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Abstract 

How to allocate the probability of reaching a target resulting from the joint action of a group of 

players? This question is framed within transferable utility games. We analyze the properties of games 

resulting from different scenarios, characterize their core and provide a proper axiomatic foundation 

to their Shapley value.  
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1. Introduction  

We consider situations where different actors have a common target to reach, knowing the 

probabilities with which actors will succeed in attaining the target. The question concerns the 

determination of the share of each actor in the collective probability of success defined as the 

probability that at least one actor attains the target. The resulting shares can then eventually be used 

for allocative purposes. This could be applied to various domains: financial, legal, military, research... 

Budget allocation for a missile interception system or for vaccine research units are two examples. 

Another example is the division of damage in an uncertain environment.1 And actors could also be 

factors, like for instance the pathologies that lead particular diseases or the circumstances that lead to 

a plane crash.  

Hou et al. (2018) have translated this problem into a transferable utility game assuming that a coalition 

succeeds if at least one of its members reaches the target. They then apply the Shapley value to 

allocate the collective probability of success among the players. They propose an axiomatization of 

the Shapley value which turns out to be incorrect.  

The probability game introduced by Hou et al. (2018) is concave and its Shapley value allocates to a 

player a share in the collective probability of success that is proportional to his individual probability 

of success. Furthermore, the coefficient of proportionality is anonymous, being defined by a player-

independent and symmetric function. We show that, together with symmetry (equal treatment of 

equals), proportionality characterizes the Shapley value on the class of probability games.  

We consider other scenarios. Assuming that a coalition is successful if at least one of its members 

succeeds while the outside players all fail, the associated game is dual to the probability game as 

defined by Hou et al. This game is then convex and, the Shapley value being a self-dual allocation 

rule, it leads to the same allocation. Assuming that a coalition succeeds if only the member with the 

highest probability of success acts and reaches the target, the associated game is an airport game. It 

is a concave game whose Shapley value is well known and for which proper axiomatizations exist. 

We do not retain the game that results from assuming that a coalition succeeds if all its members 

succeed. The associated game is subadditive but its Shapley value may contain negative components.  

Probability games have a connection with the existing literature on sharing the revenue that results 

from joint actions aiming at increasing the collective probability of success. For instance, Pickard et 

al. (2011) report on an experience of social mobilization where large groups of agents are recruited 

in order to contribute to the completion of a particular task in a minimum time. Hougaard et al. (2022) 

study models of evolving hierarchies where agents invest in recruiting additional agents in order to 

realize a particular task, like for instance the social mobilization just mentioned, mining in 

blockchains (Schrijvers et al. 2017), multilevel marketing (Emek et al. 2011) or prediction markets 

(Arrow et al. 2008).  

The paper is organized as follows. Probability games and their duals are introduced in Section 2. 

Probability games have a nonempty core. It is the object of Section 3. Harsanyi dividends associated 

with probability games are defined and used in Section 4 to construct the Shapley value. Its 

axiomatization is the object of Section 5. Section 6 is devoted to the remaining scenarios and the last 

section offers concluding remarks.  

                                                 
1 The apportionment of damage resulting from the actions of several tortfeasors is a problem studied by Dehez and Ferey 

(2013) and further investigated in Ferey and Dehez (2016).  
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2. Probability games  

A game with transferable utility is a pair ( , )N v  where N is the set of players and v is a (characteristic) 

function that associates a real number to each coalition, its worth. By convention, ( ) 0.v  =  There 

are different ways to interpret the worth of a coalition. It may measure the payoff the coalition S 

should or could obtain if it forms.2 We denote by G the set of all games and by G(N) the set of all 

games defined on the set N of players.  

Notation: Finite sets are denoted by upper-case letters. Lower-case letters are used to denote their 

cardinals: t = |T|, s = |S|, … For a vector x, x(S) denotes the sum of its coordinates over the subset S. 

By convention, a sum over an empty set is zero. Set inclusion (non-strict) is denoted by . We define 

( ) { }S T S T=    and ( ) { }.i S T S i T=    Braces are sometimes omitted for coalitions: v(i) 

replaces v({i}), v({i,j}) replaces v(i,j),...  

Consider a situation involving a set N of players. They have a target to reach and each one is identified 

by his probability of reaching the target, 0ip   for player i. Without loss of generality, we order the 

probabilities and we define 
1 2{ [0,1] | 0 ... 1}.n

n nP p p p p=        A pair ( , )N p  is a probability 

situation.  

