(ci,cj) +
∑

(ci,cj),(ci,ck)

x(ci,cj)x(ci,ck)

 .

where the convention x(ci,cj) = −x(cj ,ci) handles the sign of the terms x(ci,cj)x(ci,ck).
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Proof. Since flow is a linear operator, and y is in the cycle space, we have for each vertex ci
that

flowx(ci) = flowy(ci) + flowz(ci) = flowz(ci).

Now writing z =
∑

(ci,cj)
z(ci,cj)(ci, cj) we argue that

flowz(ci)− flowz(cj) = `z(ci,cj).

It suffices by linearity to show that this is true for a generating set of the cut space, i.e., that
it is true for each of the cuts

∑
ck

(ci, ck),
∑

ck
(ci, ck), and for a fixed k∗ 6= i, j,

∑
ck

(ck∗ , ck).
For z =

∑
ck

(ci, ck), we have

flowz(ci)− flowz(cj) = (`− 1)− (−1) = `,

and the coefficient of (ci, cj) in z is 1. A similar argument works for z =
∑

ck
(cj, ck). For

z =
∑

ck
(ck∗ , ck), we have

flowz(ci)− flowz(cj) = −1− (−1) = 0,

and the coefficient of (ci, cj) in z is 0. Thus we have

flowx(ci)− flowx(cj) = `z(ci,cj)

and so

z =
∑
(ci,cj)

flowx(ci)− flowx(cj)

`
(ci, cj).

This completes the first part of the theorem.
Now we must compute ||z||2. We have

||z||2 =
∑
ci,cj

z2(ci,cj)

=
∑
(ci,cj)

(flowx(ci)− flowx(cj))
2

`2

=
1

`2

∑
(ci,cj)

(∑
cr

x(ci,cr) −
∑
cs

x(cj ,cs)

)2

.

After expanding this out, we will get a linear combination of terms of the form x(ci,cr) ·x(cj ,cs).
First consider terms of the form x(ct,cu) · x(cv ,cw) with t, u, v, w all distinct. Such a term

shows up four times after expanding, for (ci, cj) equal to each of (ct, cv), (ct, cw), (cu, cv), and
(cu, cw). It shows up with the opposite sign for t as compared to u, and v as compared to
w. So these all cancel out and the coefficient is zero.

Next, consider terms of the form x(cu,cv) · x(cu,cw). Such a term appears for:

• (ci, cj) = (cu, cv): For cr = cv we get x(ci,cr) = x(cu,cv), and for cr = cw we get
x(ci,cr) = x(cu,cw); and for cs = cu we get x(cj ,cs) = x(cv ,cu) = −x(cu,cv). After squaring
we get a term 4 · x(cu,cv) · x(cu,cw).
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• (ci, cj) = (cu, cw): Similarly to the above, after squaring we get a term 4·x(cu,cv) ·x(cu,cw).

• ci = cu, cj 6= cv, cw: For cr = cv we get x(ci,cr) = x(cu,cv), and for cr = cw we get
x(ci,cr) = x(cu,cw); after squaring, we get 2 · x(cu,cv) · x(cu,cw).

• (ci, cj) = (cv, cw): For cr = cu we get x(ci,cr) = x(cv ,cu) = −x(cv ,cu), and for cs = cu we
get x(cj ,cs) = x(cw,cu) = −x(cw,cu); after squaring, we get −2 · x(cu,cv) · x(cu,cw).

There are ` − 3 instances of the third case and one instance of each other case. So the
coefficient of x(cu,cv) · x(cu,cw) is 4 + 4 + 2` − 6 − 2 = 2`. There are four other similar cases,
such as x(cu,cv) · x(cv ,cw). In this case for example, the coefficient will be −2`. The sign
is positive if the edges are either both into or both out of the same common vertex, and
negative otherwise.

Finally, consider terms of the form x2(cu,cv). This term appears, with a coefficient of 4, for

(ci, cj) = (cu, cv), and with a coefficient of 1 for each (ci, cj) which has exactly one vertex in
common with (cu, cv), of which there are 2(`− 2). So x2(cu,cv) has a coefficient of 2`.

