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Abstract

In this paper, we propose a novel approach for cortical mapping that computes a direct map between
two cortical surfaces while satisfying constraints on sulcal landmark curves. By computing the map
directly, we can avoid conventional intermediate parameterizations and help simplify the cortical
mapping process. The direct map in our method is formulated as the minimizer of a flexible
variational energy under landmark constraints. The energy can include both a harmonic termto ensure
smoothness of the map and general data terms for the matching of geometric features. Starting from
a properly designed initial map, we compute the map iteratively by solving a partial differential
equation (PDE) defined on the source cortical surface. For numerical implementation, a set of
adaptive numerical schemes are developed to extend the technique of solving PDEs on implicit
surfaces such that landmark constraints are enforced. In our experiments, we show the flexibility of
the direct mapping approach by computing smooth maps following landmark constraints from two
different energies. We also quantitatively compare the metric preserving property of the direct
mapping method with a parametric mapping method on a group of 30 subjects. Finally, we
demonstrate the direct mapping method in the brain mapping applications of atlas construction and
variability analysis.
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1 Introduction

The cerebral cortex is a convoluted sheet of gray matter in the brain that contains many distinct
areas controlling various neural functions. The size, shape, and relative locations of these areas
can be affected profoundly by many normal and pathological processes. The analysis of the
correlation between such structural changes and the correspondingly affected functions on the
cortex is a fundamental problem in brain mapping (Welker, 1990). For such studies, cortical
mapping is an important tool that can provide a detailed comparison of corresponding
functional and anatomical regions on different cortices. A detailed map for a group of cortices
forms the foundation for further statistical analyses of associated properties such as gray matter
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thickness growth or decay at specific locations on the cortex. Mapping a group of cortices to
a cortical atlas also provides a valuable platform for the visualization and analysis of
experimental data collected from group members.

Due to the convoluted nature and variability among different brains, mapping of the cortical
surfaces poses many numerical challenges for classical surface matching algorithms such as
the iterative closest point(ICP) method (Besl and McKay, 1992) and its extension in brain
mapping (Wang et al., 2000). Thus, the cortical mapping problem is conventionally solved
through an indirect approach as illustrated in Fig. 1. A core step in this indirect approach is the
parameterization of the cortical surface that assigns a 2D coordinate to each point on the
surface. Popular parameterization choices include the flat 2D plane and sphere. Considerable
work has been done in this area (Schwartz and Merker, 1986; Schwartz et al., 1989; Carman
et al., 1995; Drury et al., 1996; Sereno et al., 1996; Thompson and Toga, 1996; Hurdal et al.,
1999; Hurdal and Stephenson, 2004; Angenent et al., 1999; Fischl et al., 1999a; Timsari and
Leahy., 2000; Grossman et al., 2002; Gu et al., 2004; Tosun et al., 2004; Tosun and Prince,
2005; Ju et al., 2004; Joshi et al., 2004; Wang et al., 2005b; Van Essen, 2005). The work in
(Clouchoux et al., 2005) also proposed to construct a spherical coordinate system directly on
the cortical surface. In order to map a cortical surface to a flat plane, artificial cuts have to be
introduced carefully to open the surface (Fischl et al., 1999a). Instead, the mapping of the
cortical surface to a sphere maintains the original topology and can be automated completely.

Anatomical features from two different cortices however may not be parameterized with the
same coordinates. To establish the final correspondences from the source cortex to the target
cortex, a warping process needs to be applied in the parameterization domain under
anatomically meaningful constraints. Thanks to the parameterization step, this warping process
can be computed using algorithms developed in nonlinear image registration (Christensen et
al., 1996; Davatzikos et al., 1996; Dupuis et al., 1998; Grenander and Miller, 1998; Toga,
1998; Joshi and Miller, 2000; Thompson et al., 2000a,b; Toga and Thompson, 2003a,b;
Thompson et al., 2004; Avants and Gee, 2004). In terms of anatomical constraints in the
warping process, one of the most popular choices is to constrain the map to match sulcal and
gyral landmarks on both cortical surfaces (Van Essen et al., 1998; Glaunes et al., 2004;
Thompson et al., 2000a,b, 2004). It is interesting to point out that sulcal landmarks were also
used in many nonlinear image registration algorithms (Collins et al., 1998; Cachier et al.,
2001; Hellier and Barillot, 2003). One can also apply curvature related geometric properties
of the cortical surface to guide the mapping procedure (Fischl et al., 1999b; Tosun and Prince,
2005). To establish the final cortex to cortex map, the map computed in the warping process
can be pulled back to both the source and target cortical surfaces using the parameterization.

In this paper, we propose a novel and PDE-based approach to compute a direct map from the
source to the target cortical surface that follows constraints on sulcal landmark curves. By
computing the map directly, we can simplify the whole mapping process and potentially help
reduce numerical artifacts in the intermediate parameterization steps. Our work is built upon
the implicit harmonic mapping method proposed in (Bertalmio et al., 2001; Mémoli et al.,
2004a), which computes a map between two surfaces by iteratively solving a PDE derived
from the Euler-Lagrange equation of the harmonic energy. A key step in this implicit mapping
method, which is defined on the source surface, is to represent both the source and target
surfaces as the zero level set of functions (Osher and Sethian, 1988), which enables the
calculation of intrinsic gradients on the surfaces using well understood numerical schemes on
regular Cartesian grids. The work in (Mémoli et al., 2004a), however, mainly concerns with
mapping between general manifolds and no landmark constraints are considered, which is
critical for our problem. The direct cortical mapping algorithm we develop here extends the
work of (Mémoli et al., 2004a) in several ways. First of all, we develop a general approach to
incorporate boundary conditions into implicit mapping methods. To achieve that, we construct
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a triangular mesh representation of the boundary condition defined on landmark curves. This
makes the information of the boundary condition easily accessible on the Cartesian grid and
leads us to design a set of adaptive numerical schemes to solve the PDE derived from the Euler-
Lagrange equation of the harmonic energy. This enables our algorithm to minimize the
harmonic energy while respecting the boundary condition. Another important element of our
algorithm is a novel approach to finding an initial map between two cortical surfaces using a
new feature called landmark context we develop here. This provides a reasonably good starting
point for our iterative algorithm. Besides landmark constraints, we have also extended the
harmonic energy with general data terms that are valuable in matching geometric features, such
as the mean curvature, of the source and target cortical surface.

Recently an important result from (Mémoli et al., 2006) also considered incorporating
boundary conditions into the direct mapping process. They formulated the boundary condition
as defined on a set of discrete points and proposed to compute the map by minimizing its global
Lipschitz constant. In contrast to the implicit approach, this method is not based on solving
PDEs and finds the map using a search strategy with the aim of minimizing the Lipschitz
constant. This is, in principle, a very general method, but sulcal landmarks were not tested in
(Mémoli et al., 2006), so its application in cortical mapping still needs to be further studied.

