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Abstract
We propose a novel method for 3D image segmentation, where a Bayesian formulation, based on
joint prior knowledge of the object shape and the image gray levels, along with information derived
from the input image, is employed. Our method is motivated by the observation that the shape of an
object and the gray level variation in an image have consistent relations that provide configurations
and context that aid in segmentation. We define a maximum a posteriori (MAP) estimation model
using the joint prior information of the object shape and the image gray levels to realize image
segmentation. We introduce a representation for the joint density function of the object and the image
gray level values, and define a joint probability distribution over the variations of the object shape
and the gray levels contained in a set of training images. By estimating the MAP shape of the object,
we formulate the shape-intensity model in terms of level set functions as opposed to landmark points
of the object shape. In addition, we evaluate the performance of the level set representation of the
object shape by comparing it with the point distribution model (PDM). We found the algorithm to
be robust to noise and able to handle multidimensional data, while able to avoid the need for explicit
point correspondences during the training phase. Results and validation from various experiments
on 2D and 3D medical images are shown.
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1. Introduction
The accurate segmentation and quantitative analysis of structures in an image is a fundamental
issue in a variety of applications including medical image processing, computer vision and
pattern recognition.

In the active contour approach (snakes) of Kass et al. (1987), energy minimizing parametric
contours with smoothness constraints are deformed according to the image data. Unlike level
set implementations (Osher and Sethian, 1988), the direct implementation of this energy model
is not capable of handling topological changes of the evolving contour without explicit discrete
pixel manipulations. Usually, they can detect only objects with edges defined by the gradient.

Curve evolution methods based on level set (Osher and Sethian, 1988) have been used
extensively for segmentation, because they allow for automatic changes in the topology. Novel
geometric models of active contours have been proposed based on curve evolution and
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geometric flows (Caselles et al., 1993, 1997; Malladi et al., 1993). By using the level-sets-
based numerical algorithm, several objects can be segmented simultaneously (Yang et al.,
2003, 2004; Tsai et al., 2003b).

Recently, Chan and Vese (2001) have proposed an active contour model using a Mumford–
Shah functional, based on techniques of curve evolution and level sets for segmentation. In the
level set formulation of the Mumford–Shah functional, the problem becomes a “mean-
curvature flow”. This model can detect objects whose boundaries are not necessarily fully
defined by gradient data, for instance objects with very smooth boundaries or even with
discontinuous boundaries can be inferred. In addition, since the model has a level set
formulation, changes of topology are allowed, interior contours can be automatic detected, and
the initial curve can be placed anywhere in the image.

Image gray level based methods often face difficult challenges such as poor image contrast,
noise, and missing or diffuse boundaries. Prior model based algorithms can often solve this
problem. Chen et al. (2002) use an “average shape” as the shape prior term in their geometric
active contour model. Cootes et al. (1994) find corresponding points across a set of training
images and construct a statistical model of shape variation from the point positions. Wang and
Staib (1998) propose a systematic approach to determine an object's boundary as well as the
correspondence of boundary points to a model by constructing a statistical model of shape
variation. Staib and Duncan (1992) incorporate global shape information into the segmentation
process by using an elliptic Fourier decomposition of the boundary and placing a Gaussian
prior on the Fourier coefficients. Zeng et al. (1999) develop a coupled surfaces algorithm to
segment the cortex by using a thickness prior constraint. Leventon et al. (2000) extend Caselles
et al.'s (1997) geodesic active contours by incorporating shape information into the evolution
process. They use principal component analysis (PCA) (Cootes et al., 1994) and level set
functions of the object boundaries to form a statistical shape model from a training set. The
segmenting curves evolve according to the image gradient and a maximum a posteriori (MAP)
estimates of shape and pose. More recently, Tsai et al. (2001, 2003a) use the same implicit
representation of the object boundary presented in Leventon et al. (2000) and manipulate the
parameters of this implicit model to minimize the region-based energy functional proposed by
Chan and Vese (2001) and Yezzi et al. (1999) to realize image segmentation. In our previous
work, we adopt a level set approach using prior information of both the shape of an object and
its neighbors (Yang et al., 2003, 2004). Tsai et al. describe a similar approach (Tsai et al.,
2003b), which uses a global multi-shape model. We feel that our approach is more flexible in
the modeling of joint priors and accommodates situations with limited inter-object information
and variation in contrast and discernability among the objects.