So:

||z||2 =
2

`
·

∑
(ci,cj)

x2(ci,cj) +
∑

(ci,cj),(ci,ck)

x(ci,cj)x(ci,ck)

 .

Now let us apply this to our scenario. We have

f(x) =
e−

1
2
xTΣ−1x√

(2π)k|Σ|
,

where

xTΣ−1x =
1

λ1
||y||2 +

1

λ2
||z||2.

Then we can write

f(x) =
e
− 1

2λ1
||y||2− 1

2λ2
||z||2√

(2π)k|Σ|
=
e
− 1

2λ1
||x||2+

(
1

2λ1
− 1

2λ2

)
||z||2√

(2π)k|Σ|
.

Since 1
2λ1
− 1

2λ2
≥ 0, this makes it clear that for a specific value of ||x||, the larger ||z|| is, the

larger f(x) is. Using Theorem 6.1, we have

||z||2 =
2

`
·

∑
(ci,cj)

x2(ci,cj) +
∑

(ci,cj),(ci,ck)

x(ci,cj)x(ci,ck)

 .

Given a tournament T on the candidates C, the probability that we obtain T as the majority
graph of a random profile X ∼ N (0,Σ) is

Pr(T ) =

∫
RT

f(x) dx

where RT is the orthant corresponding to T ; RT is the octant which has x(ci,cj) positive if
and only if ci → cj in T . (Note that by our convention that x(ci,cj) = −x(cj ,ci), if i < j and
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j → i in T , then the region RT has x(ci,cj) negative which means that x(cj ,ci) is positive.) So
we can write

||z||2 =
2

`
·
( ∑

ci→cj

x2(ci,cj) +
∑

ci→cj , ci→ck

x(ci,cj)x(ci,ck)

+
∑

cj→ci, ck→ci

x(cj ,ci)x(ck,ci) −
∑

ci→cj , ck→ci

x(ci,cj)x(ck,ci)

)
where → is interpreted as in T . In the region RT , all of the terms x(·,·) appearing in this
expression will be positive. Intuitively, on might expect that the more positive terms show
up, the greater the integral

Pr(T ) =

∫
RT

f(x) dx

should be. Moreover, our geometric intuition agrees. Suppose that we have an ellipsoid
such that all of the axes take on one of two values (dividing the axes into major axes and
minor axes). Suppose also that we have an orthant. It seems plausible that the closer the
diagonal vector in the orthant is to the major axes of the ellipsoid, the greater the volume
within that orthant is. (Unfortunately, volumes of octants of ellipsoids are directly related
to the measurement of solid angles of simplicial cones, and this is not understood in higher
dimensions. See, e.g., [Rib06].)

To this effect, we assign a number to each tournament:

Definition 6.2. Given a tournament T on ` vertices, we can assign a number to T which
we call the linearity of T :

lin(T ) =
1

2

∑
v

deg−(v)2 + deg+(v)2 =
∑
v

deg−(v)2 =
∑
v

deg+(v)2.

Then the number of positive terms in ||z||2 on the octant RT is exactly lin(T )− `(`− 1) as∑
v

deg−(v) · (deg−(v)− 1) + deg+(v) · (deg+(v)− 1) = lin(T )− `(`− 1).

So we have a guess at what is going on: The greater the linearity of T , the greater the
probability Pr(T ) should be.

Conjecture 6.3. Let T and T ′ be tournaments on ` candidates. If lin(T ) < lin(T ′), then
Pr(T ) < Pr(T ′).

This conjecture has already been verified for ` = 3 (as the linearity of a linear order is higher
than the linearity of a cycle on three candidates). In the next two sections we verify the
conjecture for ` = 4 and ` = 5 as well.
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7 Four Candidates

Consider the case of four candidates A, B, C, and D. As usual we fix by convention the edge
directions of the linear order A > B > C > D.