In the rest of the paper, we first review the mathematical background of solving PDEs on
implicit surfaces in section 2. We then propose a general variational framework for direct
mapping in section 3 and extend the technique reviewed in section 2 to incorporate boundary
conditions defined on landmark curves. In section 4, we develop a front propagation type
method to construct initial maps based on a new feature landmark context. This provides a
good starting point for our iterative algorithm. An extension of the variational energy to include
general data terms is proposed in section 5. Experimental results are presented in section 6 to
demonstrate our direct mapping method. Finally, conclusions are made in section 7.

2 PDEs on Implicit Surfaces

The idea of using implicit level-set representations to solve PDEs on manifolds was first
introduced in (Bertalmio et al., 2001). Since our current focus is cortical mapping, we limit

our discussion to surfaces embedded in R3, but the general idea of solving PDEs on implicit
manifolds is applicable to arbitrary dimensions.

Let @ denote a surface and a level-set function ¢ : R3 — R be its implicit representation such
that 7 is the zero level set of ¢. Though there are no particular requirement on the level-set
function ¢, we choose ¢ as the signed distance function of 2. This is a desirable choice since
it can greatly simplify many of our mathematical derivations using the property that IV¢gl =1
for a signed distance function.

To present the idea of PDEs on implicit surfaces, we use the heat diffusion equation as an
example:

)

<

= Agu (1)

[<5]

t

where u: M — Risafunction defined on the surface, and A, is the Laplace-Beltrami operator

on M, which is the intrinsic counterpart on the manifold of the Laplacian operator in Euclidean
space. From a variational point of view, the equation in (1) is the flow that minimizes the
harmonic energy function E defined on ®:

= 2
E /MIVMUI dM (2)
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where V,, u is the intrinsic gradient of u on .

One of the major advantages of using the level-set representation is that all computations are
performed on Cartesian grids with easy to implement numerical schemes. Besides representing
the surface @ implicitly with a signed distance function defined on a regular grid, we also need
to extend the function u off the surface to the grid so that all computations can be done
implicitly. Since we only care about the solution of u on the surface, it is only necessary to
extend u to a tubular narrow band around @ as we illustrate in Fig. 2. Typically we extend u
to this narrow band such that v - V=0, i.e., u is constant along the normal direction of 7.

Numerically this can be achieved by using the fast marching method (Tsitsiklis, 1995;Sethian,
1996) or solving the following PDE in the narrow band as proposed in (Chen et al., 1997):

du
5y VU Vg=0. ©)

After extending u to the narrow band, we can transform the energy function on @ into an
integral over the Euclidean space. First we can represent the intrinsic gradient of u on # using
its implicit representation as:

VM u= ”V¢ Vu (4)
where []y4 is a projection operator defined as:
ﬂv¢=1—v¢v¢T. ®)

Here 1 is the identity operator and V ¢ is the normal vector of # using the fact that ¢ is the
signed distance function of . When we apply []v to the regular gradient of u in Euclidean
space, it projects Vu onto the tangent space of . Using this projection operator, the harmonic
energy in (2) can be translated into an integral over the whole Euclidean space in terms of the
level-set function ¢ as:

= [ITlg,vul 2spx. (©)

We can then compute the first variation of the energy with respect to u and derive the gradient
descent flow of u as in (Bertalmio et al., 2001):

%=V~(”V¢Vu). 1)
This is the implicit form of the PDE in (1). Compared with techniques that solve the PDE
explicitly on the surface, the implicit form enables us to perform all computations on the
Cartesian grid and apply standard numerical schemes with well understood error measures.
Since the computations are only done in a narrow band of the surface, the computational cost
is on the same order as methods using explicit representations.

Besides the heat diffusion equation, a solution of fourth order PDEs on implicit surfaces is
developed in (Greer etal., 2005). Also a modified projection operator for the diffusion equation
is proposed in (Greer, 2005) to replace the procedure of reinitialization that extends the function
u off the surface periodically. Finite element schemes are also proposed in (Burger, 2005) for
the solution of PDEs on implicitly represented surfaces. Closely related to the level-set
approach, a phase-field method of solving PDEs on implicit surfaces is proposed in (Ratz and
Voigt, 2005).
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The idea of solving PDEs on implicit surfaces is generalized to the mapping between manifolds

in (Mémoli et al., 2004a,b). Assume we have a source manifold 7 and a target manifold N,
the goal in (Mémoli et al., 2004a,b) is to compute a vector function u : M — N that minimizes
the harmonic energy function. Following the work in (Bertalmio et al., 2001), the source and
target manifold are represented implicitly and we denote gand y as the signed distance function

of M and N , respectively. Similar to the case of scalar functions on the surface, we also extend
the vector map u off the surface # to a narrow band around it. Using the implicit

representations, we can write the harmonic energy of the mapping from @ to N as:
E- fé 1 7% sgdx. @)

Thisis also an energy defined over the Euclidean space about the map u. The intrinsic Jacobian
7¥ in the energy is defined as:

78- 7y, )

with J, denoting the regular Jacobian of function in R3. The matrix norm in (8) is the Frobenius
norm defined as | Jlf 2= le(ff)f.j. To minimize energy function, we can derive the first
variation of the energy with respect to the map u and obtain the gradient descent flow of u as:

9 T
a_l; =TTy, 0V Ty 74D (10)

where Ty, x,n) =1 = Vy (u(x, 1))V (u(x, t))7 is the projection operator onto the tangent space
of NV atthe point u(x, t). This projection operator reflects the constraints that u has to map
each point on M onto N and thus the map is only updated iteratively along the tangent
direction of V.

To extend the work in (Mémoli et al., 2004a,b) and develop a direct cortical mapping strategy,
there are two major challenges. The work to date on solving PDEs on implicit surfaces has

focused on generic surfaces with no landmark constraints, but the constraints of sulcal landmark
curves are very important in brain mapping and novel numerical schemes have to be developed
to incorporate such constraints in computing the map. The second challenge results from the

constraints that the vector u has to be on the target manifold N This makes the optimization
of the energy in (8) non-convex, which is easy to see since the linear combination of two

mappings from M to N s not necessarily a valid mapping. A close initialization has to be
found for this high dimensional (greater than 10%) optimization problem in order for gradient
descent type algorithms to converge to the right solution. Interestingly these two challenges
are closely related. It is indeed the sulcal curves in the first challenge that provide us a solution
to the second challenge. In the next two sections, we will address these two challenges and
present our approach for direct cortical mapping.

