
Seppä, M. (2007). High­quality two­stage resampling for 3­D volumes in medical
imaging. Medical Image Analysis, 11: 346­360.

© 2007 Elsevier Science

Reprinted with permission from Elsevier.

www.elsevier.com/locate/media

Medical Image Analysis 11 (2007) 346–360
High-quality two-stage resampling for 3-D volumes in medical imaging

Mika Seppä *

Brain Research Unit, Low Temperature Laboratory, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland

Received 10 May 2006; received in revised form 18 January 2007; accepted 21 March 2007
Available online 30 March 2007
Abstract

This paper introduces a simple method of two-stage resampling where Fourier-domain up-sampling is followed by traditional resam-
pling. Practical aspects as well as efficient implementation techniques are considered. A new version of pruned FFT algorithms to cal-
culate the up-sampling stage is also introduced. The suggested two-stage resampling method provides very high-quality results exceeding
those of the previous algorithms. It excels with higher dimensional datasets due to its ability to employ small-support kernels. The
applied FFT algorithms make the method most efficient with dataset sizes of powers of two. These reasons and the importance of min-
imal resampling artifacts make the suggested method especially suitable for 3-D volumes in medical imaging. Furthermore, for repeated
uses, only the second stage is recalculated allowing an increase in performance for motion correction applications in functional magnetic
resonance imaging (fMRI), for example.
� 2007 Elsevier B.V. All rights reserved.

Keywords: FFT; Resampling; MRI
1. Introduction

Resampling is a common operation in all signal and
image processing applications. Available methods vary in
their computational complexity, speed, and quality. The
fastest methods employ nearest neighbor and linear inter-
polation. Theoretically optimal but computationally one
of the most expensive methods is full-width sinc interpola-
tion that is applied in this paper.

Sinc interpolation can be used to perfectly restore the
underlying periodic and band-limited continuous signal
from digitized samples. This restoration assumes, of
course, that the sampling frequency has been high enough
to capture all signal frequencies. The reason why full-width
sinc interpolation is not so widely used lies in its computa-
tional complexity and in the adverse effects that noise can
cause (i.e. noise ringing). As the sinc function extends to
infinity, theoretically all the samples have an effect on each
output value. A common approach is to use windowed,
1361-8415/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.media.2007.03.002

* Tel.: +358 9 4516150; fax: +358 9 4512969.
E-mail address: mika.seppa@hut.fi
instead of full-width, sinc interpolation so that a finite-sup-
port interpolation kernel can be used.

In addition to windowed sinc and linear interpolations,
other common finite-support methods include cubic (Keys,
1981), spline (Hou and Andrews, 1978), and polynomial
(Meijering et al., 1999) interpolation. Surveys by Lehmann
et al. (1999, 2001) and by Meijering et al. (2001) provide a
comprehensive comparison of different interpolation ker-
nels. Specialized methods also exist for certain image pro-
cessing tasks. For example, in 2-D image rotation the
rotation matrix can be decomposed into two or three one-
dimensional image shears (Catmull and Smith, 1980; Tsuch-
ida et al., 1987; Unser et al., 1995). The interpolation kernels
are typically separable, but non-separable two-dimensional
cubic kernels have been studied as well (Reichenbach and
Geng, 2003). In shape-based interpolation (Goshtasby
et al., 1992; Grevera and Udupa, 1996, 1998), the interpola-
tion process itself is influenced by the underlying data.

The so-called generalized interpolation methods (Blu
et al., 1999, 2001; Thévenaz et al., 2000) represent interest-
ing and conceptually new advances in interpolation. They
replace the normal interpolation kernel by a non-

mailto:mika.seppa@hut.fi

M. Seppä / Medical Image Analysis 11 (2007) 346–360 347
interpolating one and prefilter the data. A very original
improvement to the well-known linear interpolation has
been also introduced (Blu et al., 2004) where simple shift
improves the interpolation results.

In this paper, I explore the practical aspects of a simple
two-stage resampling method where the original data are
first up-sampled in Fourier domain to obtain a high-quality
intermediate stage. This Fourier domain up-sampling is
equivalent to employing full-width sinc kernel in signal
domain. Then follows a typical compact-support resam-
pling step to calculate the final result. Fast implementation
as well as other practical issues are discussed. The results
prove the proposed two-stage resampling method to be a
very applicable solution providing high-quality resampling,
especially for 3-D volumes in medical imaging.

2. Methods

This section introduces the resampling methods used in
this work. First, the traditional interpolation and the gener-
alized interpolation are briefly described. Then the up-
sampling in Fourier domain is explained and its practical
implementations and limitations are discussed. The last part
of this section explores the idea of two-stage resampling.

The main novelties of this work are the combination of
Fourier domain up-sampling with normal resampling, the
details that need to be considered, and the efficient imple-
mentation of the up-sampling stage. This section also intro-
duces a novel modification to the fast Fourier transform
(FFT) algorithm that offers faster processing in the special
case of up-sampling. Therefore, the main focus here is in
the Fourier domain processing.

All of the interpolation kernels studied in this work are
separable and therefore the theory can be explored easily in
one dimension. For practical applications, the number of
original and final samples is assumed to be roughly the
same. Thus, for example, a 3-D volume is resampled to
yield a new 3-D volume of approximately the same size.
Applications such as motion correction in functional mag-
netic resonance imaging (fMRI) and volume registration in
general are good examples of these cases. However, if only
one or few output samples would be required, some of the
methods here would not be efficient as they preprocess the
full dataset.
Fig. 1. Examples of handling samples outside dataset boundaries. Original im
outside the dataset. The panels are for zero filling (b), mirror boundary exten
2.1. Traditional interpolation

The problem of interpolating a discrete data sequence fk

can be written as a product with an interpolating kernel
function uint(x) (Thévenaz et al., 2000) giving for x 2 R

f ðxÞ ¼
X
k2Z

fkuintðx� kÞ: ð1Þ

For kernel uint(x) to be interpolating one, it must satisfy
uint(0) = 1 and uint(k) = 0 for all integer k 6¼ 0.

Support is the most crucial property of uint(x) affecting
the computational efficiency of the traditional interpola-
tion. Support is the range of x where the kernel uint(x)
assumes non-zero values and its size specifies how many
samples and how many calculations are required for each
output value. If the size of the support is S, the number
of input samples consulted and the number of multiplica-
tions needed per output value is SD for D dimensional data.
For example, in three dimensional case, each output value
requires 23 = 8 multiplications for linear interpolation
(support 2) and 43 = 64 multiplications for cubic interpola-
tion (support 4). The size of the support also affects the
interpolation quality so that larger support allows higher
quality results.

The computational complexity of evaluating uint(x) for
a given x also affects the efficiency of the traditional inter-
polation. Typically, uint(x) is polynomial and the differ-
ences in speed are negligible between different kernels
with the same support size. However, some interpolators
which use trigonometric functions in their kernel are com-
putationally more costly; the windowed sinc interpolation
is a good example of these methods.