The question is the following. How to measure the contribution of each player to the collective 

probability of success, assuming probabilistic independence.  

Consider a probability situation ( , ), .nN p p P  Assuming that a coalition is successful if at least one 

of its members reaches the target, the probability that the coalition succeeds is given by:3  

 
1

( )

( ) 1 (1 ) ( 1) .t

i j

T Si S j T

v S p p−

 

= − − = −   (1) 

This is the game introduced by Hou et al. (2018).4 Notice that ( ) iv i p=  and ( ) 1v S =  if (and only if) 

1ip =  for some .i S  In the 3-player case, we have:  

 

1 2 3 1 2 3 1 2 1 3 2 3 1 2 3

( ) {1,2,3},

( , ) 1 (1 )(1 ) , {1,2,3}, ,

(1,2,3) 1 (1 )(1 )(1 ) .

i

i j i j i j

v i p i

v i j p p p p p p i j i j

v p p p p p p p p p p p p p p p

= 

= − − − = + −  

= − − − − = + + − − − +

 

Example 1 The 3-player game associated to the probability vector (0.3, 0.5, 0.7)p =  is given by 

(0.3, 0.5, 0.7 | 0.65, 0.79, 0.85 | 0.895).v =   

Example 2 The 4-player game associated to the probability vector (0.2, 0.4, 0.5, 0.7)p =  is given by 

(0.2, 0.4, 0.5, 0.7 | 0.52, 0.6, 0.76, 0.7, 0.82, 0.85 | 0.76, 0.856, 0.88, 0.91| 0.928).v =   

Interestingly, the dual game ( , )dN v  defined by ( ) ( ) ( \ )dv S v N v N S= −  is given by:  

 
\ \

( ) (1 ) (1 ) 1 (1 ) (1 ).d

j j j j

j N S j N j S j N S

v S p p p p
   

 
= − − − = − − − 

 
      (2) 

                                                 
2 See Aumann (2010) who makes a distinction between what a coalition could claim vs what it could get, the latest 

referring implicitely to some underlying strategic form game.  
3 By convention, the product over an empty set is assumed to be equal to 1. 
4 The wording that follows their definition points, however, to a different game: "v(S) is the probability that all players i 

in S have a success, and all other players have a failure" (page 458).  
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It is the probability that at least one player in S succeeds, assuming that players outside S all fail. It 

corresponds to the worst case: coalition S should be allocated at least ( ).dv S  The best case is instead 

given by 1( ) :v S  coalition S should not be allocated more. This is captured by the core.  

Given an arbitrary game ( , )N v  and a coalition ,S N  the marginal contribution of player i S  to 

coalition S is defined by ( ) ( ) ( \ ).v

iMC S v S v S i= −  Two players i and j are substitutable if they 

contribute identically for all coalitions containing them: ( ) ( )v v

i jMC S MC S=  for all S containing i and 

j. A player i is null if he never contributes: ( ) 0v

iMC S =  for all S  N.  

A game is subadditive if ( ) ( ) ( ).S T v S T v S v T =    +  A game ( , )N v  is concave (and 

thereby subadditive) if ( ) ( ) ( ) ( )v S T v S T v S v T +   +  for all S and T in N. Equivalently, a game 

is concave if the marginal contributions of each player are decreasing with coalition size.5  

The marginal contribution of player i S  to the probability of success of coalition S is given by:  

 
\

( ) (1 ).v

i i j

j S i

MC S p p


= −  

It is the probability that player i succeeds while all other members fail. Hence, two players i and j are 

substitutable if (and only if) .i jp p=  In addition, marginal contributions are decreasing with respect 

to set inclusion:  

 
\ \ \ \

(1 ) (1 ) (1 ) (1 ).i j i j j i j

j S i j S i j T S j T i

i S T p p p p p p p
   

   −  − − = −     

Consequently, the game ( , )N v  is concave and the dual game ( , )dN v  is convex.   