3 Direct Cortical Mapping With Sulcal Landmarks

In this section, we first propose our variational framework for cortical mapping with sulcal
landmark constraints. We then develop a triangular mesh representation of the boundary
condition that extends the landmark curves, together with the constraints defined on them, into
the narrow band where we solve the mapping PDE. After that, adaptive numerical schemes on
Cartesian grids are developed to solve the PDE in (10) on the implicitly represented source
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cortical surface while taking into account the boundary condition carried on their mesh
representations.

3.1 A Variational Framework

Let ] denote the source cortical surface and N denote the target cortical surface. Their signed
distance functions are denoted as ¢ and y, respectively. For both surfaces, a set of sulcal curves

are delineated that will control the mapping. Let {C,\’,I‘(k =1, -, k) bethe set of sulcal curves
on M and {C,\]f(k =1, -, k) the sulcal curves on N . In this work, we assume the mapping
between the K pairs of curves (C,jl‘, C,\',‘)(k =1, -, k) are known and they will provide the

boundary conditions for the computation of the map. A simple approach to obtain such a map
is to parameterize each pair of curves with arc length and establish correspondences between
points on the two curves by uniform sampling. One can also establish the mapping between
curves using the method in (Leow et al., 2005).

Given the mapping between sulcal landmark curves on two cortical surfaces, we propose a
general variational framework to compute a direct map u from the source surface # to the

target surface N as follows:

u = arg min £(u) (11)
u

with the boundary condition:

K k
u(Gi) = Gi k=1, -, K. (12)

By solving this variational problem, we can obtain a smooth map from # to N that satisfies
the sulcal landmark constraints.

We first focus on the development of our direct cortical mapping algorithm with E as the
harmonic energy defined in (8). The harmonic mapping between surfaces is a natural extension
of the concept of geodesics on surfaces, which are 1-D harmonic mappings. As the minimizer
of the harmonic energy, the map interpolates as smooth as possible in areas between landmark
curves and can help reduce metric distortions. The mathematics of harmonic mappings is also
very well understood and can be found, for example, in the excellent reviews of (Eells and
Lemaire, 1995). The techniques we develop here for the incorporation of landmark constraints,
however, are not limited to the harmonic energy and can be applied to other energies, for
example p-harmonic energies. This also connects our work to that of (Mémoli et al., 2006) as
we can compute a p-harmonic map to approximate the map that minimizes the Lipschitz
extensions with p — co. Our direct mapping framework in (11) and (12) is flexible and it can
also include interesting data terms with the harmonic energy as a regularizer. After a complete
solution for the minimization of the harmonic energy is developed, we extend it with a least
square data term in section 5 to demonstrate the flexibility of our method.

To solve the energy minimization problem, we use an iterative strategy. Starting from an initial
guess, we update the map iteratively toward the descent direction of the energy function while
maintaining the constraints on landmark curves. This is achieved by treating the constraints in
(12) as Dirichlet boundary conditions while solving the PDE in (10). Intuitively we can view
this as a diffusion process of u on 2. By fixing the value of u over the landmark curves, we
block the flow of the heat across the landmark curves, but otherwise the heat can flow freely
to decrease the harmonic energy.
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Torealize the above idea numerically, we will first develop an algorithm to extend the boundary
condition of the map u on sulcal curves to the narrow band surrounding the source cortical
surface because this is where the map u and the level-set function ¢ are defined in the implicit
approach of solving PDEs on surfaces. The extension of the sulcal curves form surface patches
in the narrow band which we represent as triangular meshes. To take into account the boundary
condition carried on these meshes while solving the PDE in (10), adaptive numerical schemes
are then developed to compute all the gradients of u on Cartesian grids.

3.2 Mesh Representation of the Sulcal Landmark Constraints

We extend each sulcal curve of # jointly with the constraints defined on it to a surface patch
crossing the surrounding narrow band of # where its implicit representation ¢ is defined. The
result of the extension is a triangular mesh representation of the boundary condition. Note that
implicit representations for curves on surfaces were used in (Bertalmio et al., 1999; Burchard
etal., 2001; Cheng et al., 2002; Leow et al., 2005) where a curve was represented as the
intersection of multiple level-set functions. These methods are mainly designed for the
evolution of curves and it could be memory and computationally expensive when the number
of 3D curves increases. For the set of static sulcal landmark curves in our problem, the mesh
representation proposed here provides a compact and effcient way of accessing the boundary
constraints.

Let C denote a sulcal curve on # and we extend the boundary condition u(C) on this curve off
the surface 2 as follows. We first approximate the curve C and the boundary condition u(C)
piecewise linearly by sampling the curve C uniformly into L points as p1, po, **- pL. For each
point pj(1 <i <L) and the boundary condition u(p;) at this point, we extend them off the normal
direction of the surface by constructing a piecewise linear curve consisting of line segments
connecting 2Q + 1 points }al.. J.( - @ < j< @}. Each point on this curve will carry the same

value for the map as u(p;). In constructing this curve, we start with };I. o = P We then extend
p; outward of @ sequentially by defining p, = p; 1thn for 1 <j<Q, where njj1
is the normal direction at the point }Aal.’ 1 defined as v ¢(}71., j—l) and h is the sampling interval

of the Cartesian grid where the implicit function ¢ is defined. Similarly we extend p; inward
sequentially by defining }nj’J.= P; 1 hny for —Q < j < —1 with nj j+1 denoting the
normal direction at the point j)l.‘ e The number Q is chosen bigger enough such that this
curve will cross the narrow band, i.e., both i)LQ and };I.,_Q are outside the narrow band. This

will ensure the triangular mesh constructed next from these curves will also cross the narrow
band. In practice, we choose Q =W + 2 if the narrow band is of width 2W h.

Once we have all the curves emanating from the sampled points pj(1 <i <L) on the sulcal
curve C, we can construct the mesh representation of the boundary condition. The set of vertices
of this mesh includes all the points p, J.(1 <i<L, - @< j< ). The faces of the mesh are

composed of triangles with vertices of the form (p, 7 P; et }JM'J) or
(p; e Pist, et f—”j+1,J)- We denote this triangular mesh as the extended surface of the

landmark curve C. As an example, we show such an extended surface constructed from a
landmark curve in Fig. 3. Because the map u is defined on all the vertices, its value at an
arbitrary point on the extended surface of C can be obtained using linear interpolation from
the map values of the three vertices of the triangle to which it belongs. If we repeat the above
procedure for each sulcal curve of @, we extend the complete set of landmark constraints to
the extended surfaces of these curves. Because these extended surfaces cross the narrow band
of # by construction, each grid point in the narrow band can have access to this information
easily as we show next.
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3.3 Adaptive Numerical Schemes

Before we present our adaptive numerical schemes, we first define the notion of connectedness
between neighboring grid points for the purpose of incorporating landmark constraints. For
two neighboring grid points x; and x,, we call them connected if the line segment connecting
X1 and x, does not cross the extended surface of any landmark curve. In the derivation below,
we will use integer indices such as (i, j, k) to denote points in the 3D Cartesian grid.