For the algorithmic implementation of the traditional
interpolation, the values outside the dataset are typically
assumed to be constant (zero). Other possibilities are to
assume that the dataset is mirrored or repeated (see
Fig. 1). The selected implementation affects values that
are computed at the edge and outside the dataset. Mirror-
ing allows the smoothest continuation of the signal and
thus causes the smallest edge effects. On the other hand,
in some applications it is useful to clearly see when output
contains samples from outside the original dataset. These
applications typically apply implementations that assume
constant (zero) outside values.
age (a) is rotated and scaled down so that the results will contain regions
sion (c), and dataset repetition (d).

348 M. Seppä / Medical Image Analysis 11 (2007) 346–360
For more information about traditional interpolation
and for comparisons of different kernels with several sup-
port sizes, see surveys by Lehmann et al. (1999, 2001)
and by Meijering et al. (2001).

2.2. Generalized interpolation

Similarly as above, the generalized interpolation (Blu
et al., 1999, 2001; Thévenaz et al., 2000) is also written as
a product

f ðxÞ ¼
X
k2Z

ckuðx� kÞ: ð2Þ

Here, the original samples fk of Eq. (1) are replaced by pre-
filtered samples ck, and the interpolating kernel uint(x) is
replaced by a general kernel u(x). The prefiltering creating
ck is linked to u(x) by the interpolation condition f(k) = fk,
i.e. the function f(x) must reproduce the original samples.

The benefit of the generalized interpolation is that a
small-support kernel u(x) can be used for computational
efficiency. Due to the prefiltering, the generalized interpola-
tion has information available from larger area than a
traditional interpolation of equal support. As shown by
Blu et al. (1999), the prefiltering can be implemented effi-
ciently as succession of forward and backward recursive fil-
ters. Thus, the additional time for the prefiltering step is
minimal. Furthermore, if repeated computation is per-
formed on a dataset, the data can be prefiltered just once
and then kept in this prefiltered form.

Due to the required prefiltering, also spline interpolation
(Hou and Andrews, 1978; Unser et al., 1993a,b; Unser,
1999) and the shifted linear interpolation (Blu et al.,
2004) fall into this generalized interpolation category.
Maximal-order-minimal-support (MOMS) functions made
of linear combinations of B-splines and its derivatives are
an interesting class of functions. These functions were
introduced in Blu et al. (2001) and were shown to have
minimal support for a given interpolation accuracy. The
optimal versions were labeled as OMOMS which are also
employed in this study.

Prefilterings employed in the generalized interpolation
typically amplify high frequencies and thus discontinuities
at the edges of the dataset may cause artifacts. As sug-
gested by Blu et al. (1999), it is reasonable to use mirror
boundary extension (Thévenaz et al., 2000) for the general-
ized interpolation to maximize continuity at the edges
(Fig. 1c). The selected boundary extension method must
be used both by the prefiltering implementation and by
the actual kernel multiplication algorithm for consistent
results.
2.3. Up-sampling in Fourier domain

The most efficient ways to employ full-width sinc inter-
polation utilize Fourier transforms. One alternative is to
use sub-sample shifts which can be implemented as
phase-shifts in Fourier domain. Another class of methods
use zero filling in Fourier domain combined with pruned
fast Fourier transform (FFT) algorithms. Below, both of
these approaches are described after a short introduction
of some basic concepts. Details about the new fast sinc
magnification (FSM) implementation of the pruned FFT
algorithm are then described. Finally, some notes are given
about the use and limitations of all these methods.
2.3.1. DFT

The discrete Fourier transform (DFT) G(u) of an N

sample array g(x) and the inverse transform are defined
as

GðuÞ ¼FfgðxÞg ¼
XN�1

x¼0

gðxÞe�i2pux=N ð3Þ

gðxÞ ¼F�1fGðuÞg ¼ 1

N

XN�1

u¼0

GðuÞei2pux=N ð4Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, and Ff. . .g and F�1f. . .g denote the Fou-
rier and the inverse Fourier transforms, respectively. The
Fourier transform and the inverse Fourier transform have
several well-known properties (Gonzalez and Woods, 1992)
such as separability, translation, periodicity, and conjugate
symmetry.
2.3.2. Zero-filled up-sampling

The Fourier-transformed array G(u) holds the transform
for zero frequency at position u = 0 and the transforms for
positive frequencies at u = 1, . . . ,u = N/2 � 1 in increasing
order. Similarly, positions u = N � 1,u = N � 2, . . . ,
u = N/2 + 1 hold the transforms for negative frequencies
so that u = N � 1 is the smallest absolute frequency. The
transform at position u = N/2 contains aliased data for
the most positive and the most negative frequency. In gen-
eral, this folding is of no concern as those frequencies are
actually the same (e�ip = eip), but for up-sampling the data
array is extended in frequency domain and the aliased fre-
quencies need to be separated.

Fig. 2 illustrates the up-sampling by zero filling in the
frequency domain. The positive frequencies map to the
positive frequencies in the extended array and the negative
frequencies, respectively, to the negative frequencies at the
end of the new array. The value at location u = N/2 is
mapped with both the positive and the negative frequen-
cies. This value can be handled by three different ways
(Yaroslavsky, 1997) while maintaining the conjugate sym-
metry of the transform. The value can be set explicitly to
zero, which naturally alters the data and the operation can-
not be inverted, or it can be mapped at whole or at half
with the positive and negative frequencies. The methods
in this paper use the way of mapping half of the trans-
formed value at u = N/2 with both the frequencies
(Fig. 2). This way is considered to be the best (Yaroslavsky,
1997) as it produces the smallest boundary effects and it
also maintains the total power (sum of absolute values)
of the transform constant.

Z + ... + A - ... - -

Z + ... + A A - ... - -0 0 ... 0 0

0 1 2 ... N/2 ... N-2 N-1 L-1L-2................ L-N/2

Original array (N samples)

Extended and zero-padded array (L samples)

Fig. 2. Illustration of extending the original array of length N in frequency domain to a new array of size L > N. Position 0 holds the value for zero
frequency (Z), positions 1 through N/2 in the original array the positive frequencies, and positions N/2 through N � 1 in the original array the negative
frequencies. Half of the value at position N/2 (marked A) goes with the positive part and half with the negative part. The values between these parts in the
new array are set to zero.

Zero
Filling

FFT
Zero
Filling IFFT

R
E

O
R

D
E

R

R
E

O
R

D
E

R

DIF
FFT

DIT
IFFT

N
E

WDIF
FFT

DIT
IFFT

Fig. 3. Schematic view of the up-sampling in Fourier domain. Cases
(a) and (b) show the usual way of separate Fourier transforms and zero
filling. The inverse transform (IFFT) uses pruned FFT algorithms to skip
unnecessary calculations with zeroes. Case (c) shows the proposed FSM
(fast sinc magnification) algorithm. See text for more details.

