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Abstract. In this study, I present a theoretical social learning model to investigate how con�r-

mation bias a�ects opinions when agents exchange information over a social network. Hence,

besides exchanging opinions with friends, agents observe a public sequence of potentially ambigu-

ous signals and interpret it according to a rule that includes con�rmation bias. First, this study

shows that regardless of level of ambiguity both for people or networked society, only two types of

opinions can be formed, and both are biased. However, one opinion type is less biased than the other

depending on the state of the world. The size of both biases depends on the ambiguity level and

relative magnitude of the state and con�rmation biases. Hence, long-run learning is not attained

even when people impartially interpret ambiguity. Finally, analytically con�rming the probability

of emergence of the less-biased consensus when people are connected and have di�erent priors is

di�cult. Hence, I used simulations to analyze its determinants and found three main results: i) some

network topologies are more conducive to consensus e�ciency, ii) some degree of partisanship

enhances consensus e�ciency even under con�rmation bias and iii) open-mindedness (i.e. when

partisans agree to exchange opinions with opposing partisans) might inhibit e�ciency in some cases.
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1. Introduction

People form opinions on various economic, political, social, and health issues based on infor-

mation from both the media and people they trust (e.g. friends, coworkers, family, experts, etc).

This information acquisition process usually occurs when the issue discussed has no clear-cut

right/wrong or true/false distinction or when the available information cannot be easily understood.

Consulting people’s opinions, in this case, is an appealing and easy way to gather information. For

many people, social networks then become primary tool to stay informed. Thus, understanding

how beliefs depend on how agents perceive and process information is vital. In this study, I

examine how opinions are a�ected by con�rmation bias in a networked environment.

In psychology, con�rmation bias denotes the interpretation of evidence in ways consistent

with existing beliefs (Nickerson (1998), Molden and Higgins (2008)). This can be done in di�erent

ways, like restricting attention to favored hypothesis, disregarding evidence that could falsify the

current worldview or overvaluing positive con�rmatory instances. In all cases, people restrict

attention to a single hypothesis and fail to carefully consider alternatives.

In social psychology, people interpret evidence when they are ambiguous (i.e. when evidence

is con�icting). People may misinterpret scientists and experts after ambiguous announcements.

Simonovic and Taber (2022) highlighted that when WHO declared the COVID-19 outbreak a global

pandemic in 2020, experts did not precisely understand the extent and nature of the health risks or

how disease transmission can be prevented. Hence, WHO provided con�icting recommendations

to the public on whether wearing a mask was necessary. Other medical authorities also provided

con�icting recommendations to the public regarding medicines and vaccines’ e�cacy. Con�icting

evidences may have even contributed to people making their own assessment about the problem.

While friends may help people to aggregate information in some cases, in other cases, people

may expose themselves to others who that rely on their own worldview to derive information

from ambiguous evidence. In these cases, e�cient aggregation of information is not guaranteed,

and I investigate how opinions are in�uenced by people’s biases.

To analyze this phenomenon, I consider a society where agents are interested to learn the

underlying state θ ∈ Θ = [0, 1]. For instance, the underlying state θ might represent the e�cacy

of a new vaccine (e.g. from 0 to 1). All agents have prior beliefs about the vaccine’s e�cacy and

observe a sequence of public signals, one at each date t. Public signals may be (i) informative or

(ii) ambiguous. Informative signals are binary variables indicated as 1 if state on the right side of

the 0-1 spectrum are more likely (i.e. if vaccine’s e�cacy is high) and 0 if the states on the left side

of the 0-1 spectrum are more likely (i.e. if vaccine’s e�cacy is low). Hence, as signals realization

does not convey full information on the underlying state, agents can only learn the true state
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(vaccine’s e�cacy) asymptotically. This is in the spirit of ongoing learning, where information

accumulates through experience. In the case of ambiguous signals, agents are allowed to interpret

these signals using a fairly general randomization rule proposed by Fryer Jr, Harms, and Jackson

(2019) that accounts for con�rmation bias. Hence, the interpretation of the ambiguous signal

received at time t is in�uenced, to a greater or lesser extent, by the likelihood of 0 and 1 at time

t− 1 (see more details below). This captures situations wherein people feel impelled to explain

ambiguous evidence about a particular issue.

As in Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012), besides learning from public

signals, agents exchange information through a social network. At the beginning of every period

t, the public signal is realized. Thus, each agent �rst interprets signals (if ambiguous) using the

randomization rule, stores the signal and computes the Bayesian posterior (opinion and precision).

Every agent then sets their �nal opinions and precisions to be a linear combination of the Bayesian

posterior opinions and precisions computed with the interpreted signal and opinions and precisions

of friends (e.g., formal de�nition of neighbors in subsection 3.1) they met in the period before.

Social connectivity among agents remains �xed over time and strong connectivity is assumed (i.e.,

all agents are exposed to all other agents either through a directed or undirected path in the social

networks).

Hence, despite the level of ambiguity and both in the case of a single individual or a connected

society, only two types of opinions can emerge, and both are biased: left- and right-biased opinions.

However, one type of opinion is less biased than the other depending on the underlying state.

Less-biased opinion is only guaranteed to emerge under a favorable combination of su�ciently low

ambiguity and su�ciently pronounced states. If this condition holds, I show that the less-biased

opinion is attained with probability 1. Moreover, long-run learning is not attained even if people

are impartial when they interpret ambiguous signals (i.e., when interpreting evidence uniformly

at random instead of using their own opinions). Those results contrast with those by Rabin and

Schrag (1999) and Fryer Jr et al. (2019), who suggest that long-run learning occurs with a positive

probability and that impartiality helps in learning the state. Furthermore, both the network e�ect

presented here and signals realization, reinforce the interpreting dispute (tug-of-war) as people

may have their own interpretation biases reinforced or attenuated by other agents.

Finally, con�rming the probability of emergence of the less-biased consensus analytically is

di�cult, and I use Monte Carlo simulations to show its determinants. The presence of partisan

agents (i.e., agents with skewed initial priors) in societies su�ering from con�rmatory bias have two

main e�ects. (i) When the degree of partisanship is low, partisanship helps to counter the realization

of initial misleading signals (e.g., realization of a 0 when θ ≥ 0.5). Thus, low partisanship increases
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the odds of reaching less-biased consensus. (ii) When the degree of partisanship is high, partisans

exacerbate misinterpretation of signals. Thus, high partisanship reduces the odds of reaching

less-biased consensus. Moreover, I also show that open-mindedness of partisan agents (i.e., when

partisans agree to exchange opinions with partisans with polar opposite beliefs) might reduce the

odds of reaching less-biased consensus in some network structures.

While this work does not generalize theoretical results for other conjugate families and numeri-

cal results for other network structures, both methods and cases explored are su�ciently general

to capture important aspects of real-world networks. In every period, public signals realized and

observed by all agents may represent information reported by sources including media outlets

and international organizations. The level of ambiguity of the informational content reported by

them, measured by a parameter µ ∈ (0, 1), represents the fraction of instances where a signal

simultaneously conveys two con�icting meanings and agents feel impelled to interpret them.

Parameters of the signal interpretation function dictate the interpretation behavior of every agent.

This work is structured as follows. Section 2 provides a brief literature review and highlights

contributions. Section 3 describes a framework for updating beliefs when agents communicate

over social networks with ambiguous signals and present main theoretical results. Section 4

describes a simulation exercise when priors heterogeneity (partisanship) is assumed. Section

5 concludes the study. Moreover, six appendices are available. Appendices A and B contain

primitives of the Beta-Bernoulli conjugate family employed in this work. Appendix C contains

proofs of auxiliary results, while Appendix D presents proofs of main results. Appendices E and F

show simulation statistics and present regression robustness.

2. Literature review and contribution

Considerable empirical evidence on social psychology supports the idea that con�rmation bias

is extensive and appears in many ways. Most studies in the �eld con�rm the human tendency of

casting doubt on information that con�icts with preexisting beliefs and con�rming preexisting

beliefs when exposed to ambiguous information (see Nickerson (1998)). However, this selectivity

in the acquisition and use of evidence occurs without intending to treat evidence in a biased way.

Molden and Higgins (2004, 2008) note that both vagueness (when evidence is weak) and ambiguity

(when evidence is con�icting and open to interpretations) induce interpretation. Conversely,

Furnham and Ribchester (1995) and Furnham and Marks (2013) review literature on the subject

and report evidence that the way people perceive and process information about ambiguous

situations is related to their degree of ambiguity tolerance (i.e., individual di�erences in cognitive

reaction to stimuli considered ambiguous). Therefore, ambiguity tolerance refers to underlying
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psychological di�erences that impel people to process, interpret, and react di�erently to ambiguous

information.
1

Thus, con�rmation bias may oppose standard Bayesian updating processes as agents scrutinize

signals in line with their worldviews. Some examples of decision-making models that account

for Bayesian updating deviation are Hellman and Cover (1970), Rabin and Schrag (1999), Wilson

(2014), Fryer Jr et al. (2019), Sikder, Smith, Vivo, and Livan (2020) and Buechel, Klößner, Meng,

and Nassar (2022).

Studies by Rabin and Schrag (1999), Fryer Jr et al. (2019), Sikder et al. (2020) and Buechel et al.

(2022) are the closest references to this work, in both spirit and results. Rabin and Schrag (1999),

showed that signals believed as less likely are misinterpreted with an exogenous probability.

Fryer Jr et al. (2019) stated that ambiguous signals, in its simplest version with binary states, are

produced with a certain probability, and agents interpret those before conducting the Bayesian

update. Interpreting these signals requires agents to use three methods that di�er in intensity

with which agents conform their interpretation with their current worldview. However, both

works do not consider network communication.

Sikder et al. (2020) employ a slightly modi�ed version of Rabin and Schrag (1999) to a networked

environment (mostly focused on regular networks), where agents synchronously share the full

set of signals with their neighbors. However, biased agents reject information incongruent with

their preexisting beliefs, reduce the weight they place on other agents, and place the remaining

weight on an external positively oriented "ghost" node, creating a polarization of unbiased agents

in the steady state. In this study, I assume a general (connected) network structure among agents

and allow them to set their �nal beliefs to be a linear combination of the Bayesian posterior and

opinions of their neighbors as in Jadbabaie et al. (2012), regardless of their biases and signals

received. A key di�erence relative to Sikder et al. (2020) is that my modeling strategy allows me

to discuss the relative importance of the learning parameters, network structure, and connections

heterophily (open-mindedness of partisans) in determining the probability of reaching the less-

biased consensus.

Buechel et al. (2022) allow di�erent types of signals to have di�erent transmission capacities

(i.e., asymmetric decay factor applied to positive and negative signals) when signals are shared

in di�erent networks, and show that for a society to aggregate information e�ciently, di�erent

asymmetries must be balanced and that an agent’s ratio of centralities between the two networks

must be moderate compared to the ratio of centrality concentration in the two networks. In my

1
More recently, scholars have considered the concept of tolerance of ambiguity as a re�ection of the contemporary

de�nition of ambiguity proposed by Ellsberg (1961). For a good coverage of the classic literature on ambiguity

aversion, see Gilboa and Schmeidler (1989), Gilboa and Schmeidler (1993), and Epstein and Schneider (2007).
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model, sharing asymmetries and misinformation is not considered even when partisan agents

remain equally balanced and central. However, this work shares an interesting feature with my

model relative to how equality of centralities is critical for reducing misinformation.

