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Abstract
The relationships among vascular geometry, hemodynamics, and plaque development in the coronary
arteries are complex and not yet well understood. This paper reports a methodology for the
quantitative analysis of in vivo coronary morphology and hemodynamics, with particular emphasis
placed on the critical issues of image segmentation and the automated classification of disease
severity. We were motivated by the observation that plaque more often developed at the inner
curvature of a vessel, presumably due to the relatively lower wall shear stress at these locations. The
presented studies are based on our validated methodology for the three-dimensional fusion of
intravascular ultrasound (IVUS) and X-ray angiography, introducing a novel approach for IVUS
segmentation that incorporates a robust, knowledge-based cost function and a fully optimal, three-
dimensional segmentation algorithm. Our first study shows that circumferential plaque distribution
depends on local vessel curvature in the majority of vessels. The second study analyzes the correlation
between plaque distribution and wall shear stress in a set of 48 in vivo vessel segments. The results
were conclusive for both studies, with a stronger correlation of circumferential plaque thickness with
local curvature than with wall shear stress. The inverse relationship between local wall shear stress
and plaque thickness was significantly more pronounced (p < 0.025) in vessel cross sections
exhibiting compensatory enlargement (positive remodeling) without luminal narrowing than when
the full spectrum of disease severity was considered. The inverse relationship was no longer observed
in vessels where less than 35% of vessel cross sections remained without luminal narrowing. The
findings of this study confirm, in vivo, the hypothesis that relatively lower wall shear stress is
associated with early plaque development.
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1. Introduction
Coronary atherosclerosis starts early in life and is a major cause of death in industrialized
countries. Therefore, the study of plaque development and progression is of high interest. An
early stage of plaque development is intimal thickening (Stary et al., 1994; Stary et al.,
1995); however, the lumen size is preserved during the early atherosclerotic process due to
compensatory enlargement. Figs. 1(a)–(c) illustrate this process. Glagov et al. determined that
luminal narrowing (stenosis) generally occurs after the plaque area exceeds about 40% of the
cross-sectional vessel area (Glagov et al., 1987). Obstructive stenoses are most frequently
treated by percutaneous transluminal coronary angioplasty (PTCA) and subsequent stenting to
restore the lumen, as illustrated in Fig. 1(d).

Despite the routine nature of coronary interventions, understanding the mechanisms of plaque
development in coronary arteries and the roles of hemodynamics and vessel geometry is of
utmost importance for predicting areas of future plaque development, and possible future
clinical events. Previous studies have linked plaque development with low wall shear stress
(Gibson et al., 1993), which in turn depends on the vessel geometry. Friedman et al. (1987)
have reported that the intima was generally thicker at sites exposed to lower wall shear stresses
in a coronary artery branch. Ideally, the wall shear stress distribution at the onset of
atherosclerosis should be analyzed and then related with subsequent plaque progression. In
vessel segments with initially low wall shear stress one would expect larger plaque
accumulation; however, there are only a limited number of longitudinal studies that have
compared plaque distribution in relation to local wall shear stress distribution at multiple points
in time. While Wentzel et al. (2003a) used a relatively short interval of six weeks to follow-
up, Stone et al. (2003) compared distributions in wall shear stress and plaque development over
a period of six months.

Selective X-ray angiography has been the method of choice for diagnostic and interventional
cardiology for decades, but using angiography alone allows only a limited analysis of the vessel
lumen by quantitative coronary angiography (Brown et al., 1991; Reiber et al., 2000). Similarly,
three-dimensional (3-D) analyses from biplane angiography can only offer elliptical
approximations of the lumen shape (Wahle et al., 1995). Although attempts to achieve further
refinement of the lumen shape based on X-ray densitometry have shown to be successful in
larger structures (e.g., iliac arteries (Pellot et al., 1994) or ventricles (Prause and Onnasch,
1996)) and also in coronary arteries (Reiber et al., 1982/83; Bao et al., 1990), X-ray
angiography cannot directly depict plaque distribution or composition. Instead, these are
approximated indirectly from the contrast-filled lumen (Seiler et al., 1992; Wahle et al.,
1995). Substantially more detailed cross-sectional information can be obtained by intravascular
ultrasound (IVUS), an established complement to X-ray angiography (von Birgelen et al.,
1997). An example of an IVUS frame is shown in Fig. 1(e). Most importantly, IVUS allows
the accurate assessment of plaque distribution and volume, as well as the effect of interventional
treatment of coronary stenosis on plaque and vessel morphology (Reiber et al., 2000). In
contrast to X-ray angiography, compensatory enlargement is directly visible in IVUS. The
most challenging task is the determination of the lumen/plaque and media/adventitia borders
in IVUS while limiting the need for user interaction at the same time. Existing methods
(Herrington et al., 1992; Li et al., 1994/95; Sonka et al., 1995b; Klingensmith et al., 2000;
Brusseau et al., 2004) use a variety of segmentation algorithms, but achieve only limited
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success. The limitations of these approaches are mainly due to the lack of higher-dimensional
context, or the lack of knowledge-based segmentation criteria. Our paper therefore expands on
this important issue and presents a new 3-D graphtheoretic approach. Recent developments in
IVUS technology also allow plaque classification (Nair et al., 2002).

In this in vivo 3-D IVUS study, we aim to verify in a cohort of patients the hypothesis that
regions of relatively lower initial wall shear stress show a relatively higher plaque
accumulation. As is typical for in vivo coronary IVUS studies, all subjects imaged had cardiac
catheterization, since IVUS is not clinically indicated in patients with limited or no significant
obstructive coronary atherosclerosis. Consequently, the enrolled subjects invariably exhibited
advanced atherosclerosis, thus the relationships we observed were between a substantially
altered coronary morphology and the related hemodynamic shear stress conditions. It has been
shown that, with extensive luminal narrowing, the inverse relationship between plaque
thickness and wall shear stress is no longer preserved (Wentzel et al., 2003b). Thus, we have
developed a methodology that automatically categorizes vessel segments by disease severity
and allows indirect verification of the hypothesis by exclusion of segments at later disease
stages, to attempt to overcome the limitations of one-time imaging of patients with advanced
atherosclerotic coronary disease.

In contrast to wall shear stress, vascular (not luminal) curvature is not substantially changed
by atherosclerosis and thus can serve as a surrogate of the pre-atherosclerotic hemodynamic
conditions. Therefore, the relationship between vessel curvature and plaque distribution was
studied in addition to the relationship between wall shear stress and plaque distribution.