In addition to the shape prior based segmentation methods, Cootes et al. use statistical models
of both shape and texture as deformable anatomical atlases (Cootes et al., 1999, 2001). The
modeled structure can be located by finding the parameters, which minimize the difference
between the synthesized model image and the target image in conjunction with the statistical
model of the shape based on landmark points and texture. The point correspondence problem
needs to be taken care of and is difficult in 3D images, although minimum description length
(MDL) (Davies et al., 2002) approaches can be used to define point correspondences. Further
evaluation of different 3D correspondence methods are presented by Styner et al. (2003).

Our work shares the observation that an object to be detected and the gray level variation in
an image could have a consistent relation that can aid in the delineation. Our model is based
on a MAP framework using the shape-intensity joint prior information. We introduce a new
representation for the shape-intensity joint density function and define the corresponding
probability distribution. We evaluate this level set distribution model by comparing it with the
traditional point distribution model (Cootes et al., 1994) using the χ2 test. Formulating the
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segmentation as a MAP estimation of the shape of the object and modeling in terms of level
set function, we compute the associated Euler–Lagrange equation. We avoid the need for
explicit point correspondences during the training phase by using a level set representation of
the object shape. The contour evolves both according to the shape-intensity joint prior
information and the image gray level information.

2. Description of the model
2.1. MAP framework with shape-intensity joint prior

The shape of an object is always dependent on the gray level variation in an image.
Segmentation can be made easier if suitable models containing such relationship priors are
available. A probabilistic formulation is a powerful approach to deformable models.
Deformable models can be fit to the image data by finding the model shape parameters that
maximize the posterior probability. Consider an image I that has an object  of interest; a MAP
framework can be used to realize image segmentation combining prior information and image
information

(1)

where I  is the synthetic model image of image I; Î  is the estimation of the synthetic image
I  Since our main concern is the segmentation of the object ̂, we assume that the synthetic
image I  is very close to the real image I, thus I  ≈ I, and Eq. (1) becomes

(2)

p(I| , I ) is the image gray level information based term. In 3D, assuming gray level
homogeneity within the object, we use the following imaging model (Chan and Vese, 2001):

(3)

where c1 and σ1 are the average and variance of I inside , c2 and σ2 are the average and
variance of I outside  but also inside a certain domain Ω  that contains . p( , I) is the joint
density function of shape  and image intensity I. It contains the shape prior information, the
intensity prior information, as well as their relation.

2.2. Shape-intensity joint prior model
Instead of using a point model to represent the object as was done in (Cootes et al., 1994,
1999), we choose level sets (Osher and Sethian, 1988) as the representation of the object to
build a model for the shape-intensity joint prior, and then define the joint probability density
function in Eq. (2).

Consider a training set of n aligned images {I1, I2, …, In}, with an object of interest in each
image. The surfaces of the n objects in the training set are embedded as the zero level sets of
n separate higher dimensional level set functions {ψ1, ψ2, …, ψn} with negative distances inside
and positive distances outside the object. Using the technique developed in (Leventon et al.,
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2000), each of the Ii and ψi is placed as a column vector with Nd elements, where d is the
number of spatial dimensions and Nd is the number of samples of each level set function or the

number of pixels of each image. We can use vector  as the representation of the object
and intensity values. Thus, the corresponding training set is

 Our goal is to build a shape-intensity model over the
distribution of the level set function and intensity pair.

The mean and variance of the shape-intensity pair can be computed using PCA (Cootes et al.,

1994). The mean shape-intensity pair, , is subtracted from each

 to create the deviation from the mean. Each such deviation is placed as a column
vector in a 2Nd × n dimensional matrix Q. Using singular value decomposition (SVD), Q =
UΣV T, U is a 2Nd × n matrix whose column vectors represent the set of orthogonal modes of
shape-intensity variation and Σ is a n × n diagonal matrix of corresponding singular values. An
estimate of the shape-intensity pair [ψT, IT]T can be represented by k principal components and
a k dimensional vector of coefficients (where k < n), α (Cootes et al., 1994)

(4)

where Uk is a 2Nd × k matrix consisting of the first k columns of matrix U.