This work is also related to the literature of bounded con�dence in networks. Overall, this

literature focuses on models of social learning wherein agents overvalue the opinion of friends

with similar beliefs. Hegselmann, Krause et al. (2002), Hegselmann and Krause (2005), Dandekar,

Goel, and Lee (2013), Mao, Bolouki, and Akyol (2018), and Gallo and Langtry (2020) provide

examples of this phenomenon. While bounded con�dence involves the tendency to conform with

the majority or leading people, con�rmation bias is a failure in the Bayesian updating process.

From this perspective, modeling con�rmatory bias as either a bounded con�dence or a failure in

the Bayesian update has di�erent consequences. On the one hand, bounded con�dence presumes

that the connections between agents are broken (or temporarily interrupted) according to opinions

distance. Hence, nontrivial changes are implied in the network topology. In this literature, long-

run polarization naturally occurs under bounded con�dence. Polarization, hence, is a natural

product of the initial heterophily of opinions in the system and eventual deletion of links. On the

other hand, modeling con�rmatory bias as a Bayesian update failure is inconsequential to the

network topology and under the strong connectivity assumption leads to a bias (misinformation)

that can be analytically studied.

Finally, numerous works on social learning assumed bounded and full rationality. Bayesian

social learning literature (fully rational agents) mainly focuses on formulating stylized games with

incomplete information and characterizing its equilibria. Speci�cally, rather than considering

complex and repeated interactions, most works focus on environments where agents are myopic

or interact only once (Banerjee (1992), Bala and Goyal (1998), Bala and Goyal (2001), Banerjee and

Fudenberg (2004), Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)).
2

Non-bayesian learning (bounded rational agents) literature focuses on studying generalizations

of the seminal DeGroot (1974) model. DeMarzo, Vayanos, and Zwiebel (2003) show that consensus

result does not rely on the social weighting matrix being a stationary matrix. Acemoglu, Ozdaglar,

and ParandehGheibi (2010) consider a random meeting (Poisson) model and characterize how

the presence of forceful agents (i.e., agents who in�uence others disproportionately and hardly

revise their beliefs) prevents information aggregation. Conversely, Golub and Jackson (2010) show

that convergence holds if (and only if) the in�uence of the most in�uential agent vanishes as

society grows unboundedly. Jadbabaie et al. (2012) is the �rst study to consider the possibility

2
For an overview of recent research on learning in social networks, see Acemoglu and Ozdaglar (2011); Golub and

Sadler (2017); Grabisch and Rusinowska (2020).
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of constant arrival of informative signals in every period in networked environments. In their

study, the update rule that sets the �nal belief as a linear combination of the Bayesian posterior

and the neighbors’ opinions is an e�cient alternative to the complicated task of implementing

Bayesian update in networks. Finally, similar to this work in modeling strategy, Azzimonti and

Fernandes (2022) investigate how the structure of social networks and the presence of fake news

a�ect the degree of polarization and misinformation. In their study, i) their model considers the

presence of bots whose sole purpose is to deceive other agents, and that ii) connectivity among all

agents evolves stochastically. Those two features combined are main drivers of misinformation

and polarization cycles. Herein, the main source of bias derives from con�rmation bias and

connectivity among agents is assumed �xed. Thus, this study focuses on understanding how

misinformation depends on both network structure and how agents interpret ambiguous signals.

3. The model

Notation: All vectors are considered column vectors, unless stated otherwise. Given a vector

v ∈ Rn
, I denote by vi its i-th entry. When vi ≥ 0 for all entries, I write v ≥ 0. Moreover, I de�ne

v> as the transpose of the vector x. Hence, the inner (scalar) product of two vectors x, y ∈ Rn
is

denoted by x>y. I denote by 1 the vector with all entries equal to 1. A matrix W is considered to

have size m× n whenever W has exactly m rows and n columns. Moreover, whenever m = n,

W is called a square matrix of size n. The identity matrix of size n is denoted by I. For a matrix

W , Wij denotes the entry in the i-th row and j-th column. The notation W k
ij is used to denote the

entry in the i-th row and j-th column of the matrix W k
, i.e. the matrix W raised to the power k.

Finally, a vector v is said to be a stochastic vector when v ≥ 0 and

∑
i vi = 1. A square matrix W

is said to be a (row) stochastic matrix when each row of W is a stochastic vector.

3.1. Network structure. Connectivity among agents in a network is described by a directed

graph G = (N, g), where N = {1, 2, . . . , n} is the set of agents, �xed over time, and g is a binary

n × n adjacency (or incidence) matrix, also �xed over time. Each element gij in the directed-graph

represents the connection between agents i and j. More precisely, gij = 1 if individual i is paying

attention to (i.e. receiving information from) individual j, and 0 if otherwise. As the graph is

directed, some agents pay attention to others who are not necessarily reciprocating (i.e., gij 6= gji).

The out-neighborhood of any agent i is the set of agents that i is receiving information from,

and is denoted by N out
i = {j | gij = 1}. Similarly, the in-neighborhood of any agent i is denoted

by N in
i = {j | gji = 1}, represents the set of agents that are receiving information from i. In

undirected networks, N in
i = N out

i = di, where di is the number of neighbors agent i has, also

known as degree centrality of agent i. Thus, the term ĝij =
gij
|Nout

i | ∈ [0, 1] represents the weight
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that agent i gives to information received from their out-neighbor j. A network is considered

regular if every node has the same degree of centrality, and that a network is complete if every

node is connected with all other nodes. Finally, a directed path in G from agent i to agent j is

de�ned as a sequence of agents beginning with i and ending with j such that each agent is a

neighbor of the next agent in the sequence. A social network is strongly connected if a directed

path from each agent to any other agent exists.

3.2. Signals, initial beliefs and opinions. Let Θ = [0, 1] to denote the set of possible states of

the world. For instance, one may �nd useful to interpret Θ as the e�ectiveness of a new vaccine,

such that a state close to 0 means that the vaccine has low e�cacy, whereas a state close to 1

means that vaccine has high e�cacy.

Conditional on the state of the world θ, every agent observes a sequence of public signals st, one

at each date t ∈ {1, 2, . . . }. Public signals lie in the set S = {1, 0, a}. Considering the example of

the vaccine’s e�cacy given above, a signal 1 is evidence that the new vaccine can prevent people

from severe illness, a signal 0 is evidence of no e�cacy, and a signal a is ambiguous and open

to idiosyncratic interpretation (Section 3.3 explains how agents deal with those signals). Signals

are independent over time, conditional on the state. The probability that a signal is ambiguous is

µ ∈ (0, 1). Hence, the signal conveys informational aspects that could lead one to interpret as

either 1 or 0. With the remaining probability (1− µ), the information provided by the signal is

unambiguous. In any state θ ∈ Θ, the probability that an unambiguous signal is 1 is θ ∈ [0, 1] and

0 with probability 1− θ. The signal structure is depicted in the Figure 1.

𝜇1 − 𝜇

𝜃 1 − 𝜃

𝑠𝑡 = 1 𝑠𝑡 = 0

𝑠𝑡 = 𝑎

Figure 1. Signals structure

Each agent i in this society is assumed to start with an initial belief about an underlying state

fi,0(θ) ∈ ∆Θ, represented by a Beta probability distribution over the set Θ with shape parameters

αi,0, βi,0 ≥ 1 and de�ned as follows:



CONFIRMATION BIAS IN SOCIAL NETWORKS 9

fi,0 (θ) =


Γ (αi,0 + βi,0)

Γ (αi,0) Γ (βi,0)
θαi,0−1(1− θ)βi,0−1

, for 0 < θ < 1

0 , otherwise,

(1)

where Γ(·) is a Gamma function and the ratio of Gamma functions in the expression above is a

normalization constant that ensures that the total probability integrates to 1.

Given prior beliefs and signals, opinion of agent i at time t is denoted by

yi,t = E
[
θ|sti
]

=
αi,t

αi,t + βi,t
,

where sti is the history of signals received and interpreted by agent i up until time t.3 The

parameters’ update rule will be described with more details in section 3.4.

3.3. Interpretation of ambiguous signals. Although ambiguous signals are uninformative

about the state and should be disregarded from a pure Bayesian perspective, agents are constrained

to interpret ambiguous signals. This constraint captures the idea that, in some instances, people

react to ambiguous pieces of information. They fail to perceive the lack of informational content

of signals and end up using their prior worldview to derive meaning from them.

For the interpretation of ambiguous signals, I use a randomization rule proposed in Fryer Jr et al.

(2019), adapted here for some technical idiosyncrasies. Hence, with probability γi ∈ [1
2
, 1] agent i

conforms with his posterior at time t− 1 and with probability 1− γi goes against it. Essentially,

with probability

ψi,t = γi 1{yi,t−1 ≥ 0.5}+ (1− γi)1{yi,t−1 < 0.5} (2)

agent i interprets the ambiguous signals as 1 and with the remaining probability (1−ψi,t) interprets

the ambiguous signals as 0 at time t.4

Therefore, parameter γi represents the intensity of the con�rmatory bias of an individual i. I

only assume γi to be independent of opinion yi,t for any i ∈ N , history of opinions of all agents,

and of all other parameters in this model. From this randomization rule, three cases of interest are

available.

De�nition 1. An individual i ∈ N
3
Appendix A discusses the primitives of the Beta distribution and the Beta-Bernoulli conjugate family. For tractability,

the opinion is intended as a real number that summarizes the entire belief. Hence, one can understand the opinion

of an agent as the Bayesian estimator of θ that minimizes the mean squared error. One could also assume that the

opinion of any agent i at time t could also be the Bayesian estimator of θ which minimizes the absolute error. As the

mean, mode, and median of the Beta distribution are asymptotically equivalent, the functional form is irrelevant for

the results.

4
From Appendix B, note that, since mean and mode of the Beta distribution are very close for di�erent choices of

(α, β) and are asymptotically equivalent, using yi,t−1 (the mean and mode) to interpret public signals in Equation (2)

is neutral to all results.
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(1) is impartial if γi = 1
2
,

(2) has con�rmatory tendency if 1
2
< γi < 1,

(3) is fully biased (biased for short) if γi = 1.

Hence, the signal interpretation functions, s
(0)
t and s

(1)
t , for each individual at any point in time

can be generally de�ned as follows:

s
(0)
i,t = 1{st = 0}+ 1{st = a}1{ut > ψi,t} (3)

s
(1)
i,t = 1{st = 1}+ 1{st = a}1{ut ≤ ψi,t}, (4)

where ψi,t is as de�ned in Equation (2), st is the publicly observed signal and ut is the realization

of a continuous U [0, 1] random variable at time t simply used to break the tie. Draws {ut} are

independent across time and also independent of all other random variables in this model. Hence,

the signal interpretation functions are basically transforming observed signals {st}∞t=1 into binary

interpretations. When the realized public signal is st = 1 (st = 0), all agents undoubtedly interpret

it as 1 (as 0) and set s
(0)
t = 0 and s

(1)
t = 1 (set s

(0)
t = 1 and s

(1)
t = 0). However, when the

realized public signal is ambiguous (i.e., st = a), agents use their prior information (summarized

by yi,t−1) to categorize the signal as either 0 or 1, as per Equation (2). Figure 2 shows a more

detailed description of the signals interpretation scheme. Appendix A shows details on the signals

likelihood function.