2. Methods
The following subsections describe the generation of the spatial and spatio-temporal models
of coronary arteries based on our previously presented fusion methodology (Section 2.1), with
special emphasis on more recent developments in the field of IVUS segmentation (Section
2.3). Angiographic segmentation (Section 2.2) and the creation of the 3-D/4-D models (Section
2.4) are only briefly addressed since they are explained in more detail elsewhere. The remaining
sections provide details on the morphologic and hemodynamic quantitative indices (Section
2.5), and the classification of circumferential plaque distribution with respect to those indices
(Section 2.6). These indices and classifications are then utilized for the in vivo patient studies
presented in Section 3.

2.1. Multi-modality fusion of X-ray angiography and intravascular ultrasound
We have developed a comprehensive system that generates geometrically correct 3-D and/or
4-D (i.e., 3-D plus time) reconstructions of coronary arteries and computes quantitative indices
of coronary lumen and wall morphology. The reconstructions serve as input for hemodynamic
analyses and allow for interactive visualization (Wahle et al., 1999, 2005; Reiber et al.,
2000; Olszewski et al., 2003). A flowchart outlining the system is given in Fig. 2. In general,
vessel curvature and torsion are derived from biplane (or a pair of single-plane) X-ray
angiograms, and the cross-sectional information is obtained from IVUS. Thus, the resulting
model accurately reflects the spatial geometry of the vessel and includes any accumulated
plaque. The angiography and IVUS data are retrospectively ECG-gated and segmented. In
order to obtain a 4-D model as a set of 3-D models (one per phase), angiographic and IVUS
data corresponding to the end diastole form the phase#0; using constant offsets (in % R – R or
in milliseconds from phase#0), further phases are extracted (Wahle et al., 2001). Fusion leads
to the 3-D/4-D plain model, consisting of the lumen/plaque and media/adventitia contours
oriented relative to the IVUS catheter. After tetrahedral meshing, this model is suitable for
hemodynamic analyses. Morphologic analyses are performed following resampling of the
cross sections orthogonal to the vessel centerline, to eliminate distortions from the position of
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the IVUS catheter within the vessel. The quantitative results annotate the resampled contour
model, which is then used for visualization and further analyses. Our system utilizes
conventional PC hardware and widely available software tools. Standardized storage formats
for parameters and contours have been adopted to ensure proper interfacing between our fusion
system and commercially available analysis software packages, and to enhance data sharing
and collaboration (Olszewski et al., 2003).

2.2. Segmentation of angiographic data
Segmentation of angiographic images has a long history and is well established in quantitative
coronary analysis. Examples of such software include Brown et al. (1977), Kirkeeide et al.
(1982), and Beier et al. (1991). A methodological overview can be found in Reiber et al.
(2000). All of these methods aim for identifying the vessel lumen borders as visible in the
angiograms. The approach of Sonka et al. (1995a) determines both borders simultaneously as
a single path through the graph; van der Zwet et al. (1994) developed an approach to segment
difficult border shapes.

For the purpose of fusion between angiography and IVUS, the angiographic lumen borders are
only utilized to establish a reference for the absolute orientation of the IVUS data in 3-D space.
Consequently, requirements for the accuracy of the border segmentation can be reduced, and
a dynamic programming approach with edge-based cost functions was employed. In addition
to the lumen outline, also the IVUS catheter needs to be segmented to establish its 3-D path.
Therefore, a third cost function was used that models a gray-value ridge within the lumen and
also separates the search space for the two borders as an additional constraint. For segmentation,
the user only has to identify the location of the IVUS transducer, shown in its distal position
since the angiograms were taken before the pullback started; the proximal endpoint, usually
the ostium; and a few intermediate points to create a spline, which defines the region of interest
for the graph search with a selectable width.

2.3. Segmentation of IVUS image data
Due to the challenges inherent to the images, one of the important areas of research is the
segmentation of the IVUS data. A comprehensive review article on IVUS segmentation and
quantitative evaluation has been presented by Klingensmith et al. (2003). Approaches to
identify the lumen/plaque and media/adventitia borders include those based on graph search
(Sonka et al., 1995b) or simulated annealing (Herrington et al., 1992). Another frequently met
approach is the use of active contours (snakes), which iteratively determine the borders based
on energy functions (Kass et al., 1988; Klingensmith et al., 2000). Also, texture information
can be taken into account. In this case, interfaces between regions are searched for rather than
explicit edges (Mojsilović et al., 1997; Zhang et al., 1998).

It is well known that IVUS images contain artifacts from various sources, thus requiring the
design of cost functions that incorporate a-priori knowledge of regional and border properties
to robustly and accurately identify borders. We have developed a novel approach to IVUS
segmentation, which combines 3-D optimum graph search with a three-tiered cost function.
Since a 3-D fusion model is not available at the time the IVUS data are segmented, they are
initially treated as a stack of 2-D images forming a 3-D volume. While many approaches, e.g.,
the segmentation method of Li et al. (1994/95), perform an initial longitudinal segmentation
over the entire pullback to establish the 3-D context, followed by cross-sectional contour
detection, our algorithm operates in a true 3-D manner. Truly 3-D IVUS segmentations were
thus far limited to active surfaces (Klingensmith et al., 2000).

2.3.1. Graph-based IVUS segmentation—Prior to segmenting the IVUS image data for
the lumen/plaque and media/adventitia borders, several preprocessing steps occur. The stack
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of IVUS images is automatically centered to account for image shifts during digitization, the
field of view is identified, and the region containing the catheter is excluded from further
analysis, using an implementation of the Hough Transform. Also, stationary image components
that may contain a gain offset or stationary artifacts such as the catheter ring-down are removed
by subtracting the average pullback frame from each image in the pullback. The average frame
is computed on a pixelwise basis over the entire pullback length, and the introduction of
artifacts is avoided by limiting the results of the subtraction to a value of zero. The removal of
stationary components serves as a normalization step for the learning process described in the
next section, and removes any biases that may corrupt the statistical analyses also described
below. The final step before beginning processing is to “unfold” the IVUS pullback so that the
cylindrical surface detection problem is reformatted into an elevation map detection problem.
This process is shown in Fig. 3.