M. Seppä / Medical Image Analysis 11 (2007) 346–360 349
The zero-filled frequency data G 0(u) created from G(u) is
now an array of L samples wide. The inverse transform
g0ðxÞ ¼F�1fG0ðuÞg (Eq. (4)) uses thus scaling term 1/L.
For maintaining the original amplitude of the up-sampled
signal, this result g 0(x) must be scaled by L/N where N is
the size of the original signal array g(x).

2.3.3. Shifted DFT (SDFT) algorithm

Up-sampling can also be performed by sub-sample shifts
(Du et al., 1994; Yaroslavsky, 1997). The signal is first Fou-
rier-transformed and the signal-space shift is then applied
as a multiplication by an appropriate phase-shift in the
Fourier domain. Inverse Fourier transform yields the
shifted signal. The final up-sampled signal is composed of
several sub-sample shifted signals. For example, the origi-
nal signal and versions shifted by 1/3 and 2/3 samples
can be composed together to form a up-sampled signal
with magnification factor of 3.

With this method, it is crucial to note that the typically
seen Fourier space phase-shift equation Hd(u) = exp(i2pud/
N) is valid only for shifts of discrete number d of samples.
Sub-sample shift s in our case, when the sample at position
N/2 (if N is even) is handled as mentioned above (Fig. 2),
can be performed with a Fourier-space transfer function
(Yaroslavsky, 1997)

H sðuÞ ¼
expði2pus=NÞ if 0 6 u < N=2

cosðpsÞ if u ¼ N=2

expð�i2pðN � uÞs=NÞ if N=2 < u 6 N � 1

8><
>:

ð5Þ
Notice that Hs(u) is conjugate symmetric, i.e.
Hs(N � u) = Hs(u)* where Hs(u)* marks the complex conju-
gate of Hs(u). In case N is odd, the middle term cos(ps) is
left out in Eq. (5).

2.3.4. Pruned FFT algorithms

As already mentioned, up-sampling can be performed
by Fourier transforming the sample array, by extending
and zero filling the transformed array in the Fourier
domain (Fig. 2), and by inverse transforming this new
array back to signal domain. The introduced zeros in the
frequency domain lead to unnecessary multiplications
and additions in the normal FFT algorithms. To remediate
this drawback, Markel (1971) developed a pruned decima-
tion-in-frequency (DIF) type FFT algorithm. Similarly,
Skinner (1976) introduced a slightly more efficient version
for the decimation-in-time (DIT) type FFT algorithm.
These two methods can be combined for both input and
output pruning (Sreenivas and Rao, 1979; Jaroslavski,
1981; Smith and Nichols, 1988) if only a part of the output
is needed. Originally, pruned FFT algorithms were devel-
oped for computation of high-resolution spectra and
worked on end-padded data. For up-sampling, center-pad-
ding is used and modified versions of the pruned FFT algo-
rithms have been created for this purpose (Nagai, 1986;
Smit et al., 1990). A generalized method for pruning FFT
type transforms has also been introduced (Rangarajan
and Srinivasan, 1997).

2.3.5. FSM – Fast sinc magnification algorithm

Fig. 3 illustrates the differences between typical pruned
FFT versions and the FSM algorithm introduced here.
Case (a) shows the normal way of taking Fourier transform
either with a DIF or DIT FFT algorithm which differ in
whether the necessary bit-reversal reordering (Press et al.,
1988) is performed after (DIF) or before (DIT) the recur-
sive ‘‘butterfly’’ processing. After FFT, the array is
expanded and zero filled as shown in Fig. 2 and then
inverse transformed with pruned FFT algorithm of either
DIF or DIT type. To better illustrate the new FSM algo-
rithm, Fig. 3b shows the same as case (a) with the exception
of specifically using a DIF-type algorithm for forward
transform and a DIT-type algorithm for inverse transform.

350 M. Seppä / Medical Image Analysis 11 (2007) 346–360
The included reordering phases are illustrated in the algo-
rithm boxes.

Now, the proposed FSM algorithm works as shown in
Fig. 3c. The data are first transformed with a DIF FFT
algorithm without the reordering phase. Thus, the trans-
form in Fourier domain is left in bit-reversed order. The
explicit array extension and zero filling are excluded and
performed implicitly by a modified DIT-type FFT algo-
rithm. The modification, replacing the leading bit-reversal
reordering of DIT, performs the array extension, zero-fill-
ing, possible transfer function multiplication, and the
pruned FFT rounds in this bit-reversal ordered Fourier
domain. This new part (gray box labeled ‘‘new’’ in
Fig. 3c) is followed immediately by the normal DIT-type
FFT butterfly rounds that finish the transform. C-
language code for the algorithm is provided on-line
(Seppä, 2007).
2.3.6. Practical issues

The FFT, pruned FFT, SDFT, and FSM algorithms all
process complex-valued arrays. Since the explained up-
sampling methods maintain conjugate symmetry in Fourier
space, a purely real signal is up-sampled into a purely real
signal. Respectively, a purely imaginary signal is up-sam-
pled into a purely imaginary signal. Due to linearity of
the Fourier transform, two separate real-valued signals
can be simultaneously up-sampled by encoding them into
the real and imaginary parts of the complex-valued array.
This well-known trick reduces the amount of calculations
to half.

Another issue to consider is how the multi-dimensional
data are divided into one-dimensional magnifications.
Interestingly, the total computational cost depends on the
processing order of the dimensions if the data extents are
different. For example, let us consider a simple 2-D case
with image width w, image height h, and magnification fac-
tor M along both dimensions. To simplify the calculations,
let us assume that the computational cost for the algorithm
used would be relative to N logN where N is the original
size of the array to be magnified. For the total computa-
tional costs we have then

Cr ¼ h � w log wþ wM � h log h

¼ hwðlog wþ log hþ ðM � 1Þ log hÞ
Cc ¼ w � h log hþ hM � w log w

¼ hwðlog wþ log hþ ðM � 1Þ log wÞ

These equations give the relative total computational effort
when magnifying takes first place along the row direction
(Cr) or along the column direction (Cc). As can be seen,
the cost is smaller if magnification is performed first along
the dimension where the data extent is larger. The calcula-
tion and comparison of the relative costs are more difficult
in a general case with high-dimensional data, with different
magnification factors along the dimensions, and with a
more accurate cost function for the algorithms. Further-
more, the computer memory and CPU cache latencies also
have an effect on performance when accessing data from
big arrays.

Tests in 2-D and 3-D using different data sizes and mag-
nification factors along the axes revealed that no simple
decision logic can be formulated to choose the best process-
ing order of dimensions. In most of the cases, the memory
speed was the key factor and only for highly asymmetric
data the differences in the relative computational effort dic-
tated the optimal order.