𝜇1 − 𝜇

𝜃 1 − 𝜃 γ𝑖1 − γ𝑖

𝑠𝑖,𝑡+1
(1)

= 0𝑠𝑖,𝑡+1
(1)

= 1 𝑠𝑖,𝑡+1
(1)

= 1𝑠𝑖,𝑡+1
(1)

= 0 𝑦𝑖,𝑡 ≥ 0.5

𝑠𝑖,𝑡+1
(1)

= 0𝑠𝑖,𝑡+1
(1)

= 1 𝑦𝑖,𝑡 < 0.5

if

if

or

Figure 2. Signals interpretation by agent i upon receiving a public signal st+1

3.4. Belief evolution. Agents are assumed to update their beliefs based on public signals st ∈
S = {1, 0, a} and on the in�uence of friends in their social network.

Hence, at the beginning of period t, a public signal is realized and signal st is observed by agent

i. After observing the public signal st, agent i computes his posterior in a standard Bayesian
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fashion. Following Jadbabaie et al. (2012), I assume that the updated parameters α and β will be a

convex combination between the parameters α and β of his Bayesian posterior and the weighted

average of his neighbors’ parameters.
5

In mathematical terms, the update rule is as follows

αi,t+1 = b
[
αi,t + s

(1)
i,t+1

]
+ (1− b)

∑
j

ĝijαj,t (5)

βi,t+1 = b
[
βi,t + s

(0)
i,t+1

]
+ (1− b)

∑
j

ĝijβj,t, (6)

where b ∈ [0, 1].

Notice that when b = 1, agents fully rely on the signals and behave like standard Bayesian

agents. As b approaches zero, agents are more in�uenced by the network as more weight is given to

their neighbors’ opinions. Moreover, let αt = (α1,t, α2,t, . . . , αn,t)
>

and βt = (β1,t, β2,t, . . . , βn,t)
>

denote the column vectors of length n of agents beliefs parameters at time t, I be an identity

matrix of dimension n and B = diag(b, b, . . . , b) be the diagonal Bayesian (or self-reliance) matrix.

We can rewrite Equation (5) as follows

αt+1 = B(αt + s
(1)
t+1) + (I−B)ĝαt

= (B + (I−B)ĝ)αt +Bs
(1)
t+1

= Wαt +Bs
(1)
t+1, (7)

and equation (6) as follows

βt+1 = Wβt +Bs
(0)
t+1, (8)

where, W = B + (I−B)ĝ is a homogeneous row-stochastic matrix. Notice that as the graph G

induced by the adjacency matrix g is assumed to be strongly connected, the graph induced by W

is trivially strongly connected as well.

4. Theoretical results

4.1. Single individual case. Before illustrating the network e�ects over the opinions when

agents are exposed to ambiguous signals, we �rst focus on explaining what happens in the case of

a single individual. In this regard, the following result shows that only two types of opinions may

emerge when an agent interprets ambiguity under con�rmatory bias.

5
One may alternatively interpret agents to share opinions (mean) and precisions (variance) with each other rather than

sharing distribution parameters. Those are equivalent modeling strategies, and we only need to use the relationships

y = α
α+β and σ2 = αβ

(α+β)2(α+β+1) to fully determine α and β. Algebraic manipulation yields α = −y(σ
2+y2−y)
σ2 and

β = (σ2+y2−y)(y−1)
σ2 .
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Proposition 1 (characterization). If a single individual i randomizes interpretation of ambiguous

signals according to Equation (2), while disregarding neighbors’ opinions (b = 1), then their opinion

converges to either yr = (1− µ)θ + µγi or yl = (1− µ)θ + µ(1− γi) almost surely, regardless of

initial belief (αi,0, βi,0).

Both left and right biased opinions can be considered tail events and, therefore, may emerge

with some positive probability, in the spirit of any classic zero-one law. Moreover, both opinions

are biased as any limiting opinion is a weighted average that places weight µ on the con�rmatory

bias parameter γi and weight (1− µ) on the true state θ. Thus, both the fraction of ambiguous

signals µ and con�rmatory bias γi are key misinformation drivers.

Another way to view this is by rewriting the expressions yl and yr as the true underlying state

plus its biases

yl = θ + µ
(
(1− γi)− θ

)︸ ︷︷ ︸
bias

, and

yr = θ + µ
(
γi − θ

)︸ ︷︷ ︸
bias

.

Considering the vaccine e�cacy example, say the underlying e�cacy is θ = 0.8 (i.e., people

who got the vaccine were at 80% lower risk of contracting the disease), the con�rmatory bias

is γi = 0.6 and the fraction of ambiguous signals is 0.3. As per the yr expression, the bias is

0.3× (0.6− 0.8) = −0.06, meaning that individual i believes the e�cacy is 0.8− 0.06 = 0.74.

As per the yl expression, the bias is 0.3×
(
(1− 0.6)− 0.8

)
= −0.12, meaning that individual i

believes the e�cacy is 0.8− 0.12 = 0.68. Hence, both opinions are biased and both µ and γi are

important misinformation drivers. From this perspective, in the absence of ambiguity (µ = 0),

there would be no bias and no misinformation. Conversely, if µ > 0, then misinformation could

be fully mitigated if γi = θ (i.e. agents randomizing interpretation between 0 and 1 according to

the true proportion θ) if θ > 0.5 or if γi = 1− θ if θ < 0.5.

Based on this example, a �rst result of interest stemming from Proposition 1 is that, for any

individual with con�rmatory tendency, one opinion type is less biased than the other depending

on the state θ. This is generalized as follows.

Corollary 1 (asymmetric bias). For any individual with con�rmatory tendency and for any ambi-

guity level, yr (yl) is less biased than yl (yr) if θ > 1
2

(
θ < 1

2

)
. Conversely, both yr and yl are equally

biased when θ = 1
2
.

Generally, these two opinions are not equally distant from θ (see Example 1). This is because

the bias of each one depends on the relative size of θ and γi. As we are restricting attention to the
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case in which the agent has con�rmatory tendency (i.e., γi ≥ 1
2
), it is the case that agents make

less mistakes when they are in the correct side of the spectrum. Therefore, ambiguity has to be

low enough to not mislead agents and the state has to be high (or low) enough to nudge agents’

opinions to the correct side.

Example 1. Suppose that a biased individual (γi = 1) faces 20% of ambiguous signals (µ = 0.20) and

consider three particular values for the underlying state θ, say: low (θL = 0.1), medium (θM = 0.5)

and high (θH = 0.9).6 In this case, Proposition 1 and Corollary 1 show that under state

θL,

yr = (1− 0.2)× 0.1 + 0.2× 1 = 0.28 is formed with probability 0, and

yl = (1− 0.2)× 0.1 + 0.2× (1− 1) = 0.08 is formed with probability 1.

Under state

θM ,

yr = (1− 0.2)× 0.5 + 0.2× 1 = 0.60 is formed with some probability p ∈ (0, 1), and

yl = (1− 0.2)× 0.5 + 0.2× (1− 1) = 0.40 is formed with probability 1− p.

Finally, under state

θH ,

yr = (1− 0.2)× 0.9 + 0.2× 1 = 0.92 is formed with probability 1, and

yl = (1− 0.2)× 0.9 + 0.2× (1− 1) = 0.72 is formed with probability 0.

Although yl and yr are not equidistant from θ, the distance between yl and yr does not depend

on θ and is equal to µ(2γi− 1). Hence, for any given µ, the distance between opinions yl and yr is

maximal when γi = 1. In this case, the distance becomes µ. In the Example 1, note that as γi = 1,

opinions distance is always µ = 0.2, regardless of state θ.

Moreover, depending on the pair (θ, µ), we can show which opinion will be reached. Hence, we

just need to determine which combinations of θ and µ are su�cient to allow both types of opinion

to fall in the same side of the 0-1 spectrum (i.e. both yl and yr above 0.5 or both yl and yr below 0.5)

and which combinations lead opinions to diverge in location (i.e. yr ≥ 0.5 and yl < 0.5). These

conditions lead to di�erent regions of space Θ×M = [0, 1]2 (unit square): region L, characterized

by both low state θ and low ambiguity level µ; region R, characterized by both high state and low

ambiguity; whereas regionW is the complement of the union of L and R. In mathematical terms,

6
The arbitrary values chosen for θ in the Example 1 only mean to illustrate the results of Proposition 1 and Corollary

1 for a broad range of θ. For all purposes, θ ∈ Θ = [0, 1].
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those partitions are characterized by the following:

R =

{
(θ, µ)|1

2
< θ ≤ 1 and 0 ≤ µ <

θ − 0.5

γi + θ − 1

}
,

L =

{
(θ, µ)|0 ≤ θ <

1

2
and 0 ≤ µ <

θ − 0.5

θ − γi

}
,

W = [0, 1]2 \ {R ∪ L}.

We can state the following result regarding the general conditions for the emergence of each

opinion type.

Proposition 2 (opinion-type emergence). For any individual with con�rmatory tendency, if (θ, µ) ∈
R, then the limiting opinion is the right-biased one with probability 1. If (θ, µ) ∈ L, then the limiting

opinion is the left-biased one with probability 1. If (θ, µ) ∈ W , then the limiting opinion is a random

variable whose possible values are yl and yr.

This result holds regardless of initial beliefs and observed sequence of signals. For three cases of

con�rmation bias, Figure 3 depicts the idea of Proposition 2. In case 1, when the agent is roughly

impartial, case 2 when the agent has an intermediary level of con�rmatory bias, and case 3 when

agent is biased.

(a) case 1: γi = 0.505 (b) case 2: γi = 0.750 (c) case 3: γi = 1.000

Figure 3. Parameter space and emergence of di�erent types of consensus

Lightly shaded areas on the right represent the set of parameters µ (vertical axis) and θ (hori-

zontal axis) ensuring the emergence of a right-biased opinion. Conversely, darkly shaded areas

represent the set of parameters ensuring the emergence of left-biased opinion. In both areas, for

a given level of con�rmatory bias, the left (right)-biased opinion emerge with probability 1 if

there is both low frequency of ambiguous signals and low (high) state (i.e., below (above) 0.5).
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On the other hand, the white area represents the combinations of θ and µ such that the opinion

type becomes a random variable whose possible values are yl and yr (i.e., both opinion types may

emerge with positive probability). Considering that when (θ, µ) ∈ W any of the two opinions may

be formed, we de�ne the probability p with which an individual reaches the less-biased opinion

following the results from Proposition 1 and Corollary 1.

De�nition 2. For any given initial belief (αi,0, βi,0), ambiguity level µ ∈ (0, 1) and con�rmation

bias γi ≥ 1
2
, the probability of less-biased opinion forming is

p =


P
(

lim
t→∞

yi,t = yl

)
, when θ < 0.5, or

P
(

lim
t→∞

yi,t = yr

)
, when θ > 0.5.

Another interesting case stemming from Proposition 1 is the one in which bias cannot be

overcome even when an agent is impartial.

Corollary 2 (bias from impartiality). If an individual is impartial, then his limiting opinion is

(1− µ) θ + µ 1
2

almost surely, regardless of his initial prior and the sequence of observed signals.

Impartiality does not overcome bias because it forces agents to set a disproportionate probability

mass in the center of the spectrum (0, 1). Hence, impartiality makes agents excessively centrist

instead of making them neutral toward possible states. This is a direct consequence of the Beta-

Bernoulli conjugate family employed here that would not occur in a binary state space (i.e.,

Θ = {0, 1}).
Moreover, under impartiality, for any mass of ambiguity µ > 0, if true state is located in the left

side of the 0-1 spectrum (θ < 1
2
), then opinion has a positive bias and lies in

(
θ, 1

2

)
. Conversely, if

θ > 1
2
, then opinion has a negative bias and lies in

(
1
2
, θ
)
. The only instance when an individual

learns the state is when θ = 1
2
, a zero mass event if θ was drawn randomly from the interval

[0, 1]. The results presented so far both extend the intuition and contrast with Propositions 4 and

5 in Rabin and Schrag (1999) and with Propositions 2 and 3 in Fryer Jr et al. (2019). This extends

the intuition to the case in which the state is continuously distributed over the interval 0-1 and

contrasts because impartiality can no longer help an individual overcome bias, as per the result

above.