A method for efficient detection of the globally optimal surfaces representing object boundaries
in volumetric data-sets was recently developed by our research group (Li et al., 2004a,b). The
method is capable of simultaneously detecting multiple interacting surfaces, in which the
optimality is not only controlled by the cost functions designed for individual surfaces, but
also confined by several geometric constraints defining the surface smoothness and
interrelations. The method solves the surface detection problems by transforming the detection
problem into computing minimum s – t cuts in the derived geometric hypergraphs. The
proposed algorithm has polynomial complexity, is computationally efficient, and allows
simultaneous segmentation of the lumen/plaque and media/adventitia surfaces in the 3-D IVUS
data. Consequently, the spatial and temporal contextual information is incorporated in a single
optimization process yielding a pair of interacting surfaces in 3-D. This utilization of higher-
dimensional knowledge, combined with the geometric constraints, allows the method to
determine the optimal path in cases of vessel branchpoints, shadowing, rotational distortions,
and vessel rupture. In instances where severe gaps occur, the algorithm will find the shortest
path (surface) across the gap.

To further improve the efficiency of the algorithm and its robustness to noise and artifact, the
automated system uses the optimal surface detection technique in a multiresolution approach.
This is achieved by finding the optimal lumen/plaque and media/adventitia borders in a three-
tiered sequence starting at a low resolution and continuing to a high resolution. At each
resolution stage, the searched area of the graph is reduced so that more efficient use of
computation time is made.

2.3.2. Cost function design—The cost functions used for the identification of the lumen/
plaque and media/adventitia surfaces are of paramount importance for the success of the
segmentation. The cost function contains three classes of information at both global and local
levels: expected border properties, information theoretic criteria based on the statistical
properties of ultrasound, and regional homogeneity properties. By combining these three types
of information in an optimal manner, the overall segmentation process is able to overcome
common variation and artifacts of IVUS imaging. These classes are realized as a combination
of the following terms:

1. Intensity patterns learned from example.

2. Rayleigh distribution models of ultrasound image data (Burckhardt, 1978; Wagner et
al., 1983; Brusseau et al., 2004).

3. Object homogeneity properties (Chan and Vese, 2001).

Multiresolution methods (Liang et al., 2000) and methods that attempt to integrate edge and
region information (Chakraborty et al., 1996) have proven to be successful in the past. The
combination of local and global features of this cost function will seek to minimize the
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drawbacks associated with previous techniques that concentrated on only one level; the
combination of analytical and learned terms will allow the system to learn the properties of
features that are not easily expressed analytically, while retaining analytical terms to help when
a particular feature has not yet been seen by the system.

2.3.3. Learned border patterns—It has been observed that although noise, speckle, and
artifacts tended to confuse previous automated methods, human tracers are still able to correctly
segment the vast majority of IVUS images. This observation motivated the design of a cost
function that consists of terms that are learned from experience, in addition to those that are
derived analytically from the data being analyzed.

Over time, there has been an accumulation of both manually traced IVUS data sets and IVUS
data sets that have been semi-automatically segmented with manual corrections. These data
sets were used in the development of a cost function to learn what pixels the human observer
most often chooses for border pixels. In order to perform the learning step, a window is passed
over the training images. Within the window, the pattern of pixels is examined. For each pattern
that contains a border pixel, the system increments an accumulator entry corresponding to that
border pattern, as shown in Fig. 4 for a 2-D case. An accumulator entry exists for every possible
pattern, following normalization and quantization to allow for image variation and memory
conservation, respectively. The accumulator can now be considered to contain the likelihood
of each pattern being a border pattern.

After this training stage is complete, the learned information can be used to score an image
that is to be analyzed. In the same way that the accumulator was created in the training step,
patterns are examined in the image. Then, a cost image is generated by assigning a likelihood
value to the pixel located at (x,y,z) based on the value found in the accumulator for the same
pattern, as illustrated in Fig. 5 for a 2-D case. This process results in a cost value
ClearnedLumen(x,y,z) for the lumen/plaque and ClearnedAdventitia(x,y,z) for the media/adventitia
borders. The learned border properties may also be updated continually as the system is in use,
thereby permitting the system to gain knowledge over time and get better over time.

2.3.4. Statistical properties of ultrasound—It has been known for some time that the
developed speckle in ultrasonic images is characterized by a Rayleigh distribution, given by
(Burckhardt, 1978; Wagner et al., 1983):

(1)

where P(Ai)represents the probability that pixel i has intensity Ai, and the distribution is
governed by parameter α.

Recently, this knowledge has been used in the accurate segmentation of the luminal boundary
in IVUS images by deformable contours that separate two regions (lumen and vessel wall)
based on their global statistical properties (Brusseau et al., 2004). To adapt this concept to our
optimal 3-D graph approach, the objective function for the contour estimation was
approximated to produce a voxel cost at the polar-transformed image location I(x,y,z) as shown
in Fig. 3(b), which is expressed as:

(2)

where Z is the height of the polar-transformed image and the parameters α̂1 and α̂2 are
approximated as:
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(3)

(4)

2.3.5. Region homogeneity—Degradations in image quality due to severe vascular
disease, videotape recording artifacts, or non-uniform rotational distortion can alter the
development of a true Rayleigh distribution in the image speckle. Therefore, we chose to add
a version of the Chan–Vese minimum variance criterion (Chan and Vese, 2001) as a third
component of our cost function. This term allows segmentation without the presence of
gradients, and without the assumption of a particular statistical model. As with the Rayleigh
cost term, the Chan–Vese functional is restated so that it produces a voxel cost:

(5)

where a1 and a2 are approximated as the means of I(x,y,z1) and I(x,y, z2), which are sets
containing all voxels below (z1 = {z ′ |0 ≤ z ′ ≤ z}) and above (z2 = {z′ |z < z′ < Z}) the surface,
respectively.

2.3.6. Combination of cost terms—The developed cost terms are combined into a total
cost function in a pseudo-probabilistic manner such that the final segmentation produces a
result that is optimal with regards to all of the terms. Prior to combination, the terms are each
normalized so that they fall in the range 0 ≤ Ci ≤ 1, where Ci represents any cost term.
Normalization of each term is performed on a pixelwise basis with respect to the maximum of
each term. In this manner, each term can be thought of as the likelihood that a certain voxel
exhibits the feature that the term represents. Then, the term that jointly estimates the
combination of cost terms can be represented as the product of the individual normalized terms.
The learned terms and the Rayleigh separation term must be inverted in order to search for the
minimum cost path, since they are maximal at the probable border locations. Also, since an
additive procedure is used in the optimization, the logarithm of the product is taken at each
voxel so that when the optimal surfaces are detected, it ensures that each surface optimally
maximizes the joint likelihood of the cost terms over each surface. Note that log

 and minimizing a cost log(C) will also minimize C. The Rayleigh
separation term is omitted from the cost of the adventitial surface because it is only well defined
for a single separation point.