Under the assumption of a Gaussian distribution of a shape-intensity pair represented by α, the
joint probability of a certain shape  and the related image intensity I, p( , I) can be
represented by

(5)

Fig. 1 shows a training set of left putamina in 12 MR brain images. By using multidimensional
PCA, we can build a model of the shape-intensity profile of the left putamen. Fig. 2 illustrates
the zero level sets and the associated intensities corresponding to the mean and four primary
modes of variance of the distribution of the profile of the left putamen. Note that the mean
shape-intensity pair and primary modes appear to be reasonable representations of the joint
shape/intensity being learned.

We can also constrain the MAP estimation of  by adding some regularizing terms (Chan and
Vese, 2001; Tu and Zhu, 2002) into our active contour model: a general boundary smoothness
prior, pB( ) = e−μ∮  ds, and a prior for the size of the region, pA( ) = e−νAc, where A is the
size of the region of object , c is a constant and μ and ν are scalar factors. Here we assume
the boundary smoothness and that the prior includes the size of the object. Thus, the joint prior
probability p( , I) in Eq. (2) can be approximated by a product of the following probabilities:

(6)

Notice that the MAP estimation of the object in Eq. (2), ̂, is also the minimizer of the energy
functional E shown below in the following equation:
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(7)

This minimization problem can be formulated and solved using the level set method (described
in Section 2.3).

2.3. Level set formulation of the model
We will then minimize the energy functional E( ) of shape  in Eq. (7) using level sets. In
the level set method,  is the zero level set of a higher dimensional level set function ψ, i.e.,

 = {(x, y, z)|ψ(x, y, z) = 0}. The evolution of the surface  is given by the zero-level surface
at time t of the function ψ(t, x, y, z). We define ψ to be positive outside  and negative inside

.

For the level set formulation of our model, using the technique developed in (Chan and Vese,
2001), we replace  with ψ in the energy functional in Eq. (7) using regularized versions of
the Heaviside function H and the Dirac function δ, denoted by Hε and δε (Chan and Vese,
2001) (described below):

(8)

where Ω denotes the image domain. In our work, we define Ω  to be the domain where the
level set distance is no more than five pixels/voxels considering that the size of objects of
interest in our data is less than 20–30 pixels/voxels, i.e., Ω  = {(x, y, z)|ψ(x, y, z)≤5}, G(·) is
an operator to form the column vector (as described in Section 2.2) of a matrix by column
scanning. g(·) is the inverse operator of G(·). To compute the associated Euler–Lagrange
equation for ψ, we minimize E with respect to ψ. Parametrizing the descent direction by
artificial time t ≥ 0, the evolution equation in ψ(t, x, y, z) is

(9)

where Uk1 and Uk2 are the upper and lower half of the matrix Uk, respectively, i.e.,

2.4. Evolving the surface
We approximate Hε and δε as follows (Chan and Vese, 2001):
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(10)

(11)

The constants c1 and c2 are defined by (Yang et al., 2003)

(12)

(13)

Given the surface ψ at time t, we seek to compute the evolution steps that bring the zero level
set surface to the correct final segmentation based on the shape-intensity joint prior information
and image intensity information. We first set up p(α) from the training set using PCA. At each
stage of the algorithm, we recompute the constants c1(ψt) and c2(ψt), then upday ψt+1. This is
repeated until convergence, i.e., until |ψt+1 − ψt| is small enough in our work.

The parameters λ1, λ2, μ, ν and ω are used to balance the influence of the shape-intensity joint
prior model and the image information model. The tradeoff between joint prior and image
information depends on how much faith one has in the joint prior model and the imagery for
a given application. We set these parameters empirically for particular segmentation tasks,
given the general image quality and the neighbor prior information. We define the parameters
for applications in Section 4.