Finally, at the other extreme, one could ask under what conditions an individual would reach

an extreme opinion (i.e., either opinion 0 (extreme left) or opinion 1 (extreme right)). The next

result shows that those cases can only be sustained under two extreme conditions: (i) the fraction

of ambiguous signals is maximal (µ = 1) and, (ii) individual is biased (γi = 1).
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Corollary 3 (extreme opinions). For any θ ∈ Θ and any initial belief (αi,0, βi,0), any individual

i ∈ N will form an extreme opinion (either 0 or 1) if they are biased (γ = 1) and the mass of

ambiguity is maximal (µ = 1).

4.2. Networked society. Given the intuition of the single agent case described, one may ask

what happens if agents also learned from their friends, besides learning from signals. This case

imposes an extra challenge as the interpretation of ambiguous not only depends on the initial

realization of signals but also on the in�uence of friends that potentially interpret ambiguity

in di�erent ways. “Tug-of-war” played between left and right biases has one extra driver: the

network externalities.

Before discussing the implications of a network structure, we de�ne the concept of consensus

(De�nition 3) and illustrate the social in�uence of agents, in terms of ergodicity of a Markov chain

(Lemma 1), derived from the reliance weight matrix W . Appendix C contains the proof of the

Lemma.

De�nition 3 (consensus). Society reaches a consensus almost surely for any initial beliefs if there is

a y such that, for every ε > 0 and i ∈ N ,

P
(

lim
t→∞
|yi,t − y| < ε

)
= 1.

Lemma 1 (strong connectivity). The t-th power of matrix W , W t, converges to a unique row-

stochastic matrix with unit rank (all rows the same) as t tends to in�nity, i.e.

lim
t→∞

W t = W∞ = 1π> = Π,

where the invariant distribution π is the normalized left eigenvector of the matrix W associated to

the unit eigenvalue, i.e. π>W = π> and
∑

i πi = 1.

A �rst case of interest is the limiting case in which individuals exclusively pay attention to

friends. This represents the situation wherein agents disregard signals completely and are pure

conformists. The consensus reached is slightly di�erent from the classic DeGroot case, as the

limiting opinion is not exactly a weighted average of the initial opinions, although is still very

close to it. The discrepancy has to do with the fact that agents are exchanging opinions and

precisions (parameters α and β ). This is stated as follows.

Proposition 3 (DeGroot consensus). If the social network G = (N, g) is strongly connected, and

agents disregard all public signals (b = 0), then society reaches consensus

ȳ =

∑
j Πijαj,0∑

j Πij (αj,0 + βj,0)
,
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for any i ∈ N and where Π is the invariant distribution matrix.

Section 5 highlights the implications of this result wherein we explore the e�ects of priors

heterogeneity on the probability of attaining the less-biased consensus. Next, we show that

assuming strong connectivity, consensus is reached in this dynamic system and has a similar

functional form of the individual limiting opinion in Proposition 1.

Proposition 4 (Network externality). With network externalities (0 < b < 1), sequences {yi,t}∞t=1

generated by the update rule converge almost surely to either right-biased consensus ȳr = (1−µ)θ+µγ̄

or left-biased consensus ȳl = (1−µ)θ+µ(1−γ̄) for all i ∈ N and where Π is the invariant distribution

matrix, and γ̄ =
∑

j Πijγj for any i ∈ N .

Therefore, in a networked society, consensus is a weighted average between the true state θ

(with weight 1− µ) and the weighted average of con�rmatory biases γ̄ (with weight µ). Society

aggregates information e�cientrly and no bias exists if µ = 0 or γ̄ = θ when θ > 0.5 or if

γ̄ = 1− θ when θ < 0.5. Additionally, parameter b impacts the vector of social in�uence through

the invariant distribution π of the matrix W (see Lemma 1) and therefore does impact consensus.

Note that when b = 1, social connection is lost, and polarization emerges with each individual

opinion being a function of individual con�rmation bias as in Proposition 1.

Moreover, the above results show that consensus type in this dynamic system is also a tail event

(i.e., right-biased consensus will either almost surely emerges as the stable equilibrium or almost

surely not emerge). If this does not emerge as an equilibrium of this system, then the left-biased

consensus has truly emerged as the equilibrium. Figures 4c and 4d show the typical opinion sample

paths (di�erent simulations) of any agents’ opinions in the line and wheel networks, respectively,

and convergence to di�erent consensus types (horizontal lines).

In terms of social e�ciency, the next Section numerically characterizes the probability of

emergence of e�cient consensus. As this exercise is not trivial, we rely on simulations of the

learning process described in Section (3) for selected classic network topologies and for di�erent

sets of parameters of interest and a Probit regression model to explore the variability of simulated

data.

5. Monte Carlo simulations: determining consensus type in classic networks

Determining the value of p (De�nition 2) analytically for a networked society is a challenging

task due to several recursions in the opinion formation process. Initial prior distributions may

be disproportionately skewed, with some agents being more partisan than others, leading to a

propensity for interpreting ambiguous signals di�erently. In addition, the heterogeneity of priors
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1 2 3

(a) line network

1

2

3

(b) wheel network

(c) two simulated opinion paths (black) in a line

network and theoretical consensuses (gray)

(d) two simulated opinion paths (black) in a wheel

network and theoretical consensuses (gray)

Figure 4. four simulations with parameters T = 10, 000, n = 3, µ = θ = b = 0.5,

αi,0 = βi,0 = 1 for all i ∈ N (so yi,0 = 0.5 for any i) and γ = (γ1, γ2, γ3) =
(0.8, 1, 0.2).

can induce heterogeneity in the centrality of agents, with partisan agents potentially exerting

disproportionate in�uence over others and amplifying interpreting con�icts in the network.

Furthermore, agents may vary in the intensity of their con�rmatory bias, with agents holding

polar opposite biases being either directly connected or not. This variability can a�ect how much

the heterogeneity of priors in�uences the interpreting con�ict. Analytically computing p thus

becomes particularly complex when di�erent partisan agents have di�erent con�rmatory biases.

These challenges are highlighted in the examples, which demonstrate how signal interpretations

depend not only on the stream of public signals observed by agents but also on other agents’

beliefs and their location in the network.

5.1. Initial beliefs. This exercise reduces the dimension of initial beliefs into a single parameter

τ ∈ R≥0 that comprises both common and heterogeneous priors.

(a) Heterogeneous priors. Refer to the situation in which there are three types of agents at

time t = 0 with di�erent initial prior distributions: centrists (C0), leftists (L0) and rightists

(R0). To distinguish the agents, consider two parameters that intend to measure the degree of

partisanship of such agents τl, τr ∈ N+. Hence, such groups are de�ned as follows: centrists,
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C0 = {i ∈ N |αi,0 = 1 and βi,0 = 1}, left-partisan,L0 = {i ∈ N |αi,0 = 1 and βi,0 = 1 + τl}, and

right-partisan,R0 = {i ∈ N |αi,0 = 1 + τr and βi,0 = 1}. Notice that the de�nition implies that

initial opinions and precisions yi,0 = αi,0(αi,0+βi,0)−1
andσ−2

i,0 = (αi,0βi,0)−1 (αi,0 + βi,0)2 (αi,0 + βi,0 + 1),

respectively,

yi,0 =



1

2 + τl
, if i ∈ L0

1

2
, if i ∈ C0

1 + τr
2 + τr

, if i ∈ R0

and

σ−2
i,0 =



6 + 5τl + τ 2
l

1 + τl
, if i ∈ L0

12, if i ∈ C0

6 + 5τr + τ 2
r

1 + τr
, if i ∈ R0.

Notice that limτ→∞ yi,0 is 0,
1
2

and 1, whereas limτ→∞ σ
−2
i,0 is +∞, 12 and +∞ for left-partisan,

centrists and right-partisan, respectively.

(b) Common prior. Refer to the situation in which priors parameters are identical across agents

(i.e., αi,0 = α ∈ R+ and βi,0 = β ∈ R+ for all i ∈ N ). Particularly, whenα = β = 1, all agents hold

a uniform common prior over the unit interval. For any other value, say α = β = k > 1, agents

hold a symmetric bell-shaped common prior over the unit interval, centered at 0.5. Moreover, as

k →∞, the bell-shaped priors collapse to the point 0.5 (i.e., the precision of the prior diverges)

and all opinions are yi,0 = 0.5. These cases represent the situation wherein agents begin as

centrists, and the subsequent asymmetry of interpretation stems from the signals realizations.
7

Conversely, when αi,0 = α and βi,0 = β for all i ∈ N and α > β (β > α), the society holds

a rightist (leftist) common prior (i.e., yi,0 = y > 0.5 (yi,0 = y < 0.5) and as
α
β
→ ∞ (→ 0)),

7
To be more precise, interpretation neutrality does not exist as there is a non-neutral tie-break rule in Equation (2).

Thus, if the realization of the �rst public signal is a, then this signal will be interpreted as 1 by all agents, as per the

tie-break rule. This is without loss of generality for the results presented in this work. The tie-break rule could have

been de�ned in a way that the initial interpretation would be 0 and intuition and conclusions would remain the same.

Finally, if we established no tie-break rules, a more intricate update rule would be needed to maintain the prior when

facing an ambiguous signal and opinions were exactly 0.5. Hence agents would keep opinions unchanged until some

non-ambiguous realization occurs. In this case, the results would not also change as the neutral tie-break would

promote some of the states, and the nature of the problem remains unchanged.
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the bell-shaped priors collapse to the point 1 (0) (i.e., the precision of the prior diverges and all

opinions become extreme).

5.2. Monte Carlo simulation. To compute the empirical frequency of the emergence of the

less-biased consensus (p̂) for states and ambiguity level inW , we simulate the learning process in

Section (3) in selected classic networks (G) (Figure 5). The number of simulations is described by

S ∈ N+ and interaction time is t ∈ N+.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Classic networks – G

Each simulation allows some parameters to vary (see details below), so changes in p̂ can be

captured owing to changes in such parameters. However, in each simulation, parameter choices

are identical for all networks. Hence, we can properly isolate e�ects on p̂ owing to parameter

variability. For any given simulation S, the realization of the public signals is also identical across

networks. Therefore, given the choice of parameters in each simulation S, the simulated frequency

of the less-biased consensus in a network G follows De�nition 2, and is computed as follows:

p̂G =
1

S

∑
S

1

{ ∣∣∣ lim
t→∞

yS,Gi,t − ((1− µS)θS + µSγS)
∣∣∣ < ε and θS > 0.5 , or

∣∣∣ lim
t→∞

yS,Gi,t − ((1− µS)θS + µS(1− γS))
∣∣∣ < ε and θS < 0.5

}
, (9)

for a small ε > 0.

Partisanship e�ect. This exercise mainly aims to understand how degree of partisanship (τ )

a�ects the probability of less-biased consensus emerging. Hence, both partisans are placed in the

available nodes uniformly at random in each simulation. Thus, despite being in equal number,

their level of centrality may di�er in each simulation. Regarding the degree of partisanship, when

τl = τr = τ = 0, agents have a common uninformative prior (uniform distribution over the

unit interval), and no partisan agents are found. Conversely, when τl = τr = τ > 0, we have

heterogeneous priors in which the degree of partisanship of both partisans is equally balanced.