The total costs CtotalLumen(x,y,z) for the lumen/plaque and CtotalAdventitia(x,y,z) for the media/
adventitia borders are then expressed as:

(6)

(7)
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2.4. Fusion of the image data
After the angiographic and IVUS data are segmented, fusion can be performed to yield a 3-D
model (or a set of 3-D models in the 4-D case) for the artery. Since our fusion methodology
has been described in detail elsewhere (Wahle et al., 1999, 2005), only a brief summary will
be given here. A number of fusion systems were introduced in the late 1990’s, which follow
similar schemes. The catheter path is extracted from the biplane angiograms, reconstructed
into 3-D space, and then used to map the IVUS images to their locations. The fusion problem
is two-fold: first, the localization of the individual IVUS frames in 3-D; second, the estimation
of the spatial orientation of each frame.

Some fusion systems require constant angiographic supervision of the catheter during pullback
to reconstruct the respective position of the IVUS frame from the projections of the transducer
(Evans et al., 1996; Pellot et al., 1996; Shekhar et al., 1996). Instead, just a single pair of
angiograms, depicting the IVUS catheter in its most distal location, suffices to reconstruct the
pullback path in 3-D and then follow it during the pullback (Laban et al., 1995; Prause et al.,
1996). This results in reduced radiation exposure and is applicable as long as the pullback path
is sufficiently stable (e.g., sheathed catheter types). Spatial reconstruction of the catheter path
is performed based on the known imaging geometry and the angiographic segmentation based
on the epipolar constraint. In our approach, the method described in Wahle et al. (1995) is used.

The estimation of the absolute orientation of the IVUS frames in 3-D is another critical issue
and is usually resolved using the angiographic lumen as a reference. The outline of the vessel
lumen is visible in both angiographic projections when a small amount of contrast dye is
injected. This is utilized to establish the orientation of the IVUS frames by finding their best
fit with the angiographic outline. The iterative methods of Pellot et al. (1996) and Shekhar et
al. (1996) both used a local match of each individual IVUS frame with the angiographic lumen
outline. In contrast to determining the orientation individually for each frame, constraints from
the Frenet–Serret formulas can be used to determine the axial twist between the frames. Laban
et al. (1995) implemented the Frenet–Serret formulas directly, using a Fourier parameterization
to approximate the catheter path. This parameterization satisfied the requirement of a third-
order derivative as implied by the rules. Our method is based on the sequential triangulation
by Prause et al. (1996), employing a discrete implementation of the Frenet–Serret formulas.

Using differential geometry, only the relative orientation changes from frame to frame can be
establish, the absolute orientation of the frame set yet needs to be determined. Instead of
projecting the IVUS lumen onto the angiograms in order to compare it against the 2-D
angiographic outline, our method goes the opposite way. A 3-D elliptical lumen outline is
reconstructed from the angiograms and compared with the IVUS lumen outline, mapped into
3-D using an arbitrary initial orientation. This allows a non-iterative approach in which a single
correction angle is calculated from an initial orientation and then applied to the entire frame
set (Wahle et al., 1999, 2005). To account for locations of ambiguous information (e.g., uniform
or non-uniform rotations caused by friction of the catheter), a reliability weight is defined for
each frame location, limiting its impact on the overall calculation.

2.5. Morphologic and hemodynamic indices
After the segmentation has been performed and the resulting set of 2-D contours has been fused
with the angiographic information, a 3-D model of the vessel is obtained. From this model,
morphologic and hemodynamic quantitative indices are derived. The reconstructed vascular
model provides 3-D locations for 720 circumferential vertices on both lumen/plaque and media/
adventitia contours, oriented with respect to the IVUS catheter path. To limit the impact of
noise and possible local distortions of the contours, they are downsampled to 72 circumferential
vertices each (5° wedges).
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It has to be kept in mind that the IVUS catheter (and thus the center of the IVUS image) does
not necessarily coincide with the vessel centerline. In fact, this out-of-center position is utilized
during the fusion process to establish the absolute orientation of each IVUS frame (Wahle et
al., 1999). Also, the IVUS frame is usually oriented non-parallel to the vessel course, thus
requiring a resampling of the contours on a plane orthogonal to the vessel. The question remains
whether to reorient the contours with respect to the media/adventitia or the lumen/plaque
border. To avoid any overlap of the reorientation planes in the plaque area, the outer contour
has to be used. Thus, we are determining the quantitative indices with the contours oriented
perpendicularly to the vessel centerline, whereas any radius or plaque thickness calculations
are performed relative to the lumen centerline.

Therefore, we first determine the vessel centerline (i.e., based on the media/adventitia border)
and then determine intermediate contour points in the longitudinal direction using cubic B-
splines. Finally, all contours are reoriented to lie in a plane perpendicular to the vessel
centerline. After this perpendicular resampling, the lumen centerline is determined (i.e., based
on the lumen/plaque border) as a reference for subsequent morphologic analyses. This allows
for the determination of the plaque thickness at each location, as well as volumetric
measurements over any given subsegment of the vessel, without the distorting effects of the
individual location and orientation of the IVUS catheter (Medina et al., 2003).

2.5.1. Definition of the curvature index—In order to determine local curvature magnitude
and direction, computational geometry is employed. To distinguish between locations of
“inner” vs. “outer” curvature on the circumference of the vessel, a new scheme is introduced
that weights the curvature magnitude by an index of the circumferential position of each
element (Wahle et al., 2004). This local index is not to be confused with the overall curvature
of a vessel or a vessel segment as a global measure.

The definition of a local curvature index consists of two steps: (1) determining the local
curvature at each frame; (2) determining the curvature indices for each circumferential point
within that frame. Differential geometry provides a set of three orthonormal unit vectors [Frenet
frame (Wahle et al., 1999)] for each point on a curved line: t⃗ (tangent); n⃗ (normal); and b⃗
(binormal). The curvature k(s) is the angular velocity of the tangent t⃗(s) at a location s of the
centerline c. As shown in Fig. 6(a), the normal vector n⃗(s) always points towards the origin of
the radius of curvature, thus indicating the inner curvature on the circumference.
Complementarily, k(s) is a measure of the magnitude of the curvature.