3. Evaluation of level set distribution models
As presented in Section 2.2, we use level sets as the representation of the object of interest in
the image. The shape-intensity joint distribution model is approximated by the joint distribution
of the level set function of the object shape and the image gray levels. To analyze the
performance of this level set approximation of the object shape in the joint prior model, we
can evaluate the level set distribution model (LSDM) presented in (Leventon et al., 2000; Tsai
et al., 2001, 2003a; Yang et al., 2003), where the LSDM is used as an approximation of the
distribution of the object shape. Since the level set function is a nonlinear function of the
corresponding zero level set (i.e. the surface of the object), it is very difficult to theoretically
analyze the performance of the LSDM as an approximation of the shape model. A practical
way to evaluate it is to compare the LSDM with the point distribution model (PDM) (Cootes
et al., 1994).

In a PDM, each shape is represented by a set of points on the boundary. The labeling of the
points is important. Each point represents a particular part of the object boundary, so it must
be located in the same way on each of the training images, which can be difficult for 3D objects.
Let Xi = (xi1, yi1, Xi2, yi2, …, XiL, yiL)T be a vector describing the set of L points of the ith shape
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in the set. (xij, yij) is the jth point of the ith shape. Table 1 shows the PCA processes of getting
the LSDM and PDM over a set of n aligned training images.

By performing PCA on the level set functions of the left ventricles in Fig. 3, we can build a
model of the shape of left ventricles. The top of Fig. 4 illustrates zero level sets corresponding
to the mean and three primary modes of variance of the distribution of the level set of the left
ventricle. Note that the zero level sets of the mean level set and primary modes appear to be
reasonable representative shapes of the class of object being learned. The bottom of Fig. 4
shows the three PDM-based primary modes of variance of the left ventricle using the same
training set as in Fig. 3, where the correspondences between the boundary points were manually
determined. Compared to the PDM, the zero level set tends to have a smoother boundary over
the distribution. The two models are quite similar in describing the main variations of the left
ventricle endocardial border.

We then estimate a number of test left ventricles using the parametric models of LSDM and
PDM as shown in Table 1. Fig. 5 shows the two estimates of 12 manually segmented left
ventricles (with 5 primary modes). Most parts of the two curves overlap well. To compare the
two estimates, using the same measure used in (Leventon et al., 2000), we compute the
undirected Hausdorff distance (Huttenlocher et al., 1993) between the zero level set  (N
points) and the sample points ℬ

(14)

where

(15)

The distances of the LSDM and PDM based estimates for the 12 cases in Fig. 5 are shown in
Table 2 (unit: pixel). Virtually all the points in the zero level set lie within one or two pixels
of the PDM estimate.

Next, we evaluate the two distributions p(αψ) and p(αX) in Table 1 by doing a χ2 test, again
using the left ventricle as the example. Since the PDM based p(αX) is built in the sample point
vector space, while the LSDM based p(αψ) is in the level set space, we need to convert the two
distributions in the same space first in order to do the comparison. We first randomly generate
a set of samples {X1, X2, …, Xm, m = 105} (each sample corresponds to a shape represented
by a sample point vector) based on the PDM p(αX). Each Xi can be embedded as the zero level
set of a higher dimensional level set function ψi, the projection of Xi in the level set space. Then
we compare the set of projections {ψ1, ψ2, …, ψm, m = 105} with the LSDM p(αψ) using the
χ2 test, with the null hypothesis, H0, that the projections {ψ1, ψ2, …, ψm, m = 105} have the
same distribution defined by the LSDM p(αψ). Consider the first five principal components in
the LSDM, with five bins along each of the principal modes, the χ2 statistic is given by

(16)

where the sum is over all the bins considered, Ob. is the observed frequency of ψ  falling in
each bin, Ex. is the corresponding expected frequency which can be calculated by integrating
the LSDM probability function p(αψ) in Table 1 over the bin. For our test ((5 − 1)5 = 1024
degrees of freedom), χ2 = 981, with an upper tail probability Pr(χ2 > 981) = 0.82. Therefore,
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there is a 0.82 probability that it is wrong to reject H0. Thus, the two distributions are statistically
indistinguishable.