Moreover, to avoid an extra layer of heterogeneity, we allow all agents to be biased (i.e.,

γi = γS = γ = 1 for all i and S). The bene�t of �xing γ = 1 across agents and simulations is that

we know how each node is interpreting ambiguous signals and, hence, this allows us to study the

e�ect of partisans centrality. Thus, this simulation assumes the following con�guration:
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• Fixed parameters (for all simulations) are as follows:

– Learning: γi = γ = 1 for all i,

– Bayesian: b = 0.5,

– Duration: t = 700,

– Priors: (αi,0, βi,0) = (1, 1) for all i ∈ N , |L0| = |R0| = 1,

– Information: µ = 0.6.

• Variable parameters (for each simulation S) are

– Information: θS ∈ {0.2, 0.8} and

– Initial prior: τl = τr = τS such that τS ∈ {0, 1, 10, 30},

– Partisans location: partisans are placed uniformly at random in the nodes of each

network.

Table 1 presents the summary statistics of the simulated data. Besides reporting the simulated

p̂ for each network, the table shows other variables that present variability across simulations S,

as follows:

(1) degree centrality of both partisans in networks whose degree centrality variance is positive

(i.e., networks (B), (D), (E) and (H)),

(2) open-mindedness dummy variable valued at 1 when partisans with opposite beliefs are

connected, and 0 if otherwise
8

,

(3) a dummy variable named �rst impression (in reference to the work of Rabin and Schrag

(1999)) that takes on value 1 when the realization of the very �rst public signal nudges the

society toward the true state θ in that particular simulation and network
9

,

(4) a dummy variable for when θS = 0.8,

(5) and dummy variables for all levels of partisanship τ .

Besides analyzing the statistical relation established between p̂ and di�erent levels of τ , Table 2

presents and discusses the results of a Probit regression model wherein the dependent variable is

a dummy variable that takes on the value 1 when less-biased consensus is formed in simulation S

after t periods of agents interaction and the independent variables are (i) a dummy variable called

8
For any given network induced by some adjacency matrix g, a partisan agent i ∈ N is considered open-minded if

for some other partisan agent j ∈ N with opposite belief, we have that j ∈ Nout
i (g). Conversely, i is narrow-minded

if j /∈ Nout
i (g). Open-mindedness is de�ned quite similarly to heterophily already established in social and economic

networks literature. Both re�ect the tendency of di�erent people to connect with each other.

9
In mathematical terms, the �rst impression in simulation S and network G is de�ned as

FI
S,G = 1{sS,G1 = a or sS,G1 = 1, if θS ≥ 0.5}+ 1{sS,G1 = 0, if θS < 0.5}.
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partisan centrality advantage (PCA) that takes on value 1 if the rightist (leftist) is more central

than the leftist (rightist) when θ ≥ 0.5 (θ < 0.5), (ii) open-mindedness dummy (OM), (iii) the

�rst impression dummy, (iv) the dummy variable for when θS = 0.8, and (v) all dummy variables

for all di�erent levels of partisanship τ . The exercise aims at exploring the variability of these

variables to assess their relative importance in terms of increasing the odds of the less biased

consensus to be reached.

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

p̂(A) 21,040 0.809 0.393 0 1 1 1 1

p̂(B) 21,040 0.679 0.467 0 0 1 1 1

p̂(C) 21,040 0.810 0.392 0 1 1 1 1

p̂(D) 21,040 0.735 0.441 0 0 1 1 1

p̂(E) 21,040 0.698 0.459 0 0 1 1 1

p̂(F ) 21,040 0.826 0.379 0 1 1 1 1

p̂(G) 21,040 0.787 0.409 0 1 1 1 1

p̂(H) 21,040 0.700 0.458 0 0 1 1 1

R0 degree in (B) 21,040 1.332 0.471 1 1 1 2 2

R0 degree in (D) 21,040 1.503 0.500 1 1 2 2 2

R0 degree in (E) 21,040 1.516 0.875 1 1 1 3 3

R0 degree in (H) 21,040 2.010 0.704 1 2 2 3 3

L0 degree in (B) 21,040 1.333 0.471 1 1 1 2 2

L0 degree in (D) 21,040 1.503 0.500 1 1 2 2 2

L0 degree in (E) 21,040 1.501 0.866 1 1 1 3 3

L0 degree in (H) 21,040 1.996 0.707 1 1 2 2 3

Open mind (OM) in (B) 21,040 0.666 0.472 0 0 1 1 1

Open mind (OM) in (D) 21,040 0.501 0.500 0 0 1 1 1

Open mind (OM) in (E) 21,040 0.508 0.500 0 0 1 1 1

Open mind (OM) in (H) 21,040 0.667 0.471 0 0 1 1 1

First impression (FI) 21,040 0.619 0.486 0 0 1 1 1

1{θ = 0.8} 21,040 0.500 0.500 0 0 0.5 1 1

1{τ = 0} 21,040 0.250 0.433 0 0 0 0.2 1

1{τ = 1} 21,040 0.250 0.433 0 0 0 0.2 1

1{τ = 10} 21,040 0.250 0.433 0 0 0 0.2 1

1{τ = 30} 21,040 0.250 0.433 0 0 0 0.2 1

Table 1. Summary statistics - simulated p̂ and parameters

Moreover, as the main goal is to understand the e�ect of partisanship on p̂, Table 3 shows p̂ for

di�erent levels of τ .

Based on statistical and regression analyses of simulation data, we present results that hold

for classic network structures presented above and for the case one draws a single pair inW
uniformly at random (i.e., under no knowledge of θ or µ). Although simulation results are not

generalized to a broader range of network topologies, the structures analyzed are su�ciently

general and have similar characteristics of real-world networks. Hence, as per the data from



CONFIRMATION BIAS IN SOCIAL NETWORKS 23

Dep. Variable: probability of emergence of less biased consensus (p̂G)

(A) (B) (C) (D) (E) (F) (G) (H)

Partisan centrality advantage (PCA) 1.86∗∗∗ 0.87∗∗∗ 1.91∗∗∗ 1.62∗∗∗

(0.04) (0.04) (0.05) (0.05)
Open mind (OM) −1.06∗∗∗ 0.003 −0.96∗∗∗ 0.50∗∗∗ 0.45∗∗∗

(0.04) (0.03) (0.04) (0.03) (0.04)
First impression (FI) 1.64∗∗∗ 2.13∗∗∗ 1.93∗∗∗ 1.13∗∗∗ 2.24∗∗∗ 2.32∗∗∗ 2.16∗∗∗ 1.36∗∗∗

(0.03) (0.05) (0.04) (0.04) (0.05) (0.06) (0.04) (0.05)
PCA × FI 0.83∗∗∗ 0.91∗∗∗ 0.77∗∗∗ 0.61∗∗∗

(0.08) (0.08) (0.10) (0.07)
PCA × OM −0.05 −0.39∗∗∗

(0.06) (0.06)
OM × FI −1.10∗∗∗ −0.29∗∗∗ −1.18∗∗∗ −0.61∗∗∗ −0.10∗

(0.06) (0.04) (0.06) (0.06) (0.05)
1{τ = 1} 0.54∗∗∗ 0.48∗∗∗ 0.56∗∗∗ 0.58∗∗∗ 0.34∗∗∗ 0.52∗∗∗ 0.33∗∗∗ 0.42∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
1{τ = 10} 0.54∗∗∗ −0.41∗∗∗ 0.66∗∗∗ 0.13∗∗∗ −0.37∗∗∗ 0.87∗∗∗ 0.38∗∗∗ −0.08∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03)
1{τ = 30} 0.54∗∗∗ −0.41∗∗∗ 0.66∗∗∗ −0.16∗∗∗ −0.38∗∗∗ 0.98∗∗∗ 0.39∗∗∗ −0.65∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03)
1{θ = 0.8} −0.33∗∗∗ −0.02 −0.26∗∗∗ −0.05 0.04 −0.15∗∗∗ −0.19∗∗∗ −0.06∗

(0.03) (0.03) (0.04) (0.03) (0.03) (0.04) (0.04) (0.03)
Constant −0.15∗∗∗ 0.03 −0.31∗∗∗ −0.27∗∗∗ −0.08∗∗ −0.68∗∗∗ −0.30∗∗∗ −0.85∗∗∗

(0.02) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.04)

Observations 21,040 21,040 21,040 21,040 21,040 21,040 21,040 21,040

Log Likelihood -7,873.93 -7,648.32 -7,053.26 -9,546.68 -7,350.89 -6,348.13 -6,941.64 -8,660.61

Akaike Inf. Crit. 15,759.90 15,316.60 14,118.50 19,115.40 14,721.80 12,712.30 13,895.30 17,343.20

Note: ∗
p<0.05;

∗∗
p<0.01;

∗∗∗
p<0.001

Table 2. Regression results: Probit

simulations with common prior (τ = 0, no partisanship), we can see that network structure has

limited e�ect over p̂. This evidence is stated as the following result.

Result 1 (topology neutrality). If society is biased (γ = 1) and have common prior (i.e., τ = 0),

then network topology has no signi�cant impact on p̂.

The intuition of this result relies on the fact that as signals are public and all agents share the same

bias intensity γi = 1, no interpretation diversity exists regardless of signals realization. If agents

begin observing signal 1, then all agents will become more rightists and network externalities

cannot countervail this e�ect anyhow. The same argument applies to all other signals, including

the ambiguous one. Hence, this is identical to the case of a single individual learning from signals.

Moreover, based on the data from simulations with a common prior (τ = 0, no partisanship) and

low priors heterogeneity (τ = 1, low partisanship), partisanship seems to have a non-negative

e�ect on consensus e�ciency.
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Size Network
Topology Type Label p̂

(τ=0)

p̂
(τ=1)

p̂
(τ=10)

p̂
(τ=30)

n = 1 single agent (SA) 0.702 - - -

n = 2 line (complete) (A) 0.702 0.844 0.844 0.844

n = 3
line (B) 0.702 0.802 0.603 0.610

wheel (complete) (C) 0.702 0.834 0.852 0.852

line (D) 0.702 0.841 0.739 0.659

star (E) 0.721 0.787 0.643 0.641

n = 4 wheel (F) 0.702 0.818 0.884 0.899

complete (G) 0.727 0.801 0.810 0.812

paw (H) 0.720 0.814 0.706 0.558

S 21,040 21,040 21,040 21,040

Table 3. Simulated frequency of the emergence of less biased consensus p̂.

Result 2 (low partisanship e�ect). In expected terms, a biased society with low degree of partisanship

(τ = 1) can reach the less-biased consensus as the same biased society with no partisanship at all

(τ = 0).

This can be seen in two ways: (i) there is a statistically signi�cant di�erence between proportions

in Table 3 under τ = 0 and τ = 1, and (ii) coe�cients of the dummy variable 1{τ = 1} are all

positive and signi�cant.
10

Partisanship acts to counter the e�ect of initial ambiguous signals. Under no partisan in�uence,

agents’ interpretations depend exclusively on the signals. The realization of the initial signal

is crucial to determine what bias opinions will have and, hence, it is determinant to consensus

e�ciency. Conversely, when some partisan agents are present, priors parameters α’s and β’s are

shifted up, by right- and left-partisans, respectively, which makes opinions more robust to initial

signal realization. However, some "optimal" level of partisanship exists as high partisanship, for

10
Note that the coe�cients are with respect to the omitted dummy variable 1{τ = 0}. The omission is needed so

there is no perfect colinearization.
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most topologies, has a nonmonotonic e�ect over the probability of emergence of the less-biased

consensus. This result is generalized as follows.