To combine the magnitude and direction of the curvature, thereby differentiating between inner
and outer curvature, we defined the scalar curvature index kidx(s, i) for each point i at the frame
location s as shown in Fig. 6(b). A positive kidx(s, i) indicates inner curvature, a negative index
outer curvature, and an index close to zero applies for points on the sides of the curved vessel
segment, i.e., perpendicular to n⃗(s). The maximum (most positive) curvature index and the
minimum (most negative) curvature index depend directly on the magnitude of the curvature
k(s) for that frame.

The circumferential position of the vertex point indicating the inner curvature is obtained by
projecting the unit normal vector n⃗(s) on the respective frame at the location s. To determine
the circumferential position of the ith point relative to the inner curvature reference point, a
vector v⃗(s,i) is defined from the centroid c⃗(s) to the ith point of the lumen contour f⃗(s,i) of the
IVUS frame at location s. Finally, kidx(s, i) can be obtained using the dot product:

(8)
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(9)

As an example, Fig. 7(c) shows a color-coded plaque-thickness distribution in a geometrically
correct 3-D representation, with red indicating high and blue indicating low plaque thickness,
normalized over the entire vessel segment. As described above, a curvature index was
determined for each circumferential location on the contour. Fig. 7(d) shows the color-coded
curvature-index distribution, with red indicating inner curvature and blue indicating outer
curvature.

2.5.2. Coronary hemodynamics—The blood flow through the coronary arteries is
simulated and the wall shear stress distribution determined using computational fluid
dynamics (CFD) methodology. Tetrahedral meshing of the lumen using commercially
available meshing software (Gambit, Fluent Inc., Lebanon NH, USA) provides an unstructured
grid for simulations with U2

RANS, a well-validated CFD solver developed at The University of
Iowa (Lai and Przekwas, 1994; Ramaswamy et al., 2004). An example for a tetrahedral mesh
used as input for the CFD analysis is shown in Fig. 8. Employing the computational mesh
created in the reconstructed geometry of the arterial segment, and the specification of the
appropriate boundary conditions, the governing equations of motion for the fluid are solved
by U2

RANS to compute the velocity and pressure fields in the region of interest. For more details,
see Lai and Przekwas (1994). Steady flow in the end-diastolic phase has been chosen for this
study, although we can also perform moving-grid simulations with unsteady flow, at the cost
of increased computational expense (Ramaswamy et al., 2004).

Blood is treated as an incompressible, homogenous, and Newtonian fluid. To allow the flow
to be fully developed at the inlet, the 3-D model of the vessel is extended by 10× the inlet
diameter at the ostium and 5× the outlet diameter at the distal end. Further, the no-slip boundary
condition is specified at the vessel wall and a constant pressure outlet condition is utilized in
the CFD model. The mean flow rate through the left main coronary artery has been reported
to be around 100–120 ml/min (Sabbah et al., 1984; Perktold et al., 1998). Since the flow rate
could not be measured in each of the coronary arteries during data acquisition for each patient
due to procedural limitations, we consequently assumed a flow rate of 100 ml/min for all the
coronary arterial segments employed in this analysis.

Positive and negative wall shear stress values are determined at each circumferential lumen
location and mapped onto the 72 lumen vertices for each contour of the perpendicularly
reoriented 3-D model. While the scalar wall-shear stress value (τ) can be determined directly
at the lumen/plaque border, the directional component has to be determined in a small distance
from the border due to the zero-velocity vectors at the border itself. The axial wall shear stress
(τw), the component of interest in these simulations, is computed employing the relationship

(10)

In this equation, µ is the viscosity coefficient, w is the axial velocity component, r is the radial
coordinate, and a is the radius of the arterial segment. The velocity gradient (dw/dr) is computed
at the wall to determine the axial wall shear stress. After the simulation, the directional τ-values
are associated with the contour points. Any other data from inside the vessel or from the
extensions are excluded from subsequent analysis.
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2.6. Classification of circumferential regions
Each of the 72 circumferential locations in each vessel cross section is categorized with respect
to its relative plaque thickness (above or below average for this cross section), its location
relative to the local vessel curvature (inner or outer curvature), and its wall shear stress (above
or below cross-sectional average). In this way, eight different “regions” result. The data has to
be smoothed with a moving 45°-wedge over 5 frames to limit the impact of local noise. Also,
a ninth “neutral” region includes those areas of curvature magnitude below a certain threshold,
which are eliminated from analysis to avoid distortion of the results by low-curvature regions.

The following two quantitative indices separately correlate plaque distribution with curvature
and plaque distribution with wall shear stress. The corresponding studies are described in
Section 3.

2.6.1. Index for correlation of plaque distribution and curvature—To verify the
observation that plaque tends to accumulate at the inner bend of the curvature rather than at
the outer bend of the curvature, the relative portion rPC of regions where inner curvature
coincides with above-average plaque accumulation, or outer curvature coincides with below-
average plaque accumulation, is determined. The ratio rPC represents a “plaque/curvature
index” with a value rPC > 0.5 indicating that more plaque has accumulated circumferentially
along the inner curvature as compared to the outer curvature, thus supporting the hypothesis.
Four regions are defined, as depicted in Fig. 7(e): Rai (red), Rao (magenta), Rbi (yellow), and
Rbo (blue); the “neutral” region Rn of local below-threshold curvature is colored in green. These
regions represent pairs distinguishing circumferentially “above-average” plaque thickness (a)
from “below-average” plaque thickness (b), coinciding with either “inner curvature” (i) or
“outer curvature” (o) of the vessel wall. Thus, the plaque/curvature index is defined as

(11)

2.6.2. Index for correlation of plaque distribution and wall shear stress—In
analogy to the rPC index, the relative portion rPW of elements for which circumferentially
above-average plaque thickness coincides with below-average wall shear stress (and vice
versa) is determined for each vessel segment. By replacing “inner curvature” (i) with “lower-
than-average wall shear stress” (l) and “outer curvature” (o) with “higher-than-average wall
shear stress” (h) in Eq. (11),

(12)

yields the definition for the plaque/wall-shear–stress index.