The level set representation of object shape is an efficient way to formulate a distribution model
for both 2D and 3D objects, and appears to be an accurate approximation to the corresponding
PDM. Moreover, it does not require explicit point correspondences (since the shape is
embedded in a level set function).

4. Experimental results
We have used our model on various medical images. To simplify the complexity of the
segmentation system, we generally choose the parameters in our experiments as follows: λ1 =
λ2 = λ, μ = 0.00005 × 2552, ν = 0 (Chan and Vese, 2001). This leaves us only two free parameters
(λ and ω) to balance the influence of two terms, the image data term and the shape-intensity
joint prior term. We rigidly align the training data before performing PCA. All the tested images
are not in their training sets.

We first consider a 2D MR brain image with eight sub-cortical structures of different intensities
and with blurred boundaries. The top of Fig. 6 shows a few steps of the segmentation using
only gray level information. Only the lower (posterior) portions of the lateral ventricles can be
segmented perfectly since they have clearer boundaries. The bottom of Fig. 6 shows the results
of using our shape-intensity joint prior model, the training set model of the left putamen is
shown in Figs. 1 and 2. The curves are able to converge on the desired boundaries even though
some parts of the boundaries are too blurred to be detected using only gray level information.
The segmentation converges in 2 min on a 2.00 GHz Intel XEON CPU.

We then test our method using 3D images. Fig. 7 shows a few steps in the segmentation of the
left hippocampus in a MR brain image. Fig. 8 illustrates three steps in the segmentation of the
left amygdala. Segmenting the two structures can be very tough without using prior information
since both structures have very poorly defined boundaries. After using our shape-intensity joint
prior model, as shown in Figs. 7 and 8, the two structures can be clearly segmented. Segmenting
these 3D images (with size 172×148×124) took less than an hour.

To validate the segmentation results, we test our model on 12 different images for each of the
above three cases (Figs. 6-8), respectively. Here we use the “leave-one-out” experiments,
where each test image is segmented using the rest 11 images as the training set. We then
compute the undirected Hausdorff distance of pixels between the boundary of the computed
segmentation and the boundary of the manual segmentation using Eqs. (14) and (15). For our
experiments, the mean distances show improvement in all the three cases comparing with/
without the shape-intensity joint prior, as seen in Table 3. Virtually all the boundary points
obtained using our model lie within one; or two voxels of the manual segmentation.

We also test the robustness of our algorithm to noise. We add Gaussian noise with different
variances to the MR image in Fig. 6 (the mean intensities of white/gray matters: 45/65), then
segment it. Fig. 9 shows the segmentation results with Gaussian noise of SD of 20 (top) and
40 (bottom). Fig. 10 shows the segmentation error of the lower portion of the left lateral
ventricle in three cases: with no prior, with shape prior, and with shape-intensity joint prior.
As the variance of the noise increases, the error for no prior increases rapidly since the structure
is too noisy to be detected using only gray level information. However, for shape prior and
shape-intensity joint prior methods, the errors are much lower and are locked in a very small
range even when the variance of the noise is very large. Note that our shape-intensity joint
prior model achieves the least error among all the cases.
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5. Discussion and conclusions
In this paper, we present a MAP estimation framework based model for image segmentation
using shape-intensity joint prior information. We introduce a representation for the shape-
intensity joint density function, and define joint probability distribution over the variations of
the shape-intensity pair in a set of training images. We estimate the MAP shape of the object
using evolving level set based on the associated Euler–Lagrange equation. From various
experiments on 2D and 3D medical images, we have demonstrated that our model is able to
handle multidimensional data and robust to noise. This approach can be used to segment images
with poor image contrast, noise, and missing or diffuse boundaries.

The image term we used (Eq. (3)) has been mainly used for the segmentation of structures with
homogeneous intensities inside the objects, and may be enhanced. For instance, it would be
interesting to extend the image gray level based model to a more general case where additional
information is included besides the image intensity average, as has been discussed (Chan and
Vese, 2001). More segmentation examples using similar image term have been provided in
(Chan and Vese, 2001).