In designing numerical schemes to solve (10) and taking into account the boundary conditions,
our basic strategy is to prevent the numerical stencil used in computing partial gradients of u
from crossing the extended surface of any landmark curve. This blocks the diffusion from
crossing such surfaces in the narrow band of #. Since only up to second order gradients are
used in solving (10), we demonstrate below the first and second order adaptive numerical
schemes that take into account the boundary conditions carried on the extended surfaces of
sulcal curves.

Let the three components of the map u be denoted as u = [ul u? u3]. The forward difference
scheme of the first order gradient of uP(p = 1, 2, 3) at the point (i, j, k) is defined as:

uP - uP
i+l jk  “ijk if(i, j, k)and(i+ 1, j, k)are connected,
h

X p _
N ”ij ~p P (13)
ui+l jk = uj!‘k otherwise.
h

where h is the sampling interval of the grid, and ;ﬁuk is the interpolated value of uP at the
intersection of the line segment connecting (i, j, k) and (i + 1, j, k) and the extended surface of

a landmark curve. The numerical stencil used here in computing D+X”5k includes two points

(i, j, k) and (i + 1, j, k). If they are connected, the usual first order forward difference scheme
is adopted; but if they are not, the flow between these two points should be blocked and we
assume a constant extension of the boundary condition from the point of intersection to (i + 1,
j» K). Thus the boundary value ub jk from the extended surfaces is used to replace ulfl Jk to
compute D+Xu5k. Using the same method, the first order difference operators D*, D, D%,

Df, D” can also be defined.

To demonstrate second order numerical schemes, we define the operator D*D.* in the x
direction as follows:

DXuP, — pXuP
+ 7F

+ Tk —1jk if(i, j, k)and(i—1, j, k)are connected,
h
XpX, P _
DXD}ul; ey X (14)
2N ul;,k - D+"1'71J'k otherwise.
h
here Dr uP. = (uP, — ubt ith 71 jx as the interpolated value of uP at th
where D+uj_1jk—(u1:jk—UJ—1Jk)/h with ui-1 jk as the interpolated value of uP at the

intersection between the line segment connecting (i, j, k) and (i — 1, j, k) and the extended
surface of a landmark curve. The numerical stencil used for computing D_XD+Xu5k includes
three points (i — 1, j, k), (i, j, k) and (i + 1, j, k). The case that (i, j, k) and (i + 1, j, k) could be
disconnected is already handled in the definition of D+Xu5k. If (i—1,j,k) and (i, j, k) are
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connected, the usual first forward then backward scheme is used. If these two points are
disconnected, we once again assume constant extension of the boundary condition from the

~X
extended surface and block the flow between them by using the interpolated D+ u Jk to

replace D u? K Following the same principle, we can define DY’ D and D?D7 similarly.

We next assemble all the building blocks of our numerical schemes to solve the PDE in (10)
with landmark constraints. At time t, we denote the map u at a point (i, j, k) as ujjk(t), and we
want to derive the update scheme to compute uijy (t + 1) at the next time step. If we ignore the
projection operator to the target surface [, (ijk(t)) for a moment, we can treat each component
of u separately because:

v-(ﬂ¢vU1)
V-(H¢J"UT)= V-(H¢Vu2). (15)
V-(H¢Vu3)

Let Su}jk( )=V - (l'l¢v uP) (p=1, 2, 3). Following (Mémoli et al., 2004a), we approximate
the gradient with the forward difference scheme and the divergence with a backward difference
scheme. The numerical scheme for computing 5uj§k( t) is:

P _rnXpY pz xnyY nziT, p
suf, | (#)= DX D2 Df]nv¢ljk[0+ D D1 uly (o),

where the projection matrix []v 4jk at point (i, j, k) is computed using the standard central
difference scheme. Let 6u, = [5ul;k6u1§k6ul§k] T our complete numerical scheme to solve
(10) with landmark constraints is as follows:

w (t+ ) —u, (8)
Ji 7 Ji = v V/(ul:jk( t)) 5[11;/.](( t) (16)

where At is the time step, which is selected to be bounded by the stability condition in (Mémoli
et al., 2004a). The projection operator HA\V(Uijk(t)) is also computed using the standard central
difference scheme.

The update equation in (16) for the harmonic map is an explicit numerical scheme which we
chose for its simplicity. For numerical efficiency, other schemes such as implicit schemes can
also be used and are part of our future research. Our method of incorporating boundary
conditions, however, is general and can be easily adapted into these more advanced numerical
schemes.

4 Initialization Using Landmark Context

The numerical algorithm developed in the previous section modifies the gradient descent flow
of the harmonic energy with adaptive operators for computing first and second order partial
gradients, so it is still essentially a steepest descent algorithm. This makes the selection of a
good initialization a critical step for a successful mapping since the optimization of the
variational problem in (11) and (12) is non-convex as pointed out in section 2.

For a high dimensional optimization problem such as cortical mapping, it appears at first to be
a daunting task to find a suitable initial map. However the search space can be greatly reduced
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if we utilize our prior knowledge about the map. First the value of the map u on the set of sulcal
landmark curves on the source manifold @ is already given as our boundary condition. We
also know that u should be interpolated smoothly in areas between these sulcal curves, which
is the point of minimizing the harmonic energy. Based on this knowledge, we propose a novel
front propagation type approach to find a good initial map. All the sulcal curves act as the
source of the front propagation in the beginning of our algorithm. We then move outward to
find the map at their neighboring points by searching locally for the best correlation of a feature
we call landmark context, which is defined at each point on both the source and target cortical
surface. These newly mapped points then serve as the current source of the front and we repeat
the above process until the whole source cortical surface is covered.

Our definition of the landmark context feature on the cortical surface is partly motivated by
the idea of shape context (Belongie et al., 2002) in computer vision. For a shape viewed as a
point set, the shape context feature at each point is defined as a distribution of the relative
locations of other points on the shape with respect to this point. This has proved to be a very
powerful idea for shape matching and object recognition (Tu and Yuille, 2004). Following the
same principle, we define the landmark context for each point p € M as follows:

L Gy(p) =Ld(p. Gy). d(p. G. . d(p. G, i)

where GX(k =1, -, K) is the set of sulcal landmark curves on @ and d(p, G;) is the

geodesic distance from C,\],l‘ to p. Compared with the feature of shape context, our landmark

context feature is computationally more tractable. Its calculation only involves the computation
of the distance transform for a limited set of curves, while shape context needs to compute at
each point the distribution of the rest of the shape. If we view the landmark curves as the axes
of a coordinate system on the cortex, the distances to them at each point intuitively play the
role of coordinates and give us a very good indicator of the relative location of the point on the
cortical surface.