For optimal CPU cache utilization, it is reasonable to
access memory in close-by regions as often as possible.
Thus, the best way is to start magnification along the
dimension that has its samples most scattered in the
memory. The amount of data increases after each pro-
cessed dimension and so the final magnification, with
the amount of data at its maximum, is performed along
the dimension where the samples are closest to each
other.

2.3.7. Limitations

Up-sampling in the Fourier domain bears some limita-
tions that arise from the FFT algorithms used. First of
all, the data array sizes need to be powers of two which
naturally can be circumvented by the normal FFT trick
of (zero) padding the array to the next suitable size. This
padding, of course, increases the computational burden as
the transformed array gets longer. Also, the magnification
factors for up-sampling need to be powers of two for
FFT, pruned FFT, and FSM algorithms and an integer
for SDFT. Basically, fractional magnification factors can
be also used by discarding part of the up-sampled data.
For example, factor 5/3 can be realized with SDFT by
first magnifying by 5 and then selecting every third
sample.

With Fourier up-sampling, the sample grid in the 2-D or
higher dimensional case is always aligned along the original
axes. Free placement and sizing of the grid is not possible.
The FFT-based up-sampling methods also typically calcu-
late the result for the whole data array even if the value in
only one or a few locations would be needed. The output-
pruned FFT algorithms have been developed to speed-up
these cases. Nevertheless, this property can be partly seen
as a limitation of the full-width sinc kernel as every output
value depends on all the data samples, not just the local
ones.

FFT-based methods share the Fourier transform prop-
erty that the up-sampled data array repeats itself (periodic-
ity). Thus, in practice, the output values at one edge of an
image depend on the values at the opposite edge. For most
of the images this is a clear drawback, although MRI data
can be considered as an exception. Due to the nature how
MR images are originally created as an inverse Fourier
transform, these images can be considered to carry this
property of ’wrapping-around’ already inherently. Thus,
reverting back to frequency domain, where the data were
collected, and performing operations there is easily
justified.

M. Seppä / Medical Image Analysis 11 (2007) 346–360 351
2.4. Two-stage resampling

The two-stage resampling studied in this work consists
of an up-sampling stage followed by a normal resampling
stage. The theoretically perfect sinc kernel is employed effi-
ciently in Fourier domain with either SDFT or FSM up-
sampling algorithms. This intermediate stage is then used
for a compact-support normal resampling that allows free
placement of the resampling grid and thus circumvents the
limitations of the Fourier space up-sampling methods men-
tioned above. Due to the increased sampling rate, relatively
small-support kernels can be used for speed and still the
outcome is of very high quality.

Fig. 4 visualizes the middle-stage of the two-stage
resampling. On the left, an illustrative 4 · 4 image (gray
pixels) is to be resampled into rotated 5 · 5 image. The
white frame outlines the position of the new resampled
image. White dot marks the center of a new pixel and the
black dots mark the corresponding surrounding pixels in
the original image. For example, these pixels would be used
by a support-2 (per dimension) method, such as linear
interpolation, to calculate the output pixel value. This out-
put value is a weighted sum of the original pixel values, and
the weights are drawn from the selected kernel function.
Naturally, kernels with larger support size would use more
surrounding pixels. On the right, the middle-stage of the
two-stage resampling is shown. The original image has
been up-sampled by a factor of 2 along both dimensions.
From this 8 · 8 data, the final 5 · 5 result is calculated with
a normal resampling method, just as above.

2.4.1. Up-sampling stage

The first stage performs up-sampling in Fourier domain
with discrete magnification factor M. The choice of the
algorithm is FSM or SDFT for power-of-two magnifica-
tion factors and SDFT for others. All the practical issues
discussed above for SDFT and FSM apply here as well.

In particular, the dimensions of the dataset are pro-
cessed in the order dictated by the memory and cache
usage. Along each dimension, the data are magnified two
rows at a time by encoding them into the real and imagi-
nary parts of the complex-valued array. If necessary, the
array is padded into a power-of-two size. The padding con-
tains a linear slope between the last and the first sample to
Fig. 4. Illustration of the middle-stage of the two-stage resampling.
decrease possible edge effects. After up-sampling, the
resulting two rows are copied into respective places of
the magnified dataset, discarding the possible padding at
the end.

One further detail to consider is the exact sample
placement of this up-sampling stage. With Fourier-space
zero-filling methods, a sample that is originally at position
x maps to position Mx in the up-sampled signal, where M

is the discrete magnification factor. Fig. 5a illustrates this
in a case where 2-D image is magnified with factor 2 along
each axis. The samples are assumed to span from left to
right and from top to bottom. Thus, the original sample
value in each pixel maps to the top-left sub-pixel (show
in gray) of the magnified pixel. When the magnification fac-
tor is increased, this sub-pixel approaches the black dot
shown in the upper left corner of the original pixels. This
dot is the stationary point and thus the assumed pinpoint
location for the original pixel value.

Fig. 5b illustrates a situation where the stationary point
is considered to be in the center of the pixel. Therefore,
with even values of magnification factor M, none of the
new pixels will have exactly the same value as the original
pixel. The underlying continuous function reaches that
value in the corner of middle pixels. The gray area in the
lower row shows the location where the upper left corner
pixels of the normal zero-filled up-sampling should be
translated to for obtaining the desired effect. The amount
of translation is M/2 � 1/2 = (M � 1)/2 new up-sampled
pixels to right and down. This translation can be performed
with Fourier-space transfer function during the zero-filled
up-sampling. As non-discrete amount of translation results
when M is even, Eq. (5) must be used for correct results.

Because Fourier transforms are periodic, the signal at
one edge affects the up-sampled values at the other edge.
For symmetry, the case shown in Fig. 5b is the best unless
the resampling at the second stage employs an algorithm
that considers its data periodic, too. In any case, the
selected way of positioning image details in the up-sam-
Fig. 5. Position of image details in different cases. The stationary point
giving the exact location of image details is in the upper left-hand corner
for case (a) and in the middle of the original pixel for case (b).

352 M. Seppä / Medical Image Analysis 11 (2007) 346–360
pling stage must be taken into account when positioning
the second stage resampling grid.

2.4.2. Resampling stage

This second stage can use either traditional interpolation
kernels or kernels of the generalized interpolation method.
For the generalized interpolation, the prefiltering step can
be conveniently performed with virtually no extra cost as
a transfer function multiplication in the Fourier domain
during the up-sampling stage. However, due to the period-
icity of the Fourier transform, this method assumes implic-
itly that the original data are periodic and wrap around.
Thus, for correct results, the multiplication algorithm
applying the generalized interpolation kernel must treat
the data as periodic, not as mirrored which is typical with
sample-space prefiltering.