3. The core of probability games 

For an arbitrary game ( , ),N v  imputations are individually rational allocations 
nx  satisfying the 

following inequalities:6 

 ( ) ( ) ( \ ) ( ) ( 1,..., ).d

iv i v N v N i x v i i n= −   =  

The core of an arbitrary game ( , )N v  is the set of coalitionally rational allocations: 

  ( , ) ( ) ( ) and ( ) ( ) for all ( )nC N v x x N v N x S v S S N=  =    

i.e. no coalition should receive less than its worth.7 However, under subadditivity, the appropriate 

definition of the core is the so-called anti-core defined by:  

  ( , ) ( ) ( ) and ( ) ( ) for all ( )nAC N v x x N v N x S v S S N=  =     

i.e. no coalition should contribute more than its worth. The anti-core of a game coincides with the 

core of its dual: ( , ) ( , ).dAC N v C N v=   

Concavity ensures that the anti-core is the nonempty polyhedron whose vertices are the marginal 

contribution vectors: for any given players' ordering, players receive their marginal contribution 

following the order.  

                                                 
5 A game (N,v) is concave if the game (N,-v) is convex. Convex games have been defined and studied by Shapley (1971).   

6 Notice that the inequalities ( ) ( \ ) ( )
i

v N v N i x v i−    (i = 1,2,3) completely define the (anti-) core for 3-player games.  

7 The idea of the core as the set of undominated allocations can be found in von Neumann and Morgenstern  (1947, page 

53). It was disregarded as a solution mainly because it is empty for zero-sum essential games.The term core was 

introduced by Gillies (1953) and was later introduced as an independent solution concept by Shapley (1955). See Zhao 

(2018) for a clarification of the respective contributions of Gillies and Shapley as to the core. 
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Hence, for a probability situation ( , ),N p  imputations satisfy the following inequalities: 

 
\

(1 ) ( 1,..., ).i j i i

j N i

p p x p i n


−   =  

i.e. a player obtains at most his probability of success and at least the probability that he succeeds 

while all other player fails. Within the core, the ratio between what a coalition S obtains and its worth 

satisfies the following inequalities: 

 
\

( )
(1 ) 1.

( )
j

j N S

x S
p

v S

−    

Example 1 (continued) The anti-core of the probability game associated to the probability vector 

(0.3, 0.5, 0.7)  are defined by the following inequalities: 

 

1

2

3

0.045 0.3,

0.105 0.5,

0.245 0.7.

x

x

x

 

 

 

 

4. The Shapley value  

An allocation rule is a mapping  that associates an allocation ( , )N v  to a game ( , ).N v  The 

requirement of efficiency is therefore built in the definition of allocation rule:  

 ( , ) ( ).i

i N

N v v N


=  

Given a set of players N, the set G(N) of all characteristic functions on N is equivalent to the vector 

space 
2 1.

n −
 In proving the uniqueness of his value, Shapley (1953) shows that the collection of 

unanimity games ( , )TN u  defined by  

 
( ) 1 if ,

0 if .
Tu S T S

T S

= 

= 
  

forms a basis of G(N): for any given function ( ),v G N  there exists a unique (2n – 1)-dimensional 

vector ( )( )T T N  =  such that:  

 
( ) ( )

( ) ( ) .T T T

T N T S

v S u S 
 

= =    (3) 

The T  can be defined recursively, starting with 0, =  as follows: 

 
( )

( )T S

S T
S T

v T 



= −      
( )

( 1) ( ) for all .t s

T

S T

v S T N −



= −   (4) 

Following Harsanyi (1959), T  is the dividend accruing to coalition T once all sub-coalitions have 

received their dividends. By (3), the sum of all dividends is equal to v(N). An allocation can then be 

obtained by distributing the dividends of each coalition among its members. Harsanyi has shown that 

the Shapley value gives to each player the sum of the per capita dividend of the coalitions of which 

he is a member:  

 
( )

1
( , ) ( , )

i

i T

T N

SV N v N v
t




=    (i = 1,…,n). (5) 

Shapley (1953) proves that the value is the unique allocation rule  on the set of all games G  that 

satisfies symmetry, null player and additivity. Efficiency is built in the definition of allocation rule. 
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Symmetry imposes equal treatment of substitutable players. Null player imposes a zero payoff to null 

players. Any reasonable allocation rule satisfies these three basic properties. The fourth, additivity, 

characterizes uniquely the Shapley value. It requires that the value of applied to a sum of games on a 

common set N of players coincides with the sum of the values: ( , ) ( , ) ( , ).N v w N v N w  + = +   