In searching for the initial map with landmark context, we find it convenient to use the triangular
mesh representation of the cortical surfaces, which is typically the original representation of
our data, since we need to work directly with points on the surface and their relation to
landmarks. Once we find the initial map on the triangular mesh, we then embed the mesh into
the narrow band of the level-set function ¢ and extend the map along the normal direction to
the whole narrow band. This is used as the initialization of the iterative PDE-based algorithm
described in section 3.

Without causing confusion, we will still use the notation # and N to denote the triangular
mesh representation of the source and target cortical surface. Each of them is composed of a

set of vertices and faces. The set of sulcal curves on @ is {C,jl‘(k =1, -, k}, with the
corresponding set of sulcal curves on N as {C,f(k =1, -, k). Atthe start of our algorithm,

we compute the geodesic distance transform for each of the sulcal curve on 2 and N using
the fast marching algorithm on triangular meshes ( Kimmel and Sethian, 1998). At each vertex
of the meshes, we record its distance to all sulcal curves and form its landmark context. After

this step, the landmark context is defined at each vertex of # and N,

We next find the initial map at vertices close to the landmark curves and use them as the starting
point of the front propagation process over the triangular mesh #. For a curve Chff on M and

its corresponding curve C,\’,‘ on NV , we sample both of them uniformly into L points. For each
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of the L points on C,\j,l‘, we find the closest vertex on @ and push it into a heap Hg. Similarly,
for each of the L points of CNk, we find the closest vertex on N and push it into a heap Hy.
After this process is repeated for every pair of sulcal landmark curves on 7 and N , We have
two heaps Hgp and H) with matched vertices and are ready to march outward. Note that the

same vertex can appear multiple times in a heap since more than one point on a sulcal curve
can have the same vertex as its closest match. For the heap Hz, this means one vertex is matched

to multiple vertices in N . our algorithm simply uses the first match in Hy as the initial map.

For the heap H), this means one vertex in N is matched by multiple vertices in @, and we
just leave it as it is and let the PDE-based approach improve the map.

Once both heaps are initialized, we start the front propagation process to find the initial map
for all vertices on 7. The matched vertices in Hyp and #) are used as seed points for finding

new matched pairs. In each step we pop out the first element of Hzp and #y, and denote them

as ps and pt respectively. If the match result at the point pg has already been found, we skip
further processing and move on to the next pair of matched vertices in the heaps. Otherwise,
we save pr as the mapping result of pg and search the mapping for neighboring vertices of
ps. To clarify the meaning of neighbors in a mesh, we use the notion of the k-ring neighborhood
of a vertex that is defined as the set of vertices within k edges away from this vertex. For each

vertex in the 1-ring neighborhood of pg that has not found a match in J\“’, we search for its
match locally in a P-ring neighborhood of pt with the highest correlation of their landmark
context, which means they have the most similar relative location with respect to the set of
sulcal curves on the corresponding cortex. Typically we choose P =5 in our experiments. Once
we find a match, we push them into Hg and Hy. After the search is finished for all 1-ring

neighbors of ps, we pop out new elements from Hzy and Hy and continue the above procedure
until the heaps become empty.

As a summary, the complete algorithm of finding the initial map is listed in Table I.

5 Extension To Energy With Data Terms

We have so far developed a complete solution for direct cortical mapping by minimizing the
harmonic energy with landmark constraints. But the implicit mapping technique offers us lots
of flexibility in defining and minimizing energy functions on surfaces. In this section, we
demonstrate this generality by extending the energy function in (11) with data terms.

We first define two feature functions £, : M — Rand £, : N — Ron the source and target

cortical surface. We limit the feature to be scalar for simplicity, but the extension to vectorial
features is straightforward. We also define a weight function w: M — R as follows:

2
W(P)= 1+610*(h—d(p))/h ifd(p)(h, (18)

1 otherwise

for each p € M. Here d(p) = min LC ,(p) is the minimum of the landmark context at p and

h is the sampling interval of the grid. The weight function w decreases from one to 2/(1 +
e10) as d(p) approaches zero. Using the fast marching algorithm, we extend f1, f, and w to the
narrow band of ¢ and y along the normal direction, which are the implicit representations of
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M and N We then define our new energy function that combines the harmonic energy with
a data term:

= [ 1517 8@ +5 [w(hi— p@)Pa@)dz, (19

Harmonic energy Data term

where X is a non-negative regularization parameter. The data term in the new energy function
is a weighted least square term that penalizes the difference between the feature function on
the source and cortical surface. Since the weight function is almost zero in the neighborhood
of sulcal curves, the data term will not violate the landmark constraints in (12).

After computing the first variation of the energy, we obtain the gradient descent flow of the
map u as:

2] T
a—‘; = ”un(x' ) (V . (”V¢ ]u )) + /lw( fl - fZ(U))nVI//(U(X, D) v f2(u) (20)

where the term Ily,,ux,t)) Vf2(u) is the intrinsic gradient of f, at u € N. To solve this equation
numerically and minimize the new energy function, we apply the adaptive schemes we
developed in section 3 and obtain the following numerical scheme that updates ujj from time
ttot+ 1:

=Ty ylu, , (8) bu (1) + /lw( £ folu,d t)))ﬂv yl,  (8) V £yl (8) (21)

where Juijj(t) and Iy, (ujjk(t)) are the same as in (16), and the standard central difference
scheme is used to compute V fo(ujj(t))-

Besides the least square energy in (19), we can also incorporate other data terms into our
extended energy function. For example, it can be the correlation between features, or their
mutual information (Wells et al., 1996;Wang et al., 2005a). Thus our method opens up an
important opportunity for designing customized data terms that suit the need of specific brain
mapping problems.

6 Experimental Results

The inputs to our direct mapping method include both the cortical surfaces and the sulcal
landmark curves defined on the two surfaces. The cortical surfaces used in our experiments
are generated using the algorithm in (MacDonald, 1998) in the form of triangular meshes,
which were used in many neuroscience studies (Thompson et al., 2004). While the cortical
surface generated from this algorithm may not reach the deepest parts of some sulcal regions,
it captures all the major sulci and thus could be viewed as an approximation at certain scale of
the pial surface that represents the outer boundary of the cortex. It is also convenient for manual
tracing of sulcal landmarks on these smooth surfaces. But the direct cortical mapping method
presented here is not limited to specific surface models and can also be applied to cortical
surfaces extracted from other algorithms.