For traditional interpolation kernels, the algorithm can
use either periodicity assumption or constant (zero) values
outside the dataset. In most cases the constant value is sen-
sible as it allows the detection of samples coming outside of
the dataset. If a constant-value algorithm is used, the up-
sampling stage must use the symmetrical positioning choice
illustrated in Fig. 5b.

3. Results

This section compares several previously known meth-
ods with the two-stage resampling method of this study.
First, the speeds of FSM and SDFT algorithms are
explored. Then, the speed and quality of two-stage resam-
pling is tested followed by an analysis of resampling errors.

3.1. Up-sampling

Table 1 compares different methods for Fourier domain
up-sampling. Method labeled FFT uses normal FFT
routines without pruning. FSM employs the pruning algo-
rithm introduced in this study and SDFT is the shifted-
DFT method. All the methods use similar algorithm design
with tabulated trigonometric functions to allow reasonable
comparison.

Unfortunately, tests against previously used pruned
FFT methods were not possible since their implementa-
tions were not readily available. The only speed enhance-
ment of FSM compared with other pruned FFT methods
is its lack of Fourier-space reordering steps. To estimate
the probable speed difference, columns labeled FSM* in
Table 1 show the times for FSM including two extra reor-
dering steps.

Method SDFT* is SDFT without data centering which
avoids one round of Fourier transforms and is therefore
faster than centering SDFT. However, this method cannot
be used with all second-stage resamplers in the two-stage
resampling method and, as such, has limited use.

The tests were run for 1–3 dimensional datasets with dif-
ferent sizes and different magnification factors. The expo-
nents for the size give the dimensions of the dataset and
the size was equal along each dimension. Test round with
each algorithm was repeated multiple times to more accu-
rately time a single round. The right-most set of columns
in Table 1 give the relative differences in computation time
between the other methods and the FSM. Positive value
means that the compared method uses more time (i.e. is
slower) than the FSM and negative means the opposite.

3.2. Two-stage resampling

The speed and quality of two-stage resampling was
explored with 2-D images and 3-D volumes. In both cases,
the data went through 15 successive resampling steps where
the output from the previous step was used as the input for
the next step. In each step, the resampled dataset size was
the same as for the original and all computations were per-
formed in floating-point format to minimize quantization
effects. The computation times shown are for a single
resampling step run on a 3 GHz Pentium 4 Linux worksta-
tion (512 kB L2 cache) with 2 GB RAM.

After the 15th resampling step, the 2-D and 3-D data
were back in their original alignment and the errors
induced by all resampling steps together were assessed with
signal-to-noise ratio (SNR). In addition to SNR, also root-
mean-square (RMS) error is provided for Lena (2-D)
image to facilitate comparison to other published resam-
pling methods not used in this study. The measure used
for the SNR is

SNR ¼ 10log10

X
s2

i =
X

e2
i

� �
ð6Þ

where si is the original sample, ei is the error between the
original and the final output sample, and the summations
go through all the compared samples i. Because the resam-
pling steps contained rotations, information in the dataset
corners was lost in the successive steps as the next dataset
did not totally cover the previous one. Due to this reason
and to avoid boundary effects, the final comparison was
performed only on a central portion of the data.

The 2-D images were a 256 · 256 T1-weighted MR
image (T1) and five 512 · 512 images: T2-weighted MRI
(T2), proton-density weighted MRI (PD), computed
tomography image (CT), synthetic image (Syn.), and a
gray-scale photograph (Lena) typically used in image pro-
cessing tests. All the images experienced 24-degree rota-
tions that together account for a full rotation. Fig. 6
shows the synthetic image that consist of expanding sine
waves with wavelength of 2.1 pixels in the center and 10
pixels at the edges. The left image is without any noise
and the intensity oscillates between peak values 0 and
255. The right image has added Gaussian noise with stan-
dard deviation of 20. The rotation test uses the noiseless
image and the effects of the noise are studied in the next
section.

The 3-D datasets are a 64 · 64 · 31 fMRI volume
(3.1 mm · 3.1 mm · 4 mm voxel size), a 256 · 256 · 190
anatomical (1 mm · 1 mm · 1 mm voxel size) T1-weighted

Table 1
Up-sampling time comparisons for different datasets (Size) and magnifications (M)

Size M Time (ms) Diff. (%)

FFT FSM FSM* SDFT SDFT* FFT FSM* SDFT SDFT*

256 2 0.076 0.070 0.073 0.096 0.057 8.4 4.8 27.4 �23.0
4 0.116 0.100 0.103 0.182 0.140 13.6 3.0 44.9 28.6
8 0.229 0.185 0.189 0.358 0.315 19.1 1.7 48.3 41.1

512 2 0.156 0.144 0.152 0.199 0.117 7.7 4.9 27.4 �23.9
4 0.271 0.237 0.245 0.373 0.287 12.8 3.3 36.6 17.5
8 0.507 0.418 0.425 0.732 0.643 17.6 1.6 42.9 34.9

1024 2 0.352 0.324 0.341 0.408 0.238 7.8 5.0 20.4 �36.5
4 0.587 0.515 0.531 0.773 0.594 12.3 3.1 33.4 13.4
8 1.13 0.949 0.963 1.52 1.33 16.1 1.5 37.5 28.8

2048 2 0.770 0.715 0.749 0.902 0.524 7.2 4.6 20.8 �36.4
4 1.31 1.16 1.19 1.73 1.33 11.3 2.9 32.9 13.0
8 2.65 2.27 2.29 3.38 2.97 14.4 1.0 32.9 23.6

4096 2 1.69 1.57 1.64 1.97 1.15 7.2 4.7 20.6 �36.3
4 3.03 2.70 2.77 3.68 2.86 10.7 2.4 26.6 5.3
8 6.36 5.57 5.63 7.35 6.47 12.5 1.1 24.3 13.9

8192 2 3.87 3.60 3.75 4.39 2.59 7.1 4.2 18.0 �38.9
4 7.23 6.50 6.64 8.24 6.35 10.2 2.2 21.2 �2.3
8 31.3 27.7 27.9 17.3 15.3 11.5 0.9 �60.1 �80.2

1282 2 4.43 3.76 4.12 3.98 2.62 15.2 8.8 5.5 �43.4
4 15.9 13.2 13.7 14.2 12.0 16.9 3.7 7.0 �10.2
8 53.0 41.7 42.5 45.8 42.0 21.3 1.7 9.0 0.5

2562 2 23.7 21.2 22.7 21.9 16.2 10.4 6.7 3.4 �30.5
4 68.1 58.0 60.3 60.5 51.0 14.9 3.8 4.1 �13.8
8 255 205 210 193 176 19.6 2.2 �6.5 �16.7

5122 2 106 96.4 102 99.3 74.2 8.7 5.8 2.9 �29.8
4 325 281 292 261 220 13.6 3.8 �7.5 �27.8
8 1150 945 967 834 760 17.7 2.3 �13.3 �24.4

323 2 19.8 15.6 17.1 17.7 12.4 21.4 8.7 12.1 �25.8
4 107 77.7 81.7 91.6 76.2 27.3 4.9 15.2 �1.9
8 708 482 494 598 544 31.9 2.5 19.3 11.4

643 2 182 156 169 165 120 14.3 7.8 5.4 �30.4
4 966 771 808 850 714 20.1 4.5 9.2 �8.1
8 6410 4860 4950 5550 5070 24.1 1.7 12.4 4.1

Differences show the relative change in times against the FSM method. The tests were run on a 3 GHz Pentium 4 (512 kB L2 cache) Linux workstation
with 2 GB RAM.