Young (1985) proposes an alternative axiomatization of the Shapley value in which additivity is 

replaced by a property of monotonicity. An allocation rule satisfies monotonicity if, considering two 

games ( , )N v  and ( , )N w  on a common set of players and a player ,i N   

 ( ) ( \ ) ( ) ( \ )w S w S i v S v S i−  −     ( , ) ( , )i iN w N v   

i.e. the amount allocated to player i is larger (or equal) in game ( , )N w  than in game ( , )N v  if the 

marginal contributions of player i are larger (or equal) in game ( , ).N w  This implies that only the 

marginal contributions of a player enter into account in the computation of his share. Young proves 

that the Shapley value is the unique allocation rule that satisfies symmetry and monotonicity.8  

Using (4), the Harsanyi dividends of the probability game ( , )N v  associated to the probability vector

np P  are given by:  

  
1( , ) ( 1) .t

T i

i T

N v p −



= −      (6) 

They alternate in sign according to coalition size and have no particular interpretation. The dividends 

of the dual game ( , )dN v  are given by:   

 
\

( , ) (1 ).d

T j j

j T j N T

N v p p
 

= −   (7)    

It is the probability that players in T all succeed while players outside T all fail. We observe that 

dividends of dual probability games are nonnegative.9  

The Shapley value is a self-dual solution: the value of a game coincides with the value of its dual.  

Introducing successively (6) in (5) and (7) in (5), we obtain the two equivalent formulations of the 

Shapley value of the probability game associated to a probability situation ( , )N p :  

 

1 1

( ) ( ) \

( 1) ( 1)
( , ) ( 1,..., ),

i i

t t

i j i j

T N T Nj T j T i

SV N p p p p i n
t t

− −

  

− −
= = =    (8) 

and 

 
( ) ( )\ / \

1 1
( , ) (1 ) (1 ) ( 1,..., ).

i i

i j j i j j

T N T Nj T j N T j T i j N T

SV N p p p p p p i n
t t    

= − = − =      (9) 

Hence, whatever is the definition of the probability of success of a coalition, (1) or (2), the Shapley 

value defines the same allocation: (8) and (9) coincide. Hou et al. (2018) observe that the Shapley 

value allocates to a player a share that is proportional to his probability of success. The Shapley value 

can indeed be written as:   

 ( , ) ( )i i iSV N p p f p−=  (10) 

                                                 
8 The null player axiom is not needed here. It is a consequence of monotonicity.  
9 Games whose dividends are nonnegative are positive games. They form an interesting class of convex games on which 

solution concepts tend to converge: the core coincides with the set of weighted Shapley values as well as the set of all 

distributions of Harsanyi dividends. 
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 where ip−  denotes the vector of probabilities from which the coordinate i has been removed and
1:[0,1]nf − →  is a player-independent and symmetric function given by:10  

 
({1,..., 1})

( 1)
( ) 1 .

1

t

j

T n j T

f z z
t − 

−
= +

+
    (11) 

In the 3-player case, player 1 obtains:  

  1 1 1 2 1 3 1 2 3 1 2 3 2 3

1 1 1 1
( , ) ( ) 1 ( ) .

2 3 2 3
SV N p p p p p p p p p p p p p p

 
= − + + = − + + 

 
 

Example 1 (continued) The Shapley value of the game associated to the probability vector 

(0.3, 0.5, 0.7)  is given by (0.155, 0.285, 0.455).   

Example 2 (continued) The Shapley values of the game associated to the probability vector 

(0.2, 0.4, 0.5, 0.7)  is given by (0.088, 0.192, 0.251, 0.397).   

Concavity ensures that the Shapley value belongs to the anti-core.  

As a consequence of (10), the share of a player in the collective probability is increasing with his 

probability of success. Furthermore, as shown by Hou et al. (Theorem 3.1), the following property 

holds:11 

 i jp p    ( , ) ( , ).i jSV N p SV N p  (12) 

Indeed, in the following difference, the expression between brackets is positive:    

 
( )

,

( 1)
( , ) ( , ) ( )[1 ].

1

t

i j i j h

T N h T
i j T

SV N p SV N p p p p
t 



−
− = − +

+
    (13) 

Notice that (12) is actually an equivalence: i jp p  if and only if ( , ) ( , ).i jSV N p SV N p  This is a 

consequence of (13).  