Result 3 (high partisanship e�ect). In expected terms, a biased society with low partisanship

(τ = 1) can reach the e�cient consensus as the same biased society with high partisanship (τ = 30).

Exceptions include the wheel and complete networks (i.e. (C), (F) and (G)) in which p̂ is non-decreasing

with partisanship.

This can be seen in two ways: (i) there is a statistically signi�cant di�erence between the

proportions in Table 3 under τ = 1 and τ = 30, and (ii) the coe�cients of the dummy variable

1{τ = 30} are higher than the coe�cients of the dummy variable 1{τ = 1} for the referred

networks.

Moreover, if an imbalance in partisanship exists, then partisan agents can unbalance opinions

in the same way realization of the �rst signals do. More explicitly, a partisan agent with high

degree of partisanship will almost never interpret ambiguous evidence in a way that disagrees

with his beliefs and a similar e�ect applies to his neighbors. However, partisan agents might be

more or less connected and even connected to each other.

Naturally, in networks (A), (C), and (G), partisan agents are invariably open-minded as those

networks are complete (i.e., all agents are connected with every other agent in the network,

regardless of their types). Hence, analyzing the e�ect of OM in networks (B), (D), (E), (F), and (H)

as those agents are not always connected. Table 4 reports simulated probability p̂ in those cases,

and the next result is stated immediately.

Result 4 (open-minded partisans). In expected terms, for biased agents, open-mindedness of partisans

increases odds of less-biased consensus formation in networks (F) and (H). Conversely, narrow-

mindedness of partisans increases the odds of the less-biased consensus formation in networks (B) and

(E).

This can be seen in two ways: (i) a statistically signi�cant (positive) di�erence between the

proportions in Table 4 under the open-minded (OM) and narrow-minded (NM) cases. That is, OM

increases the odds relative to the NM case for networks (F) and (H), whereas NM increases the

odds with respect to the OM case in networks (B) and (E). (ii) Coe�cients of the dummy variable

OM in the Probit regression are only positive for networks (F) and (H) and negative for the (B)

and (E) networks.

The intuition relies on Results 2 and 3. In networks (B) and (E), OM would imply that one

partisan is disproportionately more in�uential than the other (i.e., there would be a partisan
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Network Partisans p̂
(τ=0)

p̂
(τ=1)

p̂
(τ=10)

p̂
(τ=30)

(B) pooled 0.702 0.802 0.603 0.61

open-minded 0.706 0.806 0.493 0.502

norrow-minded 0.693 0.794 0.821 0.826

(D) pooled 0.702 0.841 0.739 0.659

open-minded 0.693 0.846 0.668 0.649

norrow-minded 0.711 0.837 0.812 0.668

(E) pooled 0.721 0.787 0.643 0.641

open-minded 0.724 0.797 0.507 0.498

norrow-minded 0.719 0.776 0.782 0.784

(F) pooled 0.702 0.818 0.884 0.899

open-minded 0.713 0.829 0.918 0.936

norrow-minded 0.681 0.796 0.812 0.825

(H) pooled 0.72 0.814 0.706 0.558

open-minded 0.719 0.82 0.711 0.579

norrow-minded 0.723 0.803 0.695 0.517

Table 4. Open and norrow-minded partisans - Result 4

centrality imbalance). In expected terms, the bene�t of having a central partisan that induces the

underlying true state is o�set by the costs of having the opposite situation of the polar opposite

partisan inducing misinformation. In network (F), OM means that partisans will moderate quickly

as they are connected directly to each other but can still shield society from initial misleading

signals, as discussed. Finally, in network (H), OM avoids centrality imbalance.

Another case of interest is the one in which agents are connected through a line.

Result 5 (line networks). In expected terms, for biased agents connected through any su�ciently

long line network (n ≥ 3), high partisanship (τ > 1) reduces the odds of reaching the less biased

consensus. Moreover, for any given level of partisanship τ > 0, a longer line (higher n) increases the

odds of reaching the less biased consensus.

This can be seen in two ways: (i) there is a statistically signi�cant di�erence between proportions

in Table 3 in both networks (B) and (D) for the proportions when τ > 1 compared to the ones

under τ ≤ 1, and (ii) the coe�cients of the dummy variable 1{τ = 30} are negative for the

referred networks.

A �nal result is related to the higher odds of reaching the less biased consensus when nodes are

equally central and partisanship is high.

Result 6 (regular networks). In expected terms, for biased agents connected through any regular

network, higher levels of partisanship increase the odds of reaching the less biased consensus.
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Networks (A), (C), (F), and (G) are all regular. Table 3 shows that for any of these networks, p̂

increases as τ increases. Moreover, coe�cients of the dummy variables for the levels τ = 1 to

τ = 30 are in increasing order. This is because no partisan agent outweighs the opposing partisan

easily in terms of in�uence. Thus, partisanship moderates the interpreting dispute by keeping the

society close to the center of the 0-1 spectrum long enough, so informative signals accumulate

and nudge the society toward the less-biased consensus.

6. Conclusions

Con�rmation bias is one of the most notorious cognitive biases documented and, as it is a

systematic deviation from rationality, have a signi�cant in�uence in the process of belief formation.

In this sense, as social networks appear as a primary tool for many people to get informed and

debate their worldviews, one could expect con�rmatory bias to have some in�uence on the

opinion formation. However, to date, how such phenomenon in�uences opinions in a networked

environment has not been understood. To explore this topic, we consider a social learning model

in which a fraction of signals external to the social network is ambiguous and open to idiosyncratic

interpretation. The interpretation of these signals is a�ected by people’s con�rmatory biases.

Moreover, we also allow agents to be in�uenced by their friends and set their beliefs to be a linear

combination of the (biased) Bayesian posterior and the (also biased) friends’ posteriors.

My model shows that biased agents connected through social networks can only reach two

types of consensus and both are biased, one to the left and the other to the right. However, one

consensus type is less-biased than the other depending on the state. Moreover, I demonstrate

that long-run learning is not attained even if agents are impartial when interpreting ambiguous

signals. Those results contradict Rabin and Schrag (1999) and Fryer Jr et al. (2019) in which

long-run learning takes place with a positive probability, and impartiality helps learning the

state. Furthermore, the network e�ect presented, together with signal realizations, reinforces the

interpreting “tug-of-war” as agents might have their own biases con�rmed (or mitigated) by other

agents.

Finally, as deriving the probability of emergence of the less-biased consensus is challenging, we

relied on Monte Carlo simulations to show its determinants. We show that the presence of partisan

agents in societies who su�er from con�rmatory bias have two main e�ects on the expected

consensus e�ciency: (i) it helps countervail the misinterpretation of initial signals when there

degree of partisanship is low and for that it increases expected e�ciency; and (ii) exacerbates

misinterpretation of signals when the degree of partisanship is high, reducing expected consensus

e�ciency. Moreover, we also show that open-mindedness of partisan agents, i.e., when partisans
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agree to exchange opinions with partisans with polar opposite beliefs, might reduce expected

consensus e�ciency in some social topologies.

These results suggest that policies designed to mitigate partisanship and con�rmatory bias

e�ects in social networks have to consider also the positive and negative network externalities

induced by them in di�erent settings.
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Appendix A. Beta-Bernoulli model and likelihood function of interpreted signals

At any time t, the belief of agent i is represented by the Beta probability distribution with

parameters αi,t and βi,t

fi,t (θ) =


Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)
θαi,t−1(1− θ)βi,t−1

, for 0 < θ < 1

0 , otherwise,

(10)

where Γ(·) is a Gamma function and the ratio of Gamma functions in the expression above is a

normalization constant that ensures that the total probability integrates to 1. In this sense,

fi,t (θ) ∝ θαi,t−1(1− θ)βi,t−1.

The idiosyncratic likelihood induced by the agent i’s interpretation of the public signal st+1 is

`i(st+1|θ) = θs
(1)
i,t+1(1− θ)s

(0)
i,t+1

and, therefore, the standard Bayesian posterior is computed as

fi,t+1(θ|st+1) =
`i(st+1|θ) fi,t (θ)∫

Θ

`i(st+1|θ) fi,t (θ) dθ
.

Since the denominator of the expression above is just a normalizing constant, the posterior

distribution is said to be proportional to the product of the prior distribution and the likelihood

function as

fi,t+1(θ|st+1) ∝ `i(st+1|θ) fi,t (θ)

∝ θαi,t+s
(1)
i,t+1−1 (1− θ)βi,t+s

(0)
i,t+1−1 .

Therefore, the posterior distribution is

fi,t+1 (θ) =


Γ (αi,t+1 + βi,t+1)

Γ (αi,t+1) Γ (βi,t+1)
θαi,t+1−1(1− θ)βi,t+1−1

, for 0 < θ < 1

0 , otherwise,

where αi,t+1 = αi,t + s
(1)
i,t+1 and βi,t+1 = βi,t + s

(0)
i,t+1.

Appendix B. Beta Distribution: Mode, Mean, Median

Mode. The mode of a random variable beta-distributed is the value that appears most often. It is

the value θ at which its probability density function takes its maximum value. As per Equation (10),

the mode θmodi,t , for any i at any point in time t, is the arg maxθ fi,t(θ). Computed as
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dfi,t
dθ

=
Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)

[
(αi,t − 1)θαi,t−2(1− θ)βi,t−1 − θαi,t−1(βi,t − 1)(1− θ)βi,t−2

]
= 0.

Implying that

(αi,t − 1)θαi,t−2(1− θ)βi,t−1 − θαi,t−1(βi,t − 1)(1− θ)βi,t−2 = 0,

and therefore

θmodi,t =



αi,t − 1

αi,t + βi,t − 2
, for αi,t, βi,t > 1

0 , for αi,t = 1, βi,t > 1

1 , for αi,t > 1, βi,t = 1

any value in (0, 1) , for αi,t, βi,t = 1

(11)

Mean. The mean of a random variable Beta-distributed, denoted by θmeani,t for any i and t, is

computed as follows

θmeani,t =

∫ 1

0

θ
Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)
θαi,t−1(1− θ)βi,t−1dθ

=
Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)

∫ 1

0

θ(αi,t+1)−1(1− θ)βi,t−1dθ

=
Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)

Γ (αi,t + 1) Γ (βi,t)

Γ (αi,t + βi,t + 1)

=
Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)

αi,tΓ (αi,t) Γ (βi,t)

(αi,t + βi,t)Γ (αi,t + βi,t)
=

αi,t
αi,t + βi,t

. (12)

Median. There is no general closed formula for the median of the beta distribution for arbitrary

values of the parameter αi,t and βi,t. The median, denoted by θmedi,t , is the function that satis�es

Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)

∫ θmed
i,t

0

θαi,t−1(1− θ)βi,t−1 =
1

2
.

An accurate approximation of the value of the median of the beta distribution, for bothαi,t, βi,t ≥
1, is given by

θmedi,t =
αi,t − 1

3

αi,t + βi,t − 2
3

.11

(13)

Therefore, if 1 < αi,t < βi,t, then θmodi,t < θmedi,t < θmeani,t . If 1 < βi,t < αi,t, then the order of

the inequalities is reversed. Finally, it is trivial to see that those three statistical measures are

asymptotically equal as αi,t, βi,t →∞.