M. Seppä / Medical Image Analysis 11 (2007) 346–360 353
MRI volume, a 512 · 512 · 58 CT volume (0.7 mm · 0.7
mm · 3mm voxel size), and a synthetic 192 · 192 · 192
volume (1 mm · 1 mm · 1 mm voxel size). The synthetic
volume is similar to the synthetic 2-D image (Fig. 6) except
that the waves are now expanding spheres in 3-D space.
The wavelength increased from 2.1 voxels in the center to
5 voxels at the edges of the volume and no noise was added.

For the 3-D datasets, the first 14 resampling steps were
pseudo-random and the 15th was calculated to take the
volume back to perfect registration with the original one.
Each pseudo-random transformation combined rotation
with translations. The rotation was applied around a
random 3-D rotation axis going through the center of the
volume with the rotation angle uniformly distributed
between 0 and 5�. The translations were along each axis
with uniform distributions between �2 and 2 mm. The seed
for the pseudo-random number generator was recorded to
allow all the compared methods to apply exactly the same
sequence of transformations.

Table 2 shows the results in numerical format for the
2-D images. Figs. 7 and 8 show graphical illustrations of
the results for the 2-D and 3-D datasets, respectively. The
methods are labeled in the following fashion. The methods
employing traditional interpolation are nearest neighbor
(NN), linear (LI), Keys cubic (CU), and windowed sinc
(WS4 and WS6). The width of the Hamming window used

Fig. 6. Synthetic images used in the tests. Left one is without noise and right one contains Gaussian noise with standard deviation of 20.

354 M. Seppä / Medical Image Analysis 11 (2007) 346–360
was four samples for WS4 and 6 samples for WS6. The
methods employing generalized interpolation are linear
shifted (LS), B-spline (BSx), and optimal MOMS
Table 2
Comparison of different resampling methods for 2-D image rotation using on
Synthetic, Lena)

Method T1 Time (ms) T2

Time (ms) SNR (dB) SNR (dB)

Traditional

NN 4 12.1 16–19 14.0
LI 5 15.2 22–24 17.7
CU 11 18.7 47–50 23.7
WS4 39 17.8 157–157 22.1
WS6 54 21.3 210–215 28.4

Generalized

LS 7 16.9 43–47 24.6
BS4 18 21.6 97–101 28.9
OMOMS4 19 23.6 100–103 33.6
BS6 38 24.1 175–177 35.0
OMOMS6 46 24.7 208–217 36.7

Two-stage

F2N 26 15.7 119–122 18.8
F2L 29 19.0 127–132 23.4
F2S 29 25.5 129–135 37.2
F2C 35 26.4 149–156 37.7
F2B4 37 26.9 156–160 43.9
F2O4 37 26.5 158–162 44.0
S2N 27 15.7 120–123 18.8
S2N* 23 15.6 97–99 18.5
S2L 31 19.0 129–131 23.4
S2L* 26 19.0 104–111 23.4
S2S 31 25.5 132–135 37.2
S2C 37 26.4 151–156 37.7
S2C* 32 26.4 127–135 37.7
S2B4 39 26.9 158–162 43.9
S2O4 39 26.5 160–163 44.0
S3N 41 18.1 171–173 21.9
S3L 43 22.5 179–185 28.2
S3S 51 26.3 216–221 41.7
S3C 49 26.9 199–207 43.6
S3B4 58 26.6 240–246 44.1
S3O4 59 26.5 242–249 44.0

For each method, Time gives the calculation time for one rotation step. The d
(SNR) and also with root-mean-square error (RMS) for Lena image. Times f
(OMOMSx) with the sub-indexes (x) showing the sizes of
the support. The introduced two-stage resampling methods
are labeled with letter–number–letter triplets. The first
e 256 · 256 pixel image (T1) and five 512 · 512 pixel images (T2, PD, CT,

PD CT Syn. Lena Lena

SNR (dB) SNR (dB) SNR (dB) SNR (dB) RMS

19.5 15.7 3.2 18.0 16.6
23.4 19.9 5.8 21.9 10.6
30.0 29.6 11.5 28.6 4.9
28.3 26.6 9.6 26.8 6.1
34.3 36.3 17.9 32.8 3.0

30.5 30.4 3.5 27.2 5.8
34.7 36.7 18.1 33.1 2.9
38.5 41.8 24.1 35.8 2.2
39.6 42.9 25.5 36.4 2.0
41.0 44.1 27.7 37.1 1.9

24.4 21.0 7.6 22.9 9.5
29.4 27.4 11.1 27.9 5.3
43.5 42.5 26.7 38.1 1.6
43.5 44.8 27.7 38.8 1.5
50.9 48.9 42.4 40.3 1.3
51.1 48.6 48.8 40.0 1.3
24.4 21.0 7.6 22.9 9.5
24.2 20.8 7.1 22.7 9.7
29.4 27.4 11.1 27.9 5.3
29.4 27.4 11.1 27.9 5.3
43.5 42.5 26.7 38.1 1.6
43.5 44.8 27.7 38.8 1.5
43.5 44.8 27.5 38.8 1.5
50.9 48.9 42.4 40.3 1.3
51.1 48.6 48.8 40.0 1.3
27.5 24.2 5.9 25.7 6.9
34.3 33.0 16.1 32.4 3.2
48.3 46.7 33.9 39.6 1.4
50.6 48.9 39.0 39.9 1.3
51.2 48.7 49.3 40.0 1.3
51.1 48.6 49.6 39.9 1.3

ata quality after all 15 resampling steps is shown with signal-to-noise ratio
or the 512 · 512 images are collected as a single time range.