5. Axiomatization of the Shapley value on the class of probability games 

We propose a simple axiomatization of the Shapley value restricted to probability games and 

expressed in terms of probabilities. Consider the following properties of an allocation rule  defined 

on the set games associated to probability vectors in nP  :   

A.1  Symmetry  given any ,np P ( , ) ( , ).i j i jp p N p N p =  =  

A.2  Proportionality  given any ,np P  ( , )i i iN p p =  where i  is independent of .ip   

These two properties characterize uniquely the Shapley value as an allocation rule on the class of 

probability situations.  

Proposition 1 The Shapley value of a probability game ( , )N v  is the unique allocation rule that 

satisfies A.1 and A.2.12  

Proof  Consider a probability situation ( , )N p  and an allocation rule  satisfying A.1 and A2. 

According to A.2, there exist n functions 1,..., nf f  such that ( , ) ( )i i i iN p f p p −=  for all i. We first 

show that, under A1, the proportionality functions are independent of players' identities. We then 

                                                 
10 A function is symmetric if permuting its arguments leaves its value unchanged.  
11 This property is called "independent fairness" by Hou et al.  
12 Recall that efficiency is part of the definition of an allocation rule.  
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show that the common proportionality function is uniquely defined and symmetric. As a result,  

must be the Shapley value.  

Consider a pair of players ( , )i j  where 1.j i= +  For any given probability vector p such that ,i jp p=  

we have i jp p− −=  and ( ) ( )i i j jf p f p− −=  by A.1. This applies for all 1,..., 1.i n= −  Independence then 

follows:  

  
1

1 1 1 1 1 1( ,..., ) ( ,..., ) for all ( ,..., ) 0,1 and all .
n

i n n nf z z f z z z z i N
−

− − −=    

We now proceed iteratively to show that the function f is uniquely defined, knowing that the 

probability to be allocated is a symmetric function of p given by:   

 1

( )

( ) ( 1) ...t

i i i j i j k

T N i N i j i j ki T

F p p p p p p p p−

    

= − = − + −      

We start by evaluating  ( ,..., ) for some 0,1 :f z z z   

 ( ,..., ) ( ,..., )n f z z z F z z=     
1

( ,..., ) ( ,..., ).f z z F z z
n z

=  

In particular, for n = 2, we have ( ) ( , ) / 2 .f z F z z z=   

For 3,n   we proceed to the evaluation of 1( , ,..., )f z z z  for some  1 and 0,1 :z z  

 1 1 1( ,..., ) ( 1) ( , ,..., ) ( , ,..., )f z z z n f z z z z F z z z+ − =   

or ( )1 1 1

1
( , ,..., ) ( , ,..., ) ( ,..., ) .

( 1)
f z z z F z z z f z z z

n z
= −

−
  

Next, we proceed to the evaluation of  1 2 1 2( , , ,..., ) for , , 0,1 :f z z z z z z z    

 2 1 1 2 1 2 1 2( , ,..., ) ( , ,..., ) ( 2) ( , , ,..., ) ( , , ,..., )f z z z z f z z z z n f z z z z z F z z z z+ + − =  

or ( )1 2 1 2 2 1 1 2

1
( , , ,..., ) ( , , ,..., ) ( , ,..., ) ( , ,..., ) .

( 2)
f z z z z F z z z z f z z z z f z z z z

n z
= − −

−
    

We then continue to proceed similarly further until the evaluation of the complete function 

 
1

1 2 3 1( , , ,..., ) on 0,1 .
n

nf z z z z
−

−     

Notice that the resulting function is symmetric: all along the proof, the relative positions of 1 2, ,...z z  

are arbitrary.  

Here is an illustration of the proof for n = 4. We start with the evaluation of ( , , ) :f z z z  

 
2 3 4 2 31 1 3 1

( , , ) ( , , , ) (4 6 4 ) 1 .
4 4 2 4

f z z z F z z z z z z z z z z z
z z

= = − + − = − + −  

For some  1 and 0,1 ,z z  we have 1 1 1( , , ) 3 ( , , ) ( , , , )f z z z z f z z z z F z z z z+ =  or 

 ( )1

22

1
1

1
1

11
( , , ) ( , , , ) ( , , .)