11
With relative error of less than 4%, rapidly decreasing to zero as both shape parameters increase.
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Appendix C. Auxiliary Definitions and Lemmas

Proof of Lemma 1. In order to see how W t
behaves as t grows large, I rewrite W using its

diagonal decomposition. In particular, let v be the squared matrix of left-hand eigenvectors

of W and D = (d1, d2, . . . , dn)> the eigenvector of size n associated to the unity eigenvalue

λ1 = 1. Without loss of generality, we assume the following normalization 111>D = 1. Therefore,

W = v−1Λv, where Λ = diag(λ1, λ2, . . . , λn) is the squared matrix with eigenvalues on its

diagonal, ranked in terms of absolute values, i.e. |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. More generally, for any

time t we write

W t = v−1Λtv.

Since v−1
has ones in all entries of its �rst column, it follows that

W t
ij = dj +

∑
r

λtrv
−1
ir vrj,

for each r, where λr is the r-th largest eigenvalue of W . Therefore, limt→∞W
t
ij = D111>, i.e. each

row of W t
for all t ≥ t̄ converge to D, which coincides with the stationary distribution. Moreover,

if the eigenvalues are ordered the way we have assumed, then ‖W t −D111>‖ = o(|λ2|t), i.e. the

convergence rate will be dictated by the second largest eigenvalue, as the others converge to zero

more quickly as t grows. �

Lemma 2. The opinion of every agent i in any point in time t, yi,t, can be written as

yi,t =

∑n
j=1W

t
ijαj,0 + bK(i, t)∑n

j=1 W
t
ij (αj,0 + βj,0) + bL(i, t)

,

where K(i, t) =
t−1∑
k=0

n∑
j=1

W k
ijs

(1)
j,t−k and L(i, t) =

t−1∑
k=0

n∑
j=1

W k
ij

(
s

(0)
j,t−k + s

(1)
j,t−k

)
.

Proof. The update process of both parameters described by the equations (7) and (8) can be solved

iteratively for any period t as

αt = W tα0 +
t−1∑
k=0

W kBs
(1)
t−k (14)

βt = W tβ0 +
t−1∑
k=0

W kBs
(0)
t−k. (15)
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In agebraic formulation, we have that each entry of the vector in equation (14) can be written as

αi,t =
n∑
j=1

W t
ijαj,0 +

t−1∑
k=0

n∑
j=1

W k
ijbs

(1)
j,t−k

=
n∑
j=1

W t
ijαj,0 + b

t−1∑
k=0

n∑
j=1

W k
ijs

(1)
j,t−k

=
n∑
j=1

W t
ijαj,0 + b

t−1∑
k=0

n∑
j=1

W k
ijs

(1)
j,t−k

=
n∑
j=1

W t
ijαj,0 + bK(i, t). (16)

Similarly for the expression αi,t + βi,t using both equations (14) and (15) as follows

αi,t + βi,t =
n∑
j=1

W t
ij (αj,0 + βj,0) + b

t−1∑
k=0

n∑
j=1

W k
ij

(
s

(0)
j,t−k + s

(1)
j,t−k

)
=

n∑
j=1

W t
ij (αj,0 + βj,0) + b L(i, t). (17)

Therefore, from the de�nition of opinion we have that yi,t =
αi,t

αi,t+βi,t
and the statement is

proven. �

Lemma 3. Let k ∈ [0, 1], X1, X2, . . . , Xt be a convergent sequence of i.n.i.d. random variables such

that P(Xt ≥ x) = pt with limt→∞ pt = p, and u1, u2, . . . , ut be i.i.d. U [0, 1] random variables with

cumulative density function Fu. Moreover, assume the pair (Xt, ut) is independent for any t. In this

case, the expressions E [1{ut ≤ 1{Xt ≥ x}k}] and E [1{ut ≤ E [1{Xt ≥ x}] k}] are equal.

Proof. The �rst expression can be written as

E [1{ut ≤ 1{Xt ≥ x}k}] = (1− p)E [1{ut ≤ 0}] + pE [1{ut ≤ k}] = pFu(k) = pk.

The second expression simpli�es to

E [1{ut ≤ E [1{Xt ≥ x}] k}] = E [1{ut ≤ (1− p)0 + pk}] = E [1{ut ≤ pk}] = pk.

�

Lemma 4 (Convergence). The sequences {{yi,t}ni=1}∞t=1 generated by the update rule converge

almost surely as t→∞.

Proof. For the individual case, Siegrist (2021) (Section 12.8.5) shows that there is an equivalence

between the Beta-Bernoulli process and the Pólya’s urn process. In the Pólya’s urn proccess the
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sequence of random variables (drawn balls’ colors) is not independent, but is exchangeable. Thus,

the joint distribution of the interpreted signals (colors) is invariant under a permutation. Thus,

the sequence of the proportion of signals interpreted as 1 is a martingale, and standard martingale

convergence theorems ensure the convergence of this process.

For the networked case, Lemmas (1) and (2) in Jadbabaie et al. (2012) prove convergence of this

process for a general case based on the same assumption that the social interaction matrix W is

strongly connected and, for that, it always has at least one eigenvalue equal to 1 and that there

exists a non-negative left eigenvector v corresponding to this eigenvalue. As a result, they show

that

∑n
i=1 vifi,t(θ

∗) is a submartingale with respect to the �ltration Ft (interpreted signals).

�

Appendix D. Proofs of main propositions and corollaries

Proof of Proposition 1.

lim
t→∞

yi,t = lim
t→∞

αi,0 +
∑t

k=1 s
(1)
i,k

αi,0 +
∑t

k=1 s
(1)
i,k + βi,0 +

∑t
k=1 s

(0)
i,k

= lim
t→∞

αi,0 +
∑t

k=1 (1{sk = 1}+ 1{sk = a}1{uk ≤ ψi,k})
αi,0 + βi,0 +

∑t
k=1 (1{sk = 1}+ 1{sk = 0}+ 1{sk = a})

= lim
t→∞

αi,0

t
+ 1

t

∑t
k=1 (1{sk = 1}+ 1{sk = a}1{uk ≤ ψi,k})

αi,0+βi,0
t

+ 1
t

∑t
k=1 (1{sk = 1}+ 1{sk = 0}+ 1{sk = a})

=
Et [1{st = 1}] + Et [1{st = a}] limt→∞

1
t

∑t
k=1 (1{uk ≤ ψi,k})

Et [(1{st = 1}] + Et [1{st = 0}] + Et [1{st = a}])

= (1− µ)θ + µ lim
t→∞

1

t

t∑
k=1

(1{uk ≤ ψi,k})

= (1− µ)θ + µ lim
t→∞

1

t

t∑
k=1

(1{uk ≤ γi 1{yi,k−1 ≥ 0.5}+ (1− γi)1{yi,k−1 < 0.5}})

= (1− µ)θ + µEt [1{ut ≤ Et [γi 1{yi,t−1 ≥ 0.5}+ (1− γi)1{yi,t−1 < 0.5}}]]

= (1− µ)θ + µEt [1{ut ≤ Et [1{yi,t−1 ≥ 0.5}] (2γi − 1) + 1− γi}]

According to Lemma 4, convergence ensures that Et [1{yi,t−1 ≥ 0.5} = P (yi,∞ ≥ 0.5)] either

takes on value 1 or 0. For simplicity, say the �rst case is denoted by A, and the second by B.

Moreover, Lemma 4 also implies that the sequence

{1{uk ≤ γi 1{yi,k−1 ≥ 0.5}+ (1− γi)1{yi,k−1 < 0.5}}}tk=1 (18)



38 CONFIRMATION BIAS IN SOCIAL NETWORKS

is composed by the terms

{1{uk ≤ γi}}k∈k̄ (19)

and by the terms

{1{uk ≤ 1− γi}}k∈k , (20)

where k̄ = {t ∈ N+ | yi,t ≥ 0.5} and k = {t ∈ N+ | yi,t < 0.5}, for any i.

Intuitively, this means that before converging, opinions �uctuate between 0 and 1, and this

binary sequence takes on a value of 1 when the opinion is above or equal to 0.5 and 0 otherwise.

Since we know that opinions will either converge to y ≥ 0.5 or to y < 0.5, we can say that

the sequence in equation (18), at some point, will turn into a sequence composed only of the

terms in equations (19) or (20). Thus, we have an i.n.i.d. sequence of Bernoulli random variables

Xk ∼ Bern(pk) with limk→∞ pk = p = γ or 1 − γ, and standard (weak or strong) law of large

numbers can be used to show that

lim
t→∞

1

t

t∑
k=1

Xk → Et (Xt) = p.

Therefore,

lim
t→∞

yi,t =

(1− µ)θ + µEt [1{ut ≤ γi}] , if A

(1− µ)θ + µEt [1{ut ≤ 1− γi}] , if B

=

(1− µ)θ + µFu (γi) , if A

(1− µ)θ + µFu (1− γi) , if B

=

(1− µ)θ + µγi , if A

(1− µ)θ + µ (1− γi) , if B
(21)

�

Proof of Proposition 2. The claim is supported by the solution of two systems of inequalities S1

(for right-biased opinion) and S2 (for left-biased opinion) below.

S1 =



(1− µ)θ + µγi >
1
2

(1− µ)θ + µ(1− γi) > 1
2

0 < µ ≤ 1

0 ≤ θ ≤ 1

1
2
< γi ≤ 1

S2 =



(1− µ)θ + µγi <
1
2

(1− µ)θ + µ(1− γi) < 1
2

0 < µ ≤ 1

0 ≤ θ ≤ 1

1
2
< γi ≤ 1
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The solution of those systems, together with the equation (21) in Proof of proposition 1 ensure

the uniqueness of opinion types in the parameter spaces de�ned in the statement. �

Proof of Corollary 1. From Proposition 1, we can write both right-biased and left-biased opinions

as θ + µ(γi − θ) and θ + µ(1− γi − θ), respectively, where the second term in each expression

represents their respective biases. From those expressions, we can see that both sign and magnitude

of those biases naturally depend on the relative size of θ and γi. For both biases to be positive,

we need θ < min{γi, 1 − γi} = 1 − γi, since γi >
1
2
. For both biases to be negative, we need

θ > max{γi, 1− γi} = γi, since γi >
1
2
. For the right-bias to be positive and the left-bias to be

negative, we need 1 − γi < θ < γi to hold. The case in which the right bias is negative while

the right-bias is positive never holds, since we assume γi >
1
2
. Therefore, we have the following

summary.

(1) if θ < 1− γi, then both biases are strictly positive

(2) if 1− γi < θ < γi, then right-bias is strictly positive and left-bias is strictly negative

(3) if θ > γi, then both biases are strictly negative.

In the case (1) listed above, we say that the right-bias is less than the left bias whenever

µ(γi − θ) < µ(1− γi − θ), meaning that γi <
1
2
. However, this contradicts the assumption that

individual is con�rmatory and we can conclude that whenever θ < 1− γi, the left-biased opinion

is less biased than the right-biased one. In the case (3), we say that the right-bias is less than

the left bias whenever µ(θ − γi) < µ(γi + θ − 1), meaning that the statement is true if γi >
1
2
.

Therefore, if θ > γi, the right-biased opinion is less biased than the left-biased one. Finally, in the

case (2), we say that the right-bias is less than the left bias whenever µ(γi − θ) < µ(γi + θ − 1),

meaning that it can only be true when θ > 1
2
. These three arguments together prove the statement

and we conclude that the right-bias is less than the left bias whenever θ > 1
2

(and vice-versa).