3. Studies and results
Except for the new developments in IVUS segmentation presented in this paper, the validation
of our methodology has been performed before and published previously. The fusion system
was validated in computer simulations, phantoms, and in vitro pig hearts as described in Wahle
et al. (1999). The volumetric analysis was validated in computer phantoms (Medina et al.,
2003), so were the curvature measurements and the curvature index (Medina et al., 2004).
Therefore, the following subsections concentrate on IVUS validation as well as on the studies
for analyzing the interdependencies between the circumferential plaque distribution and the
curvature (Section 3.3) and between the circumferential plaque distribution and the local wall
shear stress (Section 3.4). Additional study-specific methodologies are introduced as needed,
and results are presented at the end of each subsection.
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3.1. Acquitition of in vivo patient data
All procedures for acquisition of patient data were approved by the Human Subject Offices of
the respective institutions. IVUS data were acquired using ClearView consoles with 40 MHz
catheters with single rotating transducers (Boston Scientific Inc., Mountain View, CA, USA),
stored on S-VHS tape, and later digitized at 10–15 frames per second. Angiographic data
showing the IVUS catheter and lumen outline was acquired using biplane and single-plane
Philips Integris systems as well as single-plane Toshiba and General Electric systems,
depending on the acquisition site. The angiograms were stored in DICOM format on CD-R
and then directly imported into the fusion system as described in Olszewski et al. (2003).

3.2. Validation of the IVUS segmentation
The segmentation system was tested on a set of 21 in vivo IVUS pullbacks containing a mixture
of each of the three major coronary arteries (8 left anterior descending arteries (LAD), 8 right
coronary arteries (RCA), 5 left circumflex arteries (LCX); 3288 total frames). Following the
optimal 3-D segmentation, lumen/plaque and media/adventitia borders were available for each
vessel. These borders were compared with independent, expert-identified borders that had been
manually traced as the gold standard (Olszewski et al., 2005). In each instance, the vessel being
segmented was left out of the training set used for the cost function design. The differences
between the detected borders and the manually traced borders were computed for 720
corresponding points (every half degree angularly) on each border and are given in Table 1,
showing no bias in segmentation and a maximum positional error of 0.236 mm for the lumen/
plaque and 0.300 mm for the media/adventitia borders.

3.3. Correlating plaque distribution and curvature
The index rPC indicating the relative portion of regions where circumferentially the inner
curvature coincided with above-average plaque accumulation, or the outer curvature coincided
with below-average plaque accumulation, was determined in a set of 60 vessels (preliminary
results in 37 vessels were reported in Wahle et al. (2004)).

3.3.1. Impact of curvature threshold and vessel type—Twelve different threshold
values were empirically selected ranging from 2.31 to 22.94°/cm, resulting in 10.1–77.8% of
circumferential locations being assigned to the neutral region Rn, as colored green in the
example in Fig. 7(e). The thresholds were chosen to exclude from 5° (lowest threshold) to 60°
(highest threshold) of each 90° quadrant of an IVUS frame in the analysis, based on the average
maximum curvature of the vessels in this study. The results are depicted in Fig. 9. The chart
shows that the average rPC over all 60 vessels increases steadily with the increase of the
curvature threshold. Thus, the more regions of low curvature that were included into Rn and,
therefore, increased the proportion of higher curvature regions that were included in the
calculation of rPC, the more the hypothesis was supported.

The increase in standard deviation of rPC prompted us to categorize the results by vessel (Table
2). For this purpose, the number of thresholds was determined (out of the 12 selected ones
shown in Fig. 9) for which rPC > 0.5 was satisfied. While almost two thirds of the vessels
satisfied rPC > 0.5 for all thresholds, the hypothesis was more strongly supported in LAD
arteries (87% for all, or at least half, of the thresholds). The results in the RCA and LCX rteries
were less supportive.

3.3.2. Impact of interventions—Stenting may have a substantial impact on the outcome
of the plaque/curvature index rPC. Preliminary results of a study reported in Lopez et al.
(2005) showed that soft plaque is mainly circumferentially redistributed within the stented
area, whereas hard plaque was mainly compressed. In several of the vessels analyzed, a below-
threshold value of rPC (rPC < 0.5) was determined when all segments were included and only
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branch locations were excluded. After also excluding known regions of intervention and
stenting, rPC > 0.5 was reached, frequently showing the increase of rPC with the increase in
curvature threshold (Fig. 10 and Fig 11). This contradicts our initially reported findings in a
smaller subset of patients (Wahle et al., 2004) in which the plaque/curvature index rPC was not
significantly different whether or not stented regions were included in the analysis. Our new
results rather suggest that substantial disease and stenting may have an effect on the relation
between vessel geometry and plaque distribution.

3.4. Correlating plaque distribution and wall shear stress
We analyzed 48 vessels (a subset of Section 3.3, since some parameters were not available for
vessels received from collaborating sites) for an inverse correlation of circumferential plaque
distribution and corresponding local wall shear stress. The study had to be performed in four
increasingly restrictive subsets of data, since a direct correlation could not be found. This
becomes obvious when revisiting the process of remodeling.

While disease progression and stenting impact the curvature/plaque relationship to some
extent, an even more substantial effect can be expected for the wall shear stress distribution.
The distribution is substantially altered when the limits of positive remodeling are reached
(Wentzel et al., 2003b). Thus, the vessel subsegments for which the area stenosis is between
10% and 40% are of particular interest (the compensatory-enlargement range identified by
Glagov et al. (1987)). Consequently, we concentrated on whether and how significantly the
correlation improves once vessel segments of certain properties are excluded from the analysis.
In this way, indirect evidence of which local conditions favor the underlying hypothesis of
below-average wall shear stress inducing above-average plaque thickness was sought.

3.4.1. Grouping of vessels and segments by disease severity—First, the relative
portion rPW of elements for which circumferentially above-average plaque thickness coincides
with below-average wall shear stress (and vice versa) was determined for each vessel segment
as explained in Section 2.6.2. This step created Set#1. Next, all vessel subsegments that
included vessel branching areas, stents, or regions of dense calcification were excluded,
forming Set#2. Within Set#2, percent-area stenosis was determined for each frame following
Glagov’s definition, which does not require the presence of a normal reference segment (plaque
+ wall area over cross-sectional vessel area) (Glagov et al., 1987). Set#3 consisted of all such
vessels from Set#2 for which the percent-area stenosis was in the range of 10–40% in at least
35% of the non-excluded vessel segments. Set#3 consisted of 31 vessels satisfying this
criterion. In each vessel, the segments of Sets#2 and #3 that were within the 10–40% range of
area stenosis formed Subsets#2a and #3a. The 35% cut-off value was determined empirically
as the minimum percent value of the largest cluster for which the rPW values in Set#2a improved
over Set#2.