2

2 3 3 4
1

3
f z z z F z z z z f z z z

z z z z
z

z

zz
z= −− = − − + +   

 For some  1 2, and 0,1 ,z z z  we have 2 1 1 2 1 2 1 2( , , ) ( , , ) 2 ( , , ) ( , , , )f z z z z f z z z z f z z z z F z z z z+ + =  or  

 

( )

1 2

1

1 2 2

1 2 1 2 2 1 2

1 2 1

1
( , , ) ( , , , ) ( , , ) ( ,

4

,

1
2 2

2

2 3 3 3

)f z z z F z z z z f z z z z f z z
z

z z

z

z z z z z z z

z

z zz
− − − + + + −

= − −

=
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It is the function defined in (11): the amount allocated by the Shapley value to player 1 is given by: 

  
1 1 2 3 4 1 2 3 4 2 3 2 4 3 4 2 3 4

1 1 1
( , ) ( , , ) 1 ( ) ( ) .

2 3 4
SV N p p f p p p p p p p p p p p p p p p p

 
= = − + + + + + − 

 
 

In their Theorem 3.3, Hou et al. (2018) propose an axiomatization of the Shapley value where they keep 

Shapley's original axioms, except for symmetry that they replace by independent fairness: an allocation rule  

satisfies independent fairness if ( ) ( ) ( , ) ( , ).i jv i v j N v N v    13 In their proof, they follow step-by-step 

the uniqueness proof originally proposed by Shapley (1953), a proof that applies to the class of all 

transferable utility games. Doing so is inappropriate in the context of probability games for the very 

simple reason that a sum of probability games is generally not a probability game: additivity cannot be 

invoked in this context.14  

6. Alternative scenarios 

Consider a probability situation ( , ), ,nN p p P  and let us assume that the success of a coalition 

depends on the highest probability. The associated game is then given by:  

 ( ) i S iw S Max p=  

This is the well-known airport game introduced by Littlechild and Owen (1977). Only the context 

differs. The Shapley value of the max-game associated to the ordered probability vector np P  is 

given by: 

 1

1

( , )
1

i
k k

i

k

p p
SV N p

n k

−

=

−
=

− +
  

In the 3-player case, we have: 

 1 1 2 1 1 2 1 1 2 1 2 1
3 2 3( , ) , , , , .

3 3 2 3 2 3 2 6 2 6

p p p p p p p p p p p p
SV N p p p p

− −   
= + + + − = − − −   
   

 

Example 3 The max-game associated to the probability vector (0.3, 0.5, 0.7)p =  is given by 

(0.3, 0.5, 0.7 | 0.5, 0.7, 0.7 | 0.7)  and its Shapley value is given by ( )0.1, 0.2, 0.4 .  

Example 4 The max-game associated to the probability vector (0.2, 0.4, 0.5, 0.7)p =  is given by 

(0.2, 0.4, 0.5, 0.7 | 0.4, 0.5, 0.7, 0.5, 0.7, 0.7 | 0.5, 0.7, 0.7, 0.7 | 0.7)  and its Shapley value is given by 

( ).0.050,  0.117,  0.167,  0.367   

Airport games are concave. Indeed, considering two coalitions S and T such that ( ) ( ),w S w T  we 

have successively ( ) ( )w S T w S =  and ( ) ( ).w S T w T   As a consequence of concavity, the 

Shapley value of a max-game belongs to its anti-core.  

Example 3 (continued) The anti-core of the max-game associated to the probability vector 

(0.3, 0.5, 0.7)  are defined by the following inequalities: 

 

1

2

3

0 0.3,

0 0.5,

0.2 0.7.

x

x

x

 

 

 

 

                                                 
13 When applied to probability games, independent fairness actually implies symmetry. 

14 Hou et al. actually impose linearity.  
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Translated in the present context, Young's property of monotonicity simplifies as follows. Consider 

a player set N and two probability vectors p and q in .nP  Young's property of monotonicity is 

equivalent to the following property:  

A.3  Monotonicity Consider a player set N, a player i N  and probability vectors andp q  in .nP  

Then i iq p   and i j i jq q p p−  −  for all j < i     ( , ) ( , ).i iN q N p   15 

Indeed, within the second scenario, the marginal contributions of player i are of the form i jp p−  for 

all ,j i  if any, while the marginal contribution of player i to {i} is equal to .ip  Monotonicity says 

that the amount allocated to player i is larger (or equal) in the situation ( , )N q  than in the situation 

( , )N p  if player i has a larger probability of success and a larger probability differential with the 

players that precedes him.  