We compute the implicit representations of the cortical surfaces by converting each of them
to a signed distance function with the fast marching algorithm. For the solution of PDEs on
implicit surfaces, the signed distance function is only defined in a narrow band. In our numerical
algorithms, we use an effcient sparse data structure DTGrid proposed in (Nielsen and Museth,
in press) to represent the narrow band. The set of landmark curves are delineated using a
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protocol that defines 36 sulcal and landmark curves. Each curve is sampled to a fixed number
of points with curve length parameterization. One-to-one correspondences between curves on
different cortexes can then be established and used as constraints in our variational framework.

In our first two experiments, we compute the direct map between a pair of cortices by
minimizing the harmonic energy in (8) and the extended energy in (19). These two experiments
illustrate various properties of our direct mapping method. After that, we apply our algorithm
to a group of 30 subjects and compare the property of metric distortion with a parametric
mapping method. Finally, we apply our method to the application of cortical atlas construction
and variability analysis.

6.1 Direct Mapping of Two Cortices with Harmonic Energy

In this experiment, we compute a map from a source cortex to a target cortex by minimizing
the harmonic energy with sulcal landmark constraints. This experiment will illustrate the role
of each step in our algorithm towards the generation of a direct map. The results from this
experiment will also demonstrate the convergence property of our algorithm in optimizing the
harmonic energy and its ability to improve the conformality of the mapping by reducing angle
distortions.

The data used in this experiment, including the source and target cortex and their landmark
curves, are shown in Fig. 4. A set of extend surfaces, as shown in Fig. 5, are constructed from
the landmark curves in Fig. 4(c) using the algorithm proposed in section 3 to extend the
boundary condition off the source cortical surface.

For the triangular mesh of both the source and target cortical surfaces, we then compute the
landmark context at each vertex using the set of landmark curves. Based on this result, an initial
map is then computed using the algorithm developed in section 4. To visualize this map, we
first pull a checkerboard pattern onto the source cortex using the conformal mapping algorithm
in (Gu et al., 2004). The lateral and medial view of this pattern on the source cortex are shown
in Fig. 6(a) and (b). The checkerboard pattern is then projected onto the target cortex with the
initial map and the results are shown in Fig. 6(c) and (d). Even though the initial map may
appear quite good, we can clearly see noisy distortions at various locations such as the regions
inside the black ellipses in both views. The initial map defined on the triangular mesh is
extended to the narrow band along normal directions with the fast marching algorithm such
that Vu - Vg =0.

With the initial map provided from the previous step, we start our numerical algorithm that
solves the PDE in (10). The parameters in our algorithm are chosen as: the sampling interval
of the grid h = 1 mm and the time step At = 0.1. To prevent the map u from drifting away from
the target surface due to numerical errors, we project it back onto the target surface using the
operator IT,,(ujjk(t)) every 5 iterations. As a common practice in level-set techniques, the map
is also re-initialized every 30 iterations such that the property Vu-V¢ = 0 is approximately
satisfied. The final mapping result is obtained after 5000 iterations. The total computation time
is around 4 hours on a 3.19GHz PC.

In this iterative solution process, the harmonic energy function is reduced over time and
converges toward the end of iterations as we show in Fig. 7. The direct map computed from
our algorithm is visualized in Fig. 6(e) and (f) by projecting the checkerboard pattern on the
source cortical surface shown in Fig. 6(a) and (b) to the target cortical surface. In comparison
with the projected pattern using the initial map as shown in Fig. 6(c) and (d), we can see clearly
that the smoothness of the map is improved significantly, for example in regions highlighted
by the black ellipses. This is the desired result from the minimization of the harmonic energy.
Because of our adaptive numerical schemes, the landmark constraints are maintained as we
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solve the PDE over time. To illustrate this point, we have plotted the final map on seven major
sulcal curves in Fig. 8 and we can see clearly the landmark constraints are satisfied. This shows
that a smooth map is obtained while satisfying the landmark constraints.

An important property of the harmonic map is that it is also conformal when the target surface
is of non-negative curvature (Gu et al., 2004). Even though there is no such guarantee in the
direct map we computed because of the convoluted nature of the target surface and the presence
of landmark constraints, we still observe in our experiment the improvement in conformality
as the harmonic energy is minimized. To illustrate this property, we computed the angle
distortions in the checkerboard pattern as we project it onto the target cortex. The histogram
of the angle distortions resulted from the initial and final map are plotted in Fig. 9 (a) and (b).
The mean of both histograms are approximately zero, but the standard deviation improves from
31.8831° to 26.5888°. This shows the magnitude of angle distortions are reduced as the
harmonic energy is minimized.

The above experiment demonstrates that a smooth map between the source and target cortical
surface is generated from our direct mapping algorithm. For validation purposes, we have also
applied the above process to map the source cortical surface in Fig. 4(a) to itself. We then
measure the distance between each vertex and its image under the resulting mapping to quantify
numerical accuracy. Because of the finite resolution of the implicit representation, this distance
will not be zero but should be on the same order as the grid resolution. Indeed the result verifies
our intuition and the average distance over all vertices is 0.47mm, which is less than the grid
interval that we chose as h = 1mm to match the resolution of the input triangular mesh
representation of the cortical surfaces.

6.2 Cortical Mapping with Data Terms

In the second experiment, we demonstrate direct cortical mapping from the minimization of
the energy in (19) with both the harmonic energy and a data term. We choose the feature f;
and f, as the mean curvature of the cortical surfaces in this experiment. By penalizing the
difference between mean curvature in the energy function, our goal is to obtain a smooth map
that also matches similar geometric property.

We use the same data in the first experiment as shown in Fig. 4. The mean curvature of the
source and target cortex are shown in Fig. 10. The regularization parameter is chosen as A =
60. Because of the extra data term, we choose a smaller time step At = 0.01 for numerical
stability. We use the result from the first experiment as our initial map and update it iteratively
according to (21) to compute the minimizer of the energy in (19). The total energy converges
over time as shown in Fig. 11(a) and we obtain the final result after 3000 iterations. As in the
first experiment, we visualize the result by mapping the checkerboard pattern on the source
cortex in Fig. 6 (a) and (b) to the target cortex in Fig. 12 (a) and (b).