Time/step (ms) Time/step (ms)

S
N

R
 (

dB
)

S
N

R
 (

dB
)

T1 MRI

Synthetic

PD MRI

Lena

S
N

R
 (

dB
)

T2 MRI

CT

0 10 20 30 40 50 60 70

14

16

18

20

22

24

26

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

20

25

30

35

40

45

50

0 50 100 150 200 250

15

20

25

30

35

40

45

0 50 100 150 200 250
15

20

25

30

35

40

45

50

0 50 100 150 200 250

20

25

30

35

40

NN

LI

LS

CU

BS4

OMOMS4

N

L

S

C

B4

O4

BS6

OMOMS6

WS4

WS6

N

L

S

C B4

O4

NN

LI
LS

CU

BS4

OMOMS4

N

L

S

C

B4

O4

BS6
OMOMS6

WS4

WS6

N

L

S

C

B4

O4

NN

LI

LS

CU

BS4

OMOMS4

N

L

S C

B4 O4

BS6
OMOMS6

WS4

WS6

N

L

S

C B4 O4

NN

LI

LS

CU

BS4

OMOMS4

N

L

S
C

B4 O4

BS6

OMOMS6

WS4

WS6

N

L

S
C B4 O4

NN

LI

LS

CU

BS4

OMOMS4

N

L

S

C

B4
O4

BS6

OMOMS6

WS4

WS6

N

L

S
C B4 O4

NN

LI

LS

CU

BS4

OMOMS4

N

L

S C

B4
O4

BS6

OMOMS6

WS4

WS6

N

L

SC
B4

O4

M
et

ho
ds

S3_
S2_
F2_

Other A
lg

. t
yp

e

Data-set repetition
Mirror boundary extension
Constant (zero) filling

Fig. 7. Comparison of different resampling methods with 2-D datasets. See text for explanations.

M. Seppä / Medical Image Analysis 11 (2007) 346–360 355
letter (either F or S) stands for the algorithm used in the
up-sampling stage (FSM or SDFT, respectively). The num-
ber identifies the magnification factor used for the up-sam-
pling stage. The last letter designates the method used in
the second-stage resampling step and is N (nearest
neighbor), L (linear), S (shifted linear), C (Keys cubic), B

Time/step (s) Time/step (s)

S
N

R
 (

dB
)

S
N

R
 (

dB
)

CT

T1 MRIfMRI

Synthetic

0 10 20 30 40 50

14

12

16

18

20

22

24

26

28

0 5 10 15 20 25 30 35 40

10

12

14

16

18

20

22

24

26

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

14

16

18

20

22

24

26

28

30

32

0 5 10 15 20 25

20

15

10

5

0

25

30

35

40

NN

LI
LS

CU

BS4

OMOMS4

N

L

S

C B4

O4

BS6

OMOMS6
WS4

WS6

N

L

S
C B4 O4

NN

LI

LS

CU

BS4

OMOMS4

N

L

S

C

B4
O4

BS6

OMOMS6

WS4

WS6

N

L

S C
B4

O4

NN

LI

LS

CU

BS4

OMOMS4

N

L

S

C

B4
O4

BS6

OMOMS6

WS4

WS6

N

L

S C B4

O4

NN

LI

LS

CU

BS4

OMOMS4

N

L

S

C

B4

O4

BS6

OMOMS6

WS4

WS6

N

L

S

C
B4

O4

M
et

ho
ds

S3_
S2_
F2_

Other A
lg

. t
yp

e

Data-set repetition
Mirror boundary extension
Constant (zero) filling

Fig. 8. Comparison of different resampling methods with 3-D datasets. See text for explanations.

356 M. Seppä / Medical Image Analysis 11 (2007) 346–360
(B-spline), or O (OMOMS). The subindex specifies the size
of the support for B-spline and OMOMS kernels and aster-
isk marks non-centered version of SDFT-based methods.
For example, F2O4 means up-sampling with FSM algo-
rithm using magnification factor 2 followed by OMOMS
resampling of support 4. The preprocessing necessary for
OMOMS is incorporated as transfer function multiplica-
tion in the FSM algorithm.

In Figs. 7 and 8 similar methods are connected by lines
to enhance readability. The two-stage resampling methods
are grouped by the up-sampling stage (up-sampling algo-
rithm and magnification) and the letter in the graphs spec-
ify the second-stage resampling method. The legends
identify the line and marker types used. The previously
known methods shown for comparison are grouped under
title ‘‘Other’’ which contains methods employing both tra-
ditional and generalized interpolation. Those methods are
divided into three sub-groups and the left-most containing
6 methods (NN through OMOMS4) is identical to the sec-
ond-stage methods of the two-stage resampling (N through
O4). The remaining two sub-groups are the support-6
B-spline based methods (BS6 and OMOMS6) and the win-
dowed-sinc methods (WS4 and WS6).

The solid horizontal lines in Figs. 7 and 8 connect alter-
native versions of the same method. For the two-stage
resampling methods, the line links to the non-centered ver-
sion identified by the asterisks in Table 2. For generalized
interpolation methods, it links to the same method with
preprocessing performed through FFT instead of forward
and backward recursive filters. The three different mark
types in Figs. 7 and 8 identify the type of the kernel multi-
plication algorithm (see Fig. 1) employed.

For the 2-D cases, the two-stage resampling was tested
with magnification factors up to 8. The calculation time
became progressively slower without any further gain in
SNR. The maximum SNR for all images was reached
already with factor 2 or 3 and is shown in Fig. 7 with hor-
izontal broken line at the top of each graph.

M. Seppä / Medical Image Analysis 11 (2007) 346–360 357
In Fig. 8 the graph of CT data shows relatively slow per-
formance for the BS and OMOMS methods implemented
through the recursive prefiltering (box markers), especially
for support size 4. This performance issue and the timing
difference between the BS4 and OMOMS4 are related to
the CPU cache (512 kB) usage with the big CT dataset
(512 · 512 · 58). When the CT test-case was run on
another platform with 1 MB CPU cache, the timing differ-
ence between the BS4 and the OMOMS4 methods disap-
peared and the execution times were as expected from the
other graphs.

To obtain high quality resampling results, Figs. 7 and 8
clearly show that the two-stage scheme is better than just
increasing the size of the support for the other methods.
Especially in 3-D (Fig. 8), the computational cost for large
support (WS6, BS6, and OMOMS6) becomes obvious.
These figures also show that the two-stage resampling
can practically reach its maximum SNR already with mag-
nification factor 2, at least for these datasets.

3.3. Resampling errors

Fig. 9 shows difference images for the compared central
areas of the 2-D T1 MRI dataset after 15 resampling steps.
Fig. 9. Difference images showing the resampling error for the 2-D T1 MRI slic
the zero difference is mapped to middle gray. Area shown is the same as used
Zero difference is mapped to middle gray and the devia-
tions are magnified 6-fold and manifest as darker and
lighter colors. Both magnitude and distribution of errors
can be assessed from these images. Best methods should
produce difference images as close to middle gray as possi-
ble with minimal variation and no visual structure in the
resampling error. The methods are labeled as mentioned
above. Fig. 9 visually confirms the numerical results of
SNR and shows that practically no structure is left in the
errors of F2B4 and F2O4. On the other hand, various bor-
ders show up clearly in the errors of other methods, even
for normal B-spline and OMOMS methods with support
size 6.