An illustration for the definition of these sets is shown in Fig. 12: Vessel 1 shows only minor
disease, whereas Vessel 2 is subject to advanced atherosclerosis; both form Set#1. For Vessel
1, all subsegments are retained when proceeding to Set#2, whereas two subsegments of Vessel
2 were discarded due to calcifications. All subsegments outside the 10–40% area stenosis range
are removed from Set#2 to create Set#2a, thus discarding one subsegment from Vessel 1 and
two subsegments from Vessel 2. Only Vessel 1 proceeds from Set#2 to Set#3, since less than
35% of Vessel 2 are within the 10–40% area stenosis range. For Vessel 1, in analogy to the
step from Set#2 to Set#2a, the center segment is discarded from Set#3 to Set#3a.

3.4.2. Hypothesis test—If the hypothesis is correct and observable in regions where severe
luminal narrowing is not present, the vessels in Subsets#2a and #3a should provide higher
rPW ratios than the corresponding vessels in Sets#2 and #3. Therefore, we determined factors
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gPW quantifying the change gPW{2} = rPW{2a}/rPW{2} for all vessels and gPW{3} = rPW{3a}/
rPW{3} for vessels with the minimum of 35% of frames within the 10–40% area-stenosis range.
Note that the gPW{x} represent the differences in hypothesis validity. Consequently, gPW{x} >
1 suggests a case for which the hypothesis is more strongly supported in those segments of
vessel x with compensatory enlargement as compared to those with lumen narrowing. The
analysis rationale is to determine: (1) whether applying the hypothesis test on the subset of
segments defined in Set#2a (10–40% stenosis) increases the validity of the hypothesis
compared to the Set#2; and, (2) whether applying the hypothesis test on Set#3a (10–40%
stenosis in vessels with ≥35%of the wall within this range) increases the hypothesis validity
compared to the Set#3 (≥35% of the wall within the 10–40% stenosis range).

3.4.3. Changes in hypothesis validity—The results are summarized in Table 3
(gPW{x}≥ 1.01 is considered an “increase” and gPW{x} 6 0.99 a “decrease”). The significance
of the increase of the rPW ratios between Sets#2a/#2 and Sets#3a/#3, respectively, was
determined by a paired t-test for means with null-hypothesis. As can be seen from Table 3, 19
out of 31 (or 61%) vessels in Sets#3a/#3 were in the gPW{x}≥ 1.01 category, whereas only 25
out of 48 (52%) in Sets#2a/#2 were in the gPW{x} 1.01 category. The majority of the vessels
contained in Set#2 but not in Set#3 were in the gPW{x} ≤ 0.99 category. Thus, hypothesis
validity improves and becomes statistically significant in Sets#3a/#3 vs. Sets#2a/#2,
confirming our assumption. A notable cluster of 12 vessels in Set#3, having 35–63% of frames
in the 10–40% area-stenosis range, showed an average 10.2% increase in hypothesis validity
which was highly significant (p < 0.001). This can be explained, in part, by the minimization
of statistical noise with an even distribution of frames within vs. outside of the 10–40% area-
stenosis range.

4. Discussion
The presented studies analyzed the relationships between circumferential plaque distribution
and local vessel curvature as well as between circumferential plaque distribution and wall shear
stress. Common hypotheses that plaque tends to accumulate more frequently on the inner
curvature and thus at locations of relatively low wall shear stress were verified on human in
vivo patient data. To obtain 3-D representations of the vessel segments in highest accuracy,
our well-established and validated fusion methodology was employed. Novel IVUS
segmentation methodology was developed to more efficiently utilize the 3-D context of the
data, previously expert-traced IVUS contours, and the physical properties of ultrasound. In
total, IVUS and angiographic data from 48 vessels (60 for the plaque/curvature study) were
available to obtain a sufficient statistical base for the analyses.

A system for the automated segmentation of IVUS images has been presented. The design of
the cost function, coupled with a 3-D globally optimal graph-based segmentation routing gives
the system a distinct advantage over current systems. The design incorporates both learned and
analytic terms in multiple scales to obtain a robust segmentation. As an added benefit of using
a learning algorithm, the new system also has the ability to continue learning over time and,
hence, the ability to get better with age. Results show that the system agrees with expertly
traced contours in a number of clinical datasets.

The study correlating plaque distribution and curvature showed that indeed plaque accumulates
more frequently on the inner curvature than at the outer curvature in the majority of vessels.
The LAD artery showed the best results, which can be explained by its relatively fair
correspondence to a curved-tube model (Agrawal, 1975; Agrawal et al., 1978). The RCA and
LCX vessels have a more complex (and more tortuous) shape than the LAD and provide less
support for the hypothesis. This was likely caused by the more complex flow patterns in these
vessels that can no longer be explained by the curved-tube model. Another factor was the
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impact of interventions, which frequently distort an otherwise good correlation between plaque
distribution and local curvature. As part of this study, we analyzed the impact of PTCA and
stenting on the correlation between plaque distribution and curvature. Depending on the plaque
composition, plaque is either compressed (in calcific “hard”plaques), or circumferentially
redistributed while retaining its volume (Lopez et al., 2005). Also, stenting may distort the
overall vessel geometry by a stretching effect as reported by von Birgelen et al. (2003).
Consequently, we excluded stented segments from the following steps of the analysis.

While the curvature in general is only moderately influenced by plaque progression, flow
patterns and consequently the wall shear stress distribution substantially change once luminal
narrowing occurs (Wentzel et al., 2003b). It was therefore feasible to assume that a correlation
between circumferential plaque distribution and relatively low wall shear stress primarily
applies to those vessel segments which show compensatory enlargement but no luminal
narrowing. Based on the work of Glagov et al. (1987), the threshold was set at 40% area
stenosis. An IVUS-fusion study performed in 55 vessels (all <50% area stenosis) of 40 patients
showed positive remodeling in 81% of the cases (Feldman et al., 2006), thus confirming the
validity of this assumption. While confirming the observations described by Wentzel et al.
(2003b), our study introduces an essentially automated sorting process based on the
atherosclerotic stage of each individual vessel segment. This process reduces time and effort
necessary to perform such an analysis after the 3-D vascular models are generated.