Comparing the projected checkerboard pattern in Fig. 12 (a) and (b) to that in Fig. 6 (¢) and
(F), we can see it is less smooth in various locations, such as the frontal lobe. This is reflected
in the monotonic increase of the harmonic energy, shown in Fig. 11(b), as the total energy is
minimized. It shows that the incorporation of the data term shifts the map from its initial value
as the minimizer of the harmonic energy. We have also plotted in Fig. 11(c) the change of the
data term energy, which is the weighted least square of the difference between the mean
curvature on the two cortices. We can see it decreases over time and reduces to less than half
of its initial value. This shows quantitatively we have a better match of the mean curvature
profile between the source and target cortex.
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6.3 Quantitative Comparisons with a Parametric Mapping Method

In this section, we compare the metric distortion property of our direct mapping method and a
parametric mapping method. Since data terms are not included for most parametric mapping
algorithms with landmark constraints, we use only the harmonic energy in our comparison.
With sulcal landmark constraints, the goal of our direct mapping method is to compute a map
that interpolates smoothly between these landmark curves. Ideally the map should be as close
as possible to an isometry up to a scaling factor for regions between corresponding landmark
curves on the source and target cortical surfaces. To validate this property, we will first propose
an approach to measure the metric distortion of a map between cortices with landmark
constraints. Quantitative comparisons are then performed between our direct mapping
algorithm and a popular parametric mapping algorithm on a group of 30 subjects.

For ease of comparison with parametric approaches, we define the metric distortion measure
in terms of the triangular mesh representation of cortical surfaces. Let 4 and N denote two
triangular meshes and u the mapping from @ to N that establishes a one to one

correspondence between vertices of # and N For a vertex x in the source mesh M, we can
define acircular patch C(x) on 7 as its geodesic neighborhood of radius r. Let the set of vertices

that fall inside this patch C(x) be denoted as {yl.}';= . and their geodesic distances to x as de.

This set of geodesic distances can be organized into a lower triangular matrix T with its elements
defined as le= dl.M / dJM. Correspondingly, we have the set of vertices {u(yl.)ll;l} inside the

patch u(C(x)) on the target mesh N Their geodesic distances to u(x) are denoted as dl!\‘ and
they can also be organized into a lower triangular matrix T" with its elements defined as

T = aly/ djN. Following (Tosun et al., 2004), we define as follows a metric distortion

measure to test the quality of the map locally:

_ %2
| = 1 (le 1j)
2 i T

T (22)
J i i

This measure quantifies the metric distortion from the source patch C(x) to the target patch u
(C(x)). The lower the measure &, the more similar are the two patches. This measure is zero
when the map is locally an isometry up to a scaling factor from C(x) to u(C(x)), in which case

d !N is simply a scaling of d(i=1, -, L).

Even though the measure & in (22) is defined formally as in (Tosun et al., 2004), the scenario
of its application here is different. In (Tosun et al., 2004), it is used to measure the global metric
distortion over the whole cortex under spherical mapping with no landmark constraints. In a
cortex to cortex mapping, however, each part of the cortex is stretched or compressed
differently due to enforcement of the landmark constraints. To quantify how smooth the
boundary conditions are interpolated between sulcal curves, we should avoid mixing different
interpolation effects across different sides of these curves. Thus the patches used for the
evaluation of metric distortions should not cross any sulcal curves. For a given radius r, this
can be ensured by choosing the center point of the patch as those vertices x with min

min LC \,(x) > r, where LC ,(x) is the landmark context of x computed from the set of

landmark curves on @.

Using the metric distortion measure «&, we next compare our algorithm experimentally with a
popular parametric approach proposed in (Thompson et al., 2000b, 2004). For a source cortex
and a target cortex, this approach first maps them to spherical coordinates and then solves a
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system of partial differential equations governed by the Cauchy-Navier differential operator
to compute the map. The covariant forms of the differential operators are used to take into
account the Riemannian metric of the cortical surfaces. Once the map is computed in the
spherical domain, it can be pulled back to the original cortices and we denote it as

u; : M — N, where @ and N, are triangular mesh representations of the source and target

cortex. With our direct mapping approach, we also compute a map u, for the same pair of
cortices without the intermediate parameterization steps. Since the map u, is defined in a
narrow band of the source cortex, we can obtain its value on each vertex of @ easily using
simple linear interpolations on the Cartesian grid. The image of # on the target cortex under
the map u; is denoted as N, = u,(M).

In our experiment, we compare the metric distortion properties of the two different mapping
methods on a group of 30 cortices. We divide this group into 15 pairs randomly such that each
pair has a source cortex and a target cortex. For each pair, we compute both the map

u; : M — N, with the parametric approach and the map u, : M — N,, with our direct mapping

method. For both u; and us, the metric distortion measure W is computed at 5000 randomly
selected circular patches of radius r = 5 on the source cortex . As we pointed out above, these
patches do not cross any sulcal curves. The mean and standard deviation of the metric distortion
measure at these 5000 patches are computed for both u; and u, and plotted for the whole group
in Fig. 13(a) and (b). From these plots, we can see that our direct mapping algorithm performs
better in terms of both the mean and standard deviation of the metric distortion.

The above experiment shows that metric is better preserved in the direct map computed from
the minimization of the harmonic energy, but we readily acknowledge that this is far from a
thorough comparison between our direct mapping method and parametric mapping approaches,
which is a very difficult task because both types of methods have their relative strength and
weakness. The biggest advantage of our direct mapping method is that the whole mapping
process is simplified by skipping the intermediate parameterization steps. The direct mapping
method is also flexible in that it can incorporate variational energies with generic data terms.
The parametric mapping approach, however, does have advantages in ensuring the
diffeomorphic property of the map. The Eells-Sampson theorem (Eells and Sampson, 1964)
tells us that the harmonic map from the cortical surface to the sphere is a diffeomorphism. The
2D warping process that matches landmark curves can also be guaranteed diffeomorphic with
the work of computing large deformation diffeomorphisms (Christensen et al., 1996; Joshi and
Miller, 2000). This ensures the final cortex to cortex map to be a diffeomorphism. Currently
our direct mapping method is not provably diffeomorphic, but our experimental results
demonstrate that it can obtain smooth maps of good metric preserving quality. Theoretically
it is also possible for the heat flow of harmonic maps to have singularities under boundary
constraints (Hardt, 1997). Finite-time blow-ups of a heat flow that maps from a disk to the
sphere were reported in (Chang et al., 1992). But practically the direct cortical mapping method
is very stable in our experience, probably due to the constraints imposed by the sulcal
landmarks. We illustrate next that this new method can be easily applied to typical brain
mapping applications such as cortical atlas construction and variability analysis.