We evaluate the LSDM by comparing it with the traditional PDM. For the endocardial
boundary representations shown in Section 3, it is clear that either representation would be
acceptable even though they are slightly different. Both models can be used as approximations
to the distribution of object shape.

By using the level set representation of the shape, we avoid the need for explicit point
correspondences during the training phase. Level set representation of object shape provides
tolerance to slight misalignment of object shape, in the attempt to avoid having to solve the
general correspondence problem. In practice, the variations captured by the principal
components in LSDM in this paper are based on rigid alignment of the training data and may
contain undesired residuals due to misalignment. We are looking for better alignment method
that can reduce such residuals and the undesired topology problem.

As a powerful approach to deformable models, the MAP framework can combine prior
information and given image information to realize image segmentation. While we have not
pursued in this paper, a more unified model could be used to incorporate shape priors, neighbor
constraints (Yang et al., 2002, 2003; Yang and Duncan, 2004) as well as image intensity priors
(Yang and Duncan, 2003).
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Fig. 1.
Training set: outlines of left putamina in 12 2D MR brain images.
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Fig. 2.
The four primary modes of variance of the left putamen and the image gray levels, showing
the mean, ±SD (σ), and ±2σ.
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Fig. 3.
Outlines of left ventricles in 6 out of 16 2D MR training images gated and at a fixed point in
the cardiac cycle.
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Fig. 4.
The three primary modes of variance of the left ventricle using level set (top rows) and point
(bottom rows) model, showing the mean, ±SD (σ), and ±2σ.

Yang and Duncan Page 14

Med Image Anal. Author manuscript; available in PMC 2010 March 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Level set distribution model (green) and point distribution model (red) based estimates for 12
test left ventricles. The estimates are obtained from the parametric models shown in Table 1.
(For interpretation of the reference to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 6.
Four steps of the segmentation of eight sub-cortical structures (the lateral ventricles (λ = 0.9,
ω = 0.1), heads of the caudate nucleus (λ = 0.3, ω = 0.7), and putamina (λ = 0.2, ω = 0.8)) in
a 2D MR brain image without prior information (top) and with shape-intensity joint prior
(bottom). The training set consists of 12 MR images shown in Fig. 1.
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Fig. 7.
Segmentation of the left hippocampus. Three orthogonal slices and the 3D surfaces are shown
for each step. The training set consists of 12 MR images λ = 0.1, ω = 0.9.
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Fig. 8.
Segmentation of the left amygdala. Three orthogonal slices and the 3D surfaces are shown for
each step. The training set consists of 12 MR brain images. λ = 0.1, ω = 0.9.
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Fig. 9.
Original and segmented images with Gaussian noise of σ = 20 (top) and 40 (bottom).
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Fig. 10.
Segmentation errors (unit: mm) with different variances of Gaussian noise for the MR images
in Fig. 6 (the mean intensities of white/gray matters: 45/65).
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Table 1

Level set distribution model (LSDM) and point distribution model (PDM)

LSDM PDM

Shape representation {Ψ1, Ψ2, …, Ψn}, Ψi : Nd elements {X1, X2, …, Xn}, Xi : dL elements

Mean shape
Ψ
−
= (1 ∕ n)Σi=1

n Ψi
X
−

= (1 ∕ n)Σi=1
n X i

Mean offset matrix QΨ QX

SVD QΨ = UΨΣΨVΨ
T QX = UX ΣXVX

T

Parametric model Ψ̃ = Ψ ̄ + UΨ,kαΨ X ̃ = X ̄ + UX,kαX

Probability of shape p(αΨ) = 1

(2π)k | ΣΨ,k |
⋅ exp − 1

2αΨ
TΣΨ,k

−1 αΨ p(αX ) = 1

(2π)k | ΣX ,k |
⋅ exp − 1

2αX
TΣX ,k

−1 αX
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Table 3

Mean distance between the computed and the manual boundaries

Sub-cortical
structures

Hippocampus Amygdala

Without joint prior 9.2 11.2 5.8

With joint prior 2.0 1.8 1.6

(unit: mm).
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