Finally, when θ = 1
2
, the biases are equal since |γi − 1

2
| = |1

2
− γi| for any γi. �

Proof of Corollary 2. When an individual j is always impartial, we have that

ψj,t =
1

2
1{yj,t−1 ≥ 0.5}+

1

2
1{yj,t−1 < 0.5}

=
1

2
1{yj,t−1 ≥ 0.5}+

1

2
(1− 1{yj,t−1 ≥ 0.5})

=
1

2
, (22)
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for all t. Since ut is a continuous U [0, 1] random variable in every period t, we have that

Et

[
1

{
ut ≤

1

2

}]
= P

(
ut ≤

1

2

)
= Fu

(
1

2

)
=

1
2
− 0

1− 0
=

1

2
, (23)

where Fu(·) is the cumulative distribution function of U [0, 1]. Thus, equations (21) and (23)

together prove the statement when agents are impartial (both always impartial and moderately

impartial). �

Proof of Corollary 3. Say extreme opinion 1 (i.e. yi,∞ = 1) is formed, then as per Propositions 1

and 2 we know this is the right-biased opinion and therefore it should be the case that (1− µ)θ +

µγi = 1. Conversely, say extreme opinion 0 (i.e. yi,∞ = 0) is formed. Then, we know this is the

left-biased opinion and it should be that (1− µ)θ + µ(1− γi) = 0. These two conditions together

imply that µ(2γi − 1) = 1. If we generally consider that 0 ≤ µ ≤ 1 and
1
2
≤ γi ≤ 1, then the

relation µ(2γi − 1) = 1 is only met when µ = γi = 1. �

Proof of Proposition 4. As per Lemma 2 in the Appendix C, the limiting opinion of any agent i

can be written as

lim
t→∞

yi,t = lim
t→∞

1
t

∑n
j=1 W

t
ijαj,0 + b1

t
K(i, t)

1
t

∑n
j=1W

t
ij (αj,0 + βj,0) + b1

t
L(i, t)

= lim
t→∞

1

t

t−1∑
k=0

n∑
j=1

W k
ijs

(1)
j,t−k

1

t

t−1∑
k=0

n∑
j=1

W k
ij

(
s

(0)
j,t−k + s

(1)
j,t−k

) .
By Lemma 1 we can split both series in the numerator and denominator in two parts

lim
t→∞

yi,t = lim
t→∞

1

t

(
tmix∑
k=0

n∑
j=1

W k
ijs

(1)
j,t−k +

t−1∑
k=tmix+1

n∑
j=1

W k
ijs

(1)
j,t−k

)
1

t

(
tmix∑
k=0

n∑
j=1

W k
ij

(
s

(0)
j,t−k + s

(1)
j,t−k

)
+

t−1∑
k=tmix+1

n∑
j=1

W k
ij

(
s

(0)
j,t−k + s

(1)
j,t−k

))

= lim
t→∞

1

t

t−1∑
k=tmix+1

n∑
j=1

W k
ijs

(1)
j,t−k

1

t

t−1∑
k=tmix+1

n∑
j=1

W k
ij

(
s

(0)
j,t−k + s

(1)
j,t−k

) .
Since the subindex k spans from tmix onwards (i.e. when the chain is already mixed), we can

use the invariant distribution matrix in the previous expression. Therefore the limiting opinion
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becomes

lim
t→∞

yi,t = lim
t→∞

n∑
j=1

Πij
1

t

t−1∑
k=tmix+1

s
(1)
j,t−k

n∑
j=1

Πij
1

t

t−1∑
k=tmix+1

(
s

(0)
j,t−k + s

(1)
j,t−k

)

=

n∑
j=1

Πij lim
t→∞

t− 1− tmix

t

1

t− 1− tmix

t−1∑
k=tmix+1

s
(1)
j,t−k

n∑
j=1

Πij lim
t→∞

t− 1− tmix

t

1

t− 1− tmix

t−1∑
k=tmix+1

(
s

(0)
j,t−k + s

(1)
j,t−k

)

=

n∑
j=1

Πij lim
t→∞

1

t− 1− tmix

t−1∑
k=tmix+1

(1{st−k = 1}+ 1{st−k = a}1{ut−k ≤ ψj,t−k})

n∑
j=1

Πij lim
t→∞

1

t− 1− tmix

t−1∑
k=tmix+1

(1{st−k = 0}+ 1{st−k = 1}+ 1{st−k = a})

=

∑
j ΠijEt [1{st = 1}+ 1{st = a}1{ut ≤ ψj,t}]∑
j ΠijEt [1{st = 0}+ 1{st = 1}+ 1{st = a}]

= (1− µ)θ + µ
∑
j

ΠijEt [1{ut ≤ ψj,t}] ,

where the term Et [1{ut ≤ ψj,t}] is as in Proposition 1, implying that the limiting consensus is

lim
t→∞

yi,t =

(1− µ)θ + µ
∑

j Πijγj , if A

(1− µ)θ + µ
∑

j Πij(1− γj) , if B

�

Proof of Proposition 3. From Equation (16) in Appendix C, we know that αi,t, for any i, can be

iterated forwardly as

αi,t =
n∑
j=1

W t
ijαj,0 + b

t−1∑
k=0

n∑
j=1

W k
ijs

(1)
j,t−k.

.

Similarly, the expression αi,t + βi,t in Equation (17) can be written as

αi,t + βi,t =
n∑
j=1

W t
ij (αj,0 + βj,0) + b

t−1∑
k=0

n∑
j=1

W k
ij

(
s

(0)
j,t−k + s

(1)
j,t−k

)
.
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Thus, if b = 0, the opinion of any agent i ∈ N at any time t boils down to

yi,t =

∑n
j=1W

t
ijαj,0∑n

j=1W
t
ij (αj,0 + βj,0)

and therefore

lim
t→∞

yi,t = y =

∑n
j=1 Πijαj,0∑n

j=1 Πij (αj,0 + βj,0)

for any i. In this case, the limiting opinion of any agent i can be written as in the case when b = 0

shown above. �
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Appendix E. Tests concerning differences among proportions

E.1. De�nition. To decide whether observed di�erences among sample proportions are signi�-

cant or whether they can be attributed to chance we must use tests concerning di�erences among

proportions. For that, suppose that x1, x2, . . . , xk are observed values of k independent random

variables X1, X2, ..., Xk having binomial distributions with the parameters n1 and θ1, n2 and

θ2, . . . , nk and θk. If the sample sizes are su�ciently large, we can approximate the distributions

of the independent random variables

Zi =
Xi − niθi√
niθi(1− θi)

for i = 1, 2, . . . , k

with standard normal distributions. Therefore, we know that we can look upon the test-statistic

χ2 =
k∑
i=1

Z2
i =

k∑
i=1

(xi − niθi)2

niθi(1− θi)

as a value of a random variable having chi-square distribution with k degrees of freedom. When

the null hypothesis H0 is θ1 = θ2 = · · · = θk and the alternative hypothesis is that at least one of

the θ’s is di�erent, we can use the pooled estimate

θ̂ =

∑k
i=1 xi∑k
i=1 ni

and the test statistic becomes

χ2 =
k∑
i=1

(xi − niθ̂)2

niθ̂(1− θ̂)
a random variable whose value has chi-square distribution with k− 1 degrees of freedom because

an estimate is substituted for the unknown parameter θ.

i j ci cj p̂i(ci) p̂j(cj) CI5% CI95% χ2
p-value

(A) (E) τ = 0 τ = 0 0.702 0.721 -0.037 -0.002 4.915 0.027

(A) (G) τ = 0 τ = 0 0.702 0.727 -0.042 -0.007 7.871 0.005

(A) (H) τ = 0 τ = 0 0.702 0.72 -0.035 -0.001 4.174 0.041

(E) (G) τ = 0 τ = 0 0.721 0.727 -0.022 0.012 0.347 0.556

(E) (H) τ = 0 τ = 0 0.721 0.72 -0.016 0.019 0.03 0.862

(G) (H) τ = 0 τ = 0 0.727 0.72 -0.01 0.024 0.582 0.446

Table 5. Hypothesis Test for Proportions - Result 1
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i j ci cj p̂i(ci) p̂j(cj) CI5% CI95% χ2
p-value

(A) (A) τ = 0 τ = 30 0.688 0.678 -0.006 0.026 1.641 0.2

(B) (B) τ = 0 τ = 30 0.688 0.59 0.082 0.115 140.542 0

(D) (D) τ = 0 τ = 30 0.688 0.648 0.024 0.056 23.694 0

(B) (D) τ = 1 τ = 1 0.707 0.766 -0.077 -0.041 41.405 0

(B) (D) τ = 30 τ = 30 0.59 0.648 -0.078 -0.039 32.948 0

Table 6. Two Population Proportions - Result 5
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Appendix F. Probit regression model - Robustness

Dep. Variable: probability of emergence of less biased consensus (p̂G)

Pooled Pooled (θ = 0.2) Pooled (θ = 0.8)

Partisan centrality advantage (PCA) 1.05∗∗∗ (0.03) 1.06∗∗∗ (0.03) 1.23∗∗∗ (0.08)
Open mind (OM) −0.40∗∗∗ (0.01) −0.25∗∗∗ (0.02) −0.93∗∗∗ (0.04)
First impression (FI) 1.71∗∗∗ (0.02) 1.63∗∗∗ (0.03) 1.85∗∗∗ (0.04)
PCA × FI 0.37∗∗∗ (0.04) 0.18∗∗ (0.06) 0.37∗∗∗ (0.07)
PCA × OM 0.52∗∗∗ (0.03) 0.41∗∗∗ (0.04) 0.76∗∗∗ (0.08)
OM × FI −0.29∗∗∗ (0.02) −0.27∗∗∗ (0.03) 0.02 (0.05)
1{τ = 1} 0.46∗∗∗ (0.01) 0.84∗∗∗ (0.01) −0.51∗∗∗ (0.02)
1{τ = 10} 0.19∗∗∗ (0.01) 0.75∗∗∗ (0.01) −1.06∗∗∗ (0.02)
1{τ = 30} 0.07∗∗∗ (0.01) 0.68∗∗∗ (0.01) −1.23∗∗∗ (0.02)
1{n = 2} 0.47∗∗∗ (0.02) −0.02 (0.02) 1.47∗∗∗ (0.05)
1{n = 3} 0.49∗∗∗ (0.02) −0.09∗∗∗ (0.02) 1.68∗∗∗ (0.05)
1{n = 4} 0.40∗∗∗ (0.02) −0.25∗∗∗ (0.02) 1.74∗∗∗ (0.05)
1{G = (B)} −1.15∗∗∗ (0.02) −0.94∗∗∗ (0.02) −1.57∗∗∗ (0.03)
1{G = (D)} −0.84∗∗∗ (0.02) −0.52∗∗∗ (0.02) −1.44∗∗∗ (0.03)
1{G = (E)} −0.96∗∗∗ (0.02) −0.73∗∗∗ (0.02) −1.44∗∗∗ (0.03)
1{G = (F )} 0.02 (0.02) 0.13∗∗∗ (0.02) −0.13∗∗∗ (0.03)
1{G = (H)} −1.02∗∗∗ (0.02) −0.76∗∗∗ (0.02) −1.54∗∗∗ (0.03)
1{θ = 0.8} −0.10∗∗∗ (0.01)

Observations 168,320 84,160 84,160

Log Likelihood -67,244.40 -41,815.30 -21,296.40

Akaike Inf. Crit. 134,525.00 83,664.70 42,626.90

Note: ∗
p<0.05;

∗∗
p<0.01;

∗∗∗
p<0.001

Table 7. Probit regression with pooled data
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