6.4 Application: Cortical Atlas Construction

Atlas construction is a critical step in brain mapping. It integrates information from multiple
brains and offers a framework for visualization and many analysis tasks, such as brain
variability and asymmetry (Togaetal., 2001). In this section, we demonstrate atlas construction
from the results of our direct mapping method using conventional cortical atlas construction
techniques based on parametric surface representations.
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Let My, My, -, My be a group of cortical surfaces represented as triangular meshes. Their

implicit representations are correspondingly a group of signed distance functions
#y #1> -+ ¢ For simplicity we use @ as the source cortex and apply our direct mapping

algorithm to compute K maps from ¢y to ¢, (k = 1, -, K) with landmark constraints. The K

direct maps from our algorithm are computed in the narrow band of #)y where its implicit
representation ¢y is defined. To obtain values of the direct map on the vertices of @y, we use
linear interpolation. This provides us K explicit maps u, : My — M, (k =1, -, K) on the

triangular mesh o, which projects each vertex of g onto M, . We also denote ug as the

identity map from @), onto itself. With these maps, we can construct the cortical atlas ™ as the
average of this group of cortical surfaces. The averaging process is defined formally as follows:

1 X
M= T 2 Mo (23)

which defines that each vertex of the atlas M is the mean of K + 1 corresponding points on the
set of cortical surfaces My, M, -, My.

Asasimple application of this atlas, we can compute the variability at each vertex of the cortical
atlas and it is defined formally as:

K
1
var(M) = - PR u, (Mg) = il

3 2. (24)
where Il - Il denotes the I, norm of vectors in R3. At each vertex of M, this equation computes
the variance of the coordinates of its corresponding pointson M, M, -, M established by

the maps uy, u;, -, uy.

We present next experimental results of atlas construction from a group of nine left hemispheres
as shown in Fig. 14. The cortex in the middle is used as the source cortex #]p and we compute
the map from this source cortex to the rest of eight cortices by minimizing the harmonic energy.
After that, the cortical atlas is computed using (23) and shown from both the lateral and medial
view in Fig. 15(a) and (b). Since sulcal landmark constraints are strictly followed in our direct
mapping algorithm, major sulcal curves are still clearly visible in the atlas. Using the cortical
atlas, we also computed the variability map using (24). The lateral and medial view of this map
are shown in Fig. 16(a) and (b). From this map on the cortical atlas, we can observe that the
frontal, temporal and parietal-occipital lobes exhibit different degrees of variability among this
group of subjects.

7 Conclusions

In this paper we proposed a direct mapping approach to compute maps between cortical
surfaces with sulcal landmark constraints. This new method can avoid intermediate
parameterizations in conventional approaches and greatly simplify the cortical mapping
process. The direct mapping method is also very flexible and it can compute maps as the
minimizer of variational energies with both the harmonic energy and general data fidelity terms.
Experimental results demonstrate that our method can compute smooth maps between cortical
surfaces while respecting landmark constraints. The application of our algorithm for cortical
atlas construction and variability analysis in brain mapping were also presented.
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Fig. 1.
The parametric approach of cortical mapping.

Med Image Anal. Author manuscript; available in PMC 2008 June 1.



1duasnuely Joyiny Vd-HIN 1duosnuey JoyIny vd-HIN

1duasnuely Joyiny vd-HIN

Shi et al.

Page 22

Fig. 2. An illustration of the narrow band of a manifold # in 2D

The thick curve is the manifold of interest and the gray region surrounding it is where the
implicit mapping approach solve the PDE derived from the Euler-Lagrange equation of the
harmonic energy.
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Fig. 3.
The extended surface of a landmark curve(the thick black line) is represented as a triangular
mesh.
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() (d)

Fig. 4. The input data for the mapping of two cortical surfaces
(a) The source cortex. (b) The target cortex. (c) The set of sulcal landmark curves of the source
cortex. (d) The set of sulcal landmark curves of the target cortex.
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Fig. 5.
The set of extended surfaces constructed from all the landmark curves of the source cortical
surface.
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Fig. 6. Visualization of the direct map between cortical surfaces in both the lateral and medial view
(a) and (b) are the checkerboard pattern on the source cortex. (c) and (d) are the checkerboard
pattern mapped onto the target cortex using the initial map. (e) and (f) are the checkerboard
pattern mapped onto the target cortex using the direct map computed from our algorithm. The
smoothness of the map is improved as can be seen in regions inside the black ellipses.
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The energy decreases over the solution process.
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Fig. 8.

The direct map on seven major sulcal curves. The thin and blue lines are the sulcal curves on
the source cortex and the thick and red lines are the sulcal curves on the target cortex. The map
is visualized as the displacement vector fields on the sulcal curves of the source cortex.
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Fig. 9. The effect of improving angle distortions with the direct map
(a) The distribution of angle distortions from the initial map (mean = 0.5726°, std = 31.8831°.
(b) The distribution of angle distortions from the direct map (mean = 0.9208°, std = 26.5888°).
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Fig. 10. The mean curvature map on cortical surfaces
(a) The source cortex. (b) The target cortex.
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Fig. 11. The change of the energy functions over time
(a) The total energy with both the harmonic energy and the data term. (b) The harmonic energy.

(c) The data term energy.
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Fig. 12. Visualization of the map computed from the minimization of the energy with the least
square data term
(a) The lateral view. (b) The medial view.

Med Image Anal. Author manuscript; available in PMC 2008 June 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Shi et al.

Page 33

1 v v v v
=-8-direct mapping
—#¥-parametric mapping
0.8f
0.6}
=
@
(7]
=
0.4f
0.2

Pair number

(a)

=8-direct mapping
—¥-parametric mapping
0.8p
0.6}
a
._
w0
0.4F

G 1 i i i s 1 L
2 4 6 8 10 12 14
Pair number

(b)

Fig. 13. A comparison of the metric distortion property of the direct and parametric mapping
algorithm
(a) The mean of the metric distortions on each pair. (b) The standard deviation of the metric

distortions on each pair.
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Fig. 14.
The construction of a cortical atlas from a group of nine subjects.
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Fig. 15. The cortical atlas
(a) Lateral view. (b) Medial view.
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Fig. 16. The map of variability on the cortical atlas
(a) Lateral view. (b) Medial View.
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Table 1
The algorithm for finding the initial map using landmark context
Step 1: Initialize the heaps Hgy and HN Initialize an array IsMatched as false at each vertex of .

: Step 2: ps = pop_out(Hz) and pr= pop_out(HN).
. Step 3: If IsMatched(ps)=true, go back to Step 2. Otherwise, save the match result at ps as pr. Set IsMatched(ps) = true.

. Step 4: For each 1-ring neighbor p; of pg that has not been matched, find its best match in the P-ring neighborhood of pt using the correlation
of landmark context. Push p; into Hg and its map into HN.

. Step 5: If the heaps are empty, stop the algorithm. Otherwise, go back to Step 2.
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