A //

�� ��

B

�� ��
C // D

Then we compute

Σ =

AB AC AD BC BD CD


AB 1 1/3 1/3 −1/3 −1/3 0
AC 1/3 1 1/3 1/3 0 −1/3
AD 1/3 1/3 1 0 1/3 1/3
BC −1/3 1/3 0 1 1/3 −1/3
BD −1/3 0 1/3 1/3 1 1/3
CD 0 −1/3 1/3 −1/3 1/3 1

.

For four candidates, there are four possible isomorphism types:

T1:

A //

�� ��

B

�� ��
T2:

A //

�� ��

B

��
T3:

A //

��

B

����
T4:

A //

��

B

����
C // D C // D

OO

C

OO

// D C

OO

Doo

There are twenty-four different labeled copies of the first one, eight of the second and third,
and twenty-four of the last.

We have a new phenomenon that shows up here, which is that T2 and T3 are dual in the
sense that one is obtained from the other by reversing the directions of every arrow. Thus
the probability of obtaining T2 will be the same as the probability of obtaining T3. T1 and
T4 are self-dual in the sense that by reversing arrows, we keep the same isomorphism type.
Dual tournaments have the same linearity.

To compute the probabilities of obtaining each of these tournaments directly, one would
have to find orthant probabilities in six dimensions, and there is no known general way
of doing this. However, a clever argument by Gehrlein and Fishburn [GF78] allows us to
compute exact probabilities.

First, the probability of having A as a majority winner is the probability that A beats
B, C, and D; thus we have reduced ourselves to a three-dimensional space and can compute
the probability exactly. By multiplying by four, we get the probability of having a majority
winner, which is the same as the probability that the margin graph of a random tournament
is isomorphic to either T1 or T2. (This value is 0.82452.)

Second (and this is the clever part) the probability that the margin graph of a random
election is transitive (i.e., isomorphic to T1) can be computed as follows. First, consider the
probability that A beats C and D and the probability that B beats C and D. This puts us
within a four-dimensional space, and exact orthant probabilities are known in certain special
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cases (including this one) in four dimensions [DM61]. This allows Gehrlein and Fishburn to
compute an exact expression for the probability that A beats C and D and that B beats C
and D. The are four different majority graphs satisfying this (depending on whether A beats
or loses to B, and C with D), each of which is transitive, and each of these is equally likely,
so we can compute the probability 0.7395 of obtaining a transitive graph as the outcome of
a random election.

From these values we can compute the value of Pr(T1) and the value of Pr(T1) + Pr(T2).
Using the fact that T2 and T3 are dual and so Pr(T2) = Pr(T3), we can compute all of
these values. They are displayed in the table below. The score sequence is the sequence
of out-degrees of the nodes of the tournament. The number of labelings is the number of
labeled tournaments with the isomorphism type. The labeled probability is the probability of
obtaining Ti specifically as the outcome of an election, while the probability is the probability
of obtaining the isomorphism type of Ti.

Label Score sequence Linearity Num Labelings Labeled Probability Probability
T1 3,2,1,0 14 24 0.030813 0.7395
T2 3,1,1,1 12 8 0.010628 0.08502
T3 2,2,2,0 12 8 0.010628 0.08502
T4 2,2,1,1 10 24 0.0037692 0.09046

These probabilities agree with our Conjecture 6.3. Note though that we have an interesting
phenomenon that while each individual isomorphic copy of T4 is less probable than T3,
because there are so many more isomorphic copies of T4 the isomorphism type of T4 on the
whole is more likely.

8 Five Candidates

Consider the case of five candidates A, B, C, D, and E. As always we fix a standard orientation
of the edges between candidates, corresponding to the linear order A > B > C > D > E:

A

��

��

��

��

B

''

//

��

E

C //

77

D

OO
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From Theorem 4.1 we get the following covariance matrix:

Σ =

AB AC AD AE BC BD BE CD CE DE



AB 1 1/3 1/3 1/3 −1/3 −1/3 −1/3 0 0 0
AC 1/3 1 1/3 1/3 1/3 0 0 −1/3 −1/3 0
AD 1/3 1/3 1 1/3 0 1/3 0 1/3 0 −1/3
AE 1/3 1/3 1/3 1 0 0 1/3 0 1/3 1/3
BC −1/3 1/3 0 0 1 1/3 1/3 − 1/3 −1/3 0
BD −1/3 0 1/3 0 1/3 1 1/3 1/3 0 −1/3
BE −1/3 0 0 1/3 1/3 1/3 1 0 1/3 1/3
CD 0 −1/3 1/3 0 −1/3 1/3 0 1 1/3 −1/3
CE 0 −1/3 0 1/3 −1/3 0 1/3 1/3 1 1/3
DE 0 0 −1/3 1/3 0 −1/3 1/3 −1/3 1/3 1

.

Up to isomorphism, there are twelve different tournaments on the five candidates. Recall that
the score sequence of a tournament is the sequence of outdegrees. These twelve isomorphism
types have between them nine different score sequences; one score sequence, 3, 3, 2, 1, 1, has
two different isomorphism types, and another, 3, 2, 2, 2, 1, has three different isomorphism
types. We number these tournaments from 1 to 12.

T1:

A

��

��

��

��

T2:

A

��

��

��

��

T3:

A

��

��

��

��

B

''

//

��

E B //

��

E B

''

//

��

E

ww
C //

77

D

OO

C //

77

D

gg OO

C // D

OO

T4:

A

�� ��

��

T5:

A

��

��

��

��

T6:

A

��

��

��
B

''

//

��

E B

''��

Eoo

ww

B

''

//

��

E

C //

77

GG

D

OO

C // D

OO

C //

77

D

OO

WW

T8:

A

��

�� ��

T7:

A

��

�� ��

T9:

A

��

�� ��

B

''

//

��

E

__

ww

B

''

//

��

E

__

B

''��

Eoo

__

C // D

OO

C //

77

D

OO

C //

77

D

OO
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T10:

A

��

��

T11:

A

��

�� ��

T12:

A

��

��

B

''��

Eoo

__

B //

��

E

__

B

''��

E

__

oo

C //

77

GG

D

OO

C //

77

D

OOgg

C //

77

D

OO

WW

In the table below we list: their score sequence; linearity; the number of different labeled
tournaments having that isomorphism type; the probability of obtaining that isomorphism
type as the majority graph of a random profile under IC; and the probability of obtaining a
fixed labeling of that isomorphism type. There are no known closed form solutions for orthant
probabilities in such high dimensions, so the probabilities given are numeric approximations
computed using the R [R C13] package orthant [CM12], which contains an implementation
of Craig’s algorithm from [Cra08].

Label Score sequence Linearity Num Labelings Labeled Probability Probability
T1 4,3,2,1,0 30 120 0.00439 0.527
T2 4,2,2,2,0 28 40 0.00177 0.0708
T3 4,3,1,1,1 28 40 0.00169 0.0677
T4 3,3,3,1,0 28 40 0.00169 0.0677
T5 4,2,2,1,1 26 120 0.000695 0.0834
T6 3,3,2,2,0 26 120 0.000695 0.0834
T7 3,3,2,1,1 24 120 0.000274 0.0329
T8 3,3,2,1,1 24 120 0.000264 0.0317
T11 3,2,2,2,1 22 120 0.000123 0.0148
T9 3,2,2,2,1 22 120 0.000122 0.0147
T10 3,2,2,2,1 22 40 0.000118 0.00471
T12 2,2,2,2,2 20 24 0.0000579 0.00139

The chance of having a majority winner is the chance of getting T1, T2, T3, or T5; our values
give 0.748612396 which closely agrees with 0.74869 from Gehrlein and Fishburn [GF76].
Gehlrein [Geh88] used a Monte-Carlo simulation to obtain an estimate of the probability of
obtaining a transitive tournament as 0.529; we computed 0.527.