Hence, symmetry and monotonicity characterize the Shapley value as an allocation rule on the class 

of max-games. 

Proposition 2 The Shapley value of a max-game ( , )N w  is the unique allocation rule that satisfies 

A.1 and A.3.  

What about the scenario in which a coalition succeeds only if all its members reach the target? The 

associated characteristic function is then given by:  

 ( ) i

i S

w S p


=  

It implies that acting together decreases the probability of success. This defines a subadditive game 

whose Shapley value may allocate negative amount to players with low probability of success. For 

example, the Shapley value resulting from the probability vector (0.4, 0.6, 0.8)p =  is given by 

( 0.103, 0.077, 0.217).−  The same applies to other solutions concepts like for instance the nucleolus 

(Schmeidler, 1969). In case it applies to situations where each player is associated to an element in a 

chain, only the grand coalition is associated with a positive probability, a situation in which equal 

division is the only reasonable division.  

7. Concluding remarks 

Probabilistic independence has been assumed from the start. However, in many situations, actors or 

factors do not act independently. This is the case for instance when the factors are pathologies that 

can lead to death when combined. A characteristic function can still be constructed if the probabilities 

that any subset of players all succeed were known. Indeed, let us denote by ijp  the probability that 

players i and j succeed, by ijkp  the probability that players i, j and k succeed,… The probability that 

at least one player succeeds is then given by 
1

1 2 3( ) ... ( 1)n

nF p S S S S−= − + − + −  where 

 
1231 2 3 ..., , ,..., .i ij ijk n nS p S p S p S p= = = =    16 

The Shapley value then retains the same structure but loses the property of proportionality. For 

instance, in the 3-player case, it allocates to player 1 an amount given by:  

 1 1 12 13 123

1 1

2 3
( , ) ( ) .SV N p p p p p= − + +  

                                                 
15 This is actually what has been proposed by Potters and Sudhölter (1999) with, however, a tiny difference: they impose 

a strict inequality sign on probability differences that is actually not needed.  
16 See Feller (1968, p. 99).  
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Concerning the axiom of proportionality, it is remarkable that this simple property, together with 

symmetry, characterizes the Shapley value on the class of probability games: it is the property that 

differentiates the Shapley value from other symmetric allocation rules. Additivity does the same on 

the class of superadditive. Here, proportionality does not correspond to the Aristotelian definition of 

fairness: the ratio between the amounts allocated by the Shapley value does not coincide with the 

ratio between the individual probabilities. The particularity of probability games is that ip  identifies 

player i and knowledge of the probability vector p is all what is needed to compute an allocation. By 

symmetry, we know that two players with the same probability of success get the same shares but the 

converse is also true:  

 ( , ) ( , )i jSV N p SV N p=  if and only if .i jp p=   

This follows from (13). In addition, proportionality can be equivalently written as:   

 
( , )

, such that for all  .
( , )

i i
n j j

i i

N p p
p q P p q j i

N q q




 =   =  

These observations justify proportionality.  

The analysis in terms of a cooperative game of this probabilistic model is well defined when all 

probabilities are different from 1, possibly close to 1. The results are formally compatible with a 

situation where a player has a probability 1 of success, in which case the collective probability of 

success is equal to 1. If only one player has a probability 1 of success, should he be allocated one and 

zero to the other participants, independently of their probability of success? This is not what the 

Shapley value suggests simply because the other players are non-null. For example (0.61, 0.27, 0.12) 

is the Shapley value associated to the probability vector p = (0.3, 0.6, 1).   

We must distinguish between two situations. Are we in an ex-ante or ex-post position? Ex-ante, we 

don't know and it is reasonable to assume that ignorance excludes a probability equal to one. On the 

other hand, an event that has a probability 1 of occurrence is not a sure event: it is almost sure. In 

both cases, granting a positive share to all players is justified. The problem differs in an ex-post 

situation. For example, someone has been shot to death and two persons have participated in the 

shooting, but only one fired the deadly bullet. In penal law, both would be sentenced, not necessarily 

to the same sentence. In civil law, a judge must determine who will pay and how much. Assuming 

that the shooter is a trained sniper, should he be the only one to contribute? Again, he could have 

missed the target so that both should be required to contribute. The Shapley value offers an 

apportionment basis.  
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