The correlation of plaque distribution with curvature is much stronger than with wall shear
stress. While we were unable to show a direct correlation of low wall shear stress and increased
plaque accumulation, there was indirect evidence that such correlations apply to vessel
subsegments with compensatory enlargement but without luminal narrowing, as expected.
However, this indirect evidence is only statistically significant as long as a sufficient portion
of vessel subsegments are undergoing compensatory enlargement. If less than 35% of vessel
subsegments remain in the compensatory-enlargement phase, no significant correlation can be
seen. It has to be kept in mind that this cut-off value was determined empirically and may have
to be adjusted after including more patient data, but we assume that this value is sufficiently
representative. This would indicate that the flow patterns responsible for the wall shear stress
distribution are highly affected by the subsegments in later disease stages, thus impacting and
eliminating the overall correlation.

The presented studies are subject to a couple of limitations. Due to the additional effort
necessary to accurately reflect vessel movement over the cardiac cycle, we used only end-
diastolic 3-D data and steady-flow simulations. Since the time-averaged axial wall shear stress
between simulations of steady flow and unsteady flow without arterial motion were shown to
be comparable (Ramaswamy et al., 2004), the steady-flow simulation is likely less of an issue
than the lack of a 4-D moving grid. Improvements in both the segmentation methodology and
the efficiency of moving-grid unsteady-flow CFD simulations, along with faster hardware,
should allow 4-D analyses in larger sets of data in the future.

Since most patients in this study suffered from advanced coronary artery disease, the
relationships we observed were between a substantially altered coronary morphology and the
related (altered) hemodynamic shear stress conditions. Instead of just grouping vessels into
subsegments of advanced or lesser disease at a single snapshot in time, it would certainly be
desirable to have multiple (longitudinal) 3-D or 4-D models for the same vessel available. This
would allow a more accurate comparison of the predicted plaque progression, based on the
initial plaque distribution and wall shear stresses, with the actual plaque distribution as
developed after a certain time has passed. Unfortunately, follow-up in vivo data are rarely
available in a sufficiently large number of patients. Nevertheless, the indirect evidence gathered
from a single snapshot in time is sufficiently conclusive and statistically significant.
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5. Conclusions
Plaque development depends on the wall shear stress distribution, which in turn depends on
the vessel geometry. The presented in vivo studies demonstrate that circumferential plaque
distribution correlates with local vessel curvature, and also correlates with wall shear stress in
early stages of atherosclerosis. To facilitate our study, a novel IVUS segmentation based on
optimum 3-D graph search was employed, in order to minimize time and manual effort for
segmenting the IVUS data. Our results suggest that the correlation is much more pronounced
between circumferential plaque distribution and local curvature than between plaque
distribution and wall shear stress, which may qualify curvature as a more easily applied clinical
marker for practical reasons. Our studies show that, in the majority of vessels, plaque tends to
form at the inner curvature of the vessel wall. These findings suggest that low wall shear stress,
which is typically associated with inner vessel curvature locations, likely contributes to the
initial formation of atherosclerotic plaque in human coronary arteries. We have demonstrated
that the hypothesis of above-average plaque thickness being associated with below-average
wall shear stress is more strongly supported in early stages of disease progression than it is in
later stages of atherosclerosis when positive remodeling can no longer compensate for the
disease and the lumen narrows.
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Fig. 1.
Development of atherosclerotic plaque: lumen – light gray, plaque/intima – mid gray, media
– dark gray; (a) vessel without any stenosis; (b) compensatory enlargement; (c) luminal
narrowing; (d) after treatment with PTCA and stenting; (e) IVUS image with (1) catheter, (2)
lumen/ plaque, and (3) media/adventitia borders.
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Fig. 2.
Processing of the data from acquisition over segmentation to the generation of the plain model,
followed by quantitative analyses used to annotate the 3-D/4-D model.
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Fig. 3.
(a) “Unfolding” an IVUS image frame using a polar transform; (b) this process is applied to
the IVUS pullback, so that the detection of the cylindrical surfaces of varying radius is
transformed to the detection of an elevation map of varying height.
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Fig. 4.
Learned border patterns from a set of training images that have been segmented manually are
examined: An accumulator represents a range of patterns; its entries corresponding to border
patterns are increased with every incidence of that border pattern in the training set.
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Fig. 5.
Segmentation stage using the learned accumulator values of Fig. 4: The accumulator values
are used to assign the likelihood of each pattern in the new image being a border pattern; the
result is a cost image that contains the likelihood of each pixel being a border pixel.
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Fig. 6.
Definition of (a) normal and tangent vectors, (b) the circumferential curvature index kidx
derived from the local curvature k and the projected normal vector n⃗ for a specific IVUS frame;
positive values indicate “inner” and negative values “outer” curvature.
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Fig. 7.
Plaque thickness vs. curvature: (a) angiogram of a left anterior descending artery with the IVUS
catheter inserted; (b) 3-D model with lumen and adventitia borders from fusion, where the
volume between the red and green surfaces represents the vessel wall; (c) plaque thickness
annotation derived from the model shown in (b), where blue color indicates low and red color
high wall thickness; (d) curvature-index annotation derived from (b), blue color marks “outer”
and red “inner” curvature; (e) after classification into regions correlating the data from (c) and
(d), with the branch segment removed from analysis as indicated by the red dotted line – see
Section 2.6.1 for the definition of the regions.
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Fig. 8.
One of the angiograms used for fusion, showing the IVUS catheter path (dotted line) and the
lumen of a right coronary artery; the inset shows the corresponding tetrahedral mesh of the
lumen at the stenotic vessel segment used for CFD analysis.
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Fig. 9.
Results from 60 analyzed vessels, analyzed as illustrated in Fig. 7, with means and standard
deviations per curvature threshold; a value rPC > 0.5 indicates that our hypothesis was satisfied.
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Fig. 10.
IVUS frames of an untreated vessel segment with slight stenosis and after stent placement at
a location with heavy disease.
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Fig. 11.
Index rPC for the vessel shown in Fig. 10 over the full vessel (gray) and with stented
subsegments excluded (black); rPC > 0.5 is only satisfied after exclusion of the diseased
segment as compared to the overall vessel.
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Fig. 12.
Vessel and segment grouping for the definition of the sets described in Section 3.4.1, with two
example vessels of different disease severity.

Wahle et al. Page 32

Med Image Anal. Author manuscript; available in PMC 2008 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wahle et al. Page 33

Table 1
Segmentation border positioning errors

Lumen Adventitia

Signed mean ± SD (mm) 0.042 ± 0.062 −0.007 ± 0.108
Unsigned mean ± SD (mm) 0.180 ± 0.027 0.200 ± 0.069
Maximum (mm) 0.236 0.300
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