Once again we verify that Conjecture 6.3 is true for five candidates. We have an interest-
ing new phenomenon, which is that there are non-dual tournaments with the same linearity.
For example, T2, T3, and T4 all have the same linearity, and T3 and T4 are dual, but T2 is
self-dual. We have computed Pr(T2) > Pr(T3) = Pr(T4). (T3 and T4, and T5 and T6, are the
only two non-self-dual tournaments here.) If Conjecture 6.3 is true, we must then ask what
makes one tournament more probable than another tournament with the same linearity?

9 Monte Carlo simulations

Suppose that we want to perform a Monte Carlo simulation of a margin based voting method,
for example to see how often it selects multiple winners. Given a set V of n voters, a Monte
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Carlo simulation might repeatedly generate for each voter a random ballot and compute the
margin graph from all of these ballots. The problem is that if we want to do this with a large
number of voters, we have to generate a random ballot for each voter and tally them all, and
it might take a long time to generate enough random values to get an accurate Monte Carlo
simulation.

Using the results of this paper we get a more efficient method. In the notation of Section
4, the random margin graph generated by n voters will be

∑n
i=1 Xvi . By the central limit

theorem,
√
n · Sn = 1√

n

∑n
i=1 Xvi converges in distribution to the multivariate normal distri-

bution N (0,Σ) with the same mean and covariance matrix, which has probability density
function

f(x) =
e−

1
2
xTΣ−1x√

(2π)k|Σ|
.

So instead of generating random profiles, we can instead use a random variable Y ∼ N (0,Σ).
We can easily compute from Y the majority graph, the qualitative margin graph, and (es-
sentially) the margin graph. This is enough to determine the winning set by any qualitative
margin-based voting method, and by most margin-based voting methods such as Borda
count.

To generate values of Y, one can either simply use a software package, or one can use
independent normal random variables Z = (Zi,j)i<j, and

Y = AZ

where A is such that Σ = AAT . One can use for example A = UΛ1/2 obtained from the
spectral decomposition Σ = UΛU−1 of Σ, where Λ is the diagonal sequence of eigenvalues
and U is the matrix whose columns are the eigenvectors of Σ. Since Λ is diagonal and U
is the matrix of eigenvectors, which are quite sparse, A is quite sparse, so there is some
advantage to generating our own random variables to take advantage of this.

To generate a random profile in this way, one must generate a vector Z of `(` − 1)/2 =
O(`2) independent normal random variables, and the matrix multiplication Y = AZ is an
`(`−1)/2×`(`−1)/2 matrix multiplied by a vector, and is O(`4) (which can be improved by
taking advantage of the sparsity of A). Thus rather than simulating some number n � `4

of voters, we get an improvement using our method.
Sample code for generating random margin graphs is available at https://github.com/

MatthewHT/RandomMarginGraphs/. As a test, we compute some values of interest to Holliday
and Pacuit [HPc], namely the size of a winning set using their voting method Split Cycle—
see Figure 9 of that paper. We were able, with a day or two of computation time, and a naive
algorithm not taking advantage of the sparsity of our matrices, to generate 1,000,000 profiles
for 5, 7, 10, and 20 candidates, 100,000 profiles with 30 candidates, and 10,000 profiles for
50 and 70 candidates. (Entries 0.00% in the table below are non-zero entries which were
rounded down.)
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Size of winning set
` 1 2 3 4 5 6 7 8 9 Multiple winners
5 96.80% 3.15% 0.06% — — — — — — 3.20%
7 92.19% 7.38% 0.42% 0.01% — — — — — 7.82%
10 85.26% 13.13% 1.52% 0.09% 0.00% — — — — 14.74%
20 67.80% 24.22% 6.65% 1.17% 0.15% 0.01% 0.00% 0.00 — 32.20%
30 56.58% 28.47% 11.24% 3.01% 0.62% 0.09% 0.01% 0.00% — 43.42%
50 43.35% 29.95% 16.55% 6.88% 2.62% 0.51% 0.11% 0.03% — 56.65%
70 32.68% 26.71% 16.73% 8.77% 3.54% 1.21% 0.49% 0.05% 0.01% 67.32%

The methods described here have already been used by Holliday and Pacuit [HPb] to
measure the probability, for various voting methods, of violating certain desiderata.
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