Fig. 10 shows the response of selected methods to
Gaussian noise added to the 2-D images. Panels (a) and
(b) verify that the two-stage resampling methods (F2*/
S3*) maintain their superior quality to other methods even
with increasing noise level. Panels (c)–(h) compare differ-
ent two-stage resampling methods using the T1-weighted
MRI (c), T2-weighted MRI (d), proton-density weighted
MRI (e), CT image (f), the synthetic image (g), and the
gray-scale photograph Lena (h). In these six panels, the
difference between each method and the F2C method is
plotted as a function of the standard deviation of the
e rotated 15 times. The error is magnified 6-fold to make it more visible and
for calculating the SNR of the methods.

Noise std

Noise std

SNR (dB)

SNR difference (dB)

0 5 10 15 20 25 30

10

15

20

25

30

12

14

16

18

20

22

24

26

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0 5 10 15 20 25 30

0

0 10 20 30 40 50

5 10 15 20 25 30

0 5 10 15 20 25 300 10 20 30 40 50

–1

–0.5

0

0.5

1

1.5

–1

–0.5

0

0.5

1

1.5

–1

–0.5

0

0.5

1

1.5

0 5 10 15 20 25 30

0 5 10 15 20 25 30

–1

–0.5

0

0.5

1

1.5

–1

–0.5

0

0.5

1

1.5

a

T1 MRI

CU

CU

F2*/S3*

BS4

BS6

BS4

BS6

OMOMS6

OMOMS4

F2O4/S3O4

S3B4

F2B4

S3C

F2C

F2O4/S3O4

F2O4/S3O4
S3B4S3B4

F2B4

F2B4
S3CS3C

F2O4/S3O4

S3B4
F2B4

S3C

F2CF2C

F2C

OMOMS6

OMOMS4

PD MRI

Synthetic

Synthetic

T1 MRI

Lena

c

e

b

g

F2O4/S3O4

S3B4
F2B4

S3C

F2O4/S3O4

S3B4
F2B4

S3C

F2C

F2C

CT

T2 MRI

f

d

h

F2*/S3*

Fig. 10. Effect of image noise to the resampling results. Panels (a) and (b) show the absolute SNR of the methods as a function of standard deviation of the
added Gaussian noise. Panels (c)–(h) show the difference in SNR between other methods and F2C as a function of the noise.

358 M. Seppä / Medical Image Analysis 11 (2007) 346–360
added Gaussian noise. The original 2-D T1 MRI had
gray-values from 0 to 255, with mean of 68 and standard
deviation of 46. Respectively, the T2 MRI had range
0–255 (mean 50, std 47), PD MRI had range 0–255 (mean
75, std 56), the CT image had range 0–255 (mean 57, std
62), the synthetic image had range 0–255 (mean 128, std
90), and the Lena image had range 16–242 (mean 129,
std 48). Notice that the synthetic image has different hor-
izontal scale than the other images. As can be seen in
Fig. 6 (right), the synthetic image does not appear very
noisy even at noise level 20 when the other two-stage
resampling methods drop to the level of the F2C method
(Fig. 10b and g).

Fig. 11 shows error histograms after 15 resampling
steps for the 3-D fMRI dataset. Best methods should have
small RMS value, small maximum absolute error, and an
as narrow as possible distribution centered on zero. The
center area of the fMRI used for comparison has values
in range 0–2148, with mean of 607 and standard deviation
of 629.
4. Discussion

The tests (Table 1) demonstrate that the FSM algorithm
works well and offers a clear speed-up to normal
(unpruned) FFT implementations and a slight (1–8%)
speed-up to previously used pruned FFT methods. In most
cases, FSM is also faster than the SDFT method and seems
to be inferior only with high dataset and magnification
sizes. In those cases, the SDFT method benefits from better
CPU cache performance as it processes smaller arrays than
FSM (but multiple times). With relatively small array sizes
and especially in the one-dimensional case the performance
of SDFT is diminished by the overhead of calculating trig-
onometric functions in the transfer function (Eq. 5). The
overhead of arranging the interleaved shifted arrays also
has its effect, especially when final sample spacing increases
with higher dimensional data.

The non-centered version SDFT* clearly benefits from
the possibility to copy the original data and to calculate
the shift only for M � 1 out of M cases where M is the

BS4
70.1

(494)

BS6
51.1

(302)

CU
102.5
(665)

LI
181.2
(936)

LS
164.3

(1353)

OMOMS4
54.3

(321)

OMOMS6
47.7

(259)

F2B4
30.1

(145)

F2C
38.7

(251)

F2L
108.9
(667)

F2O4
29.7

(132)

F2S
52.0

(294)

–250 0 250–250 0 250 –250 0 250

–100 0 100–100 0 100

–250 0 250

–100 0 100–100 0 100

0

100

200

300

400

0

50

100

150

200

250

Error

C
ou

nt

0

100

200

300

400

Fig. 11. Error histograms of 3-D fMRI data for different resampling methods after 15 resampling steps. The top right-hand corner of each panel shows the
resampling method, root-mean-square (RMS) error, and the maximum absolute error in parenthesis. The top row has different scales on both axes than
the bottom two rows.

M. Seppä / Medical Image Analysis 11 (2007) 346–360 359
magnification factor. Naturally, the effect is most notable
with M = 2 which also seems to be the most usable factor
for two-stage resampling, as is evident below. Selecting
SDFT* requires a second-stage algorithm with dataset rep-
etition for outside values. Otherwise, biasing is introduced
at the boundaries.

With all the computational burden of the two-stage
resampling summed up, both FSM and SDFT are quite
equal for 2-D and 3-D datasets (Table 2, Figs. 7 and 8),
with FSM showing only a minute advantage over SDFT.
Thus, although the conclusions below are drawn for
FSM-based versions, SDFT-based versions can be used
just as well. Furthermore, if constant (zero) outside values
are not necessary, the faster SDFT* version can be applied
as well (horizontal solid lines in Figs. 7 and 8).

The quality provided by the two-stage resampling
scheme proves to be superior (Table 2, Figs. 7–11) when
compared with other commonly used resampling methods.
The best-quality versions (F2C, F2B4, and F2O4) are
clearly slower than the compared support 4 methods
(CU, BS4, OMOMS4). However, these two-stage resam-
pling methods are faster than the compared support 6
methods (WS6, BS6, OMOMS6) and provide much better
SNR.

Selection of the best two-stage version depends on
whether dataset repetition is acceptable or if use of con-
stant (zero) for outside values is necessary. If repetition is
allowed, version F2B4 seems to be the choice in normal cir-
cumstances. Among generalized interpolation methods,
OMOMS4 is clearly better than BS4 in all the tests. Never-
theless, the two-stage version F2O4 does not outperform
F2B4 except in the noiseless synthetic case. In fact, F2B4

seems to provide slightly better results than FSO4 for most
of the natural datasets. Both of these methods use prefilter-
ing that enhances high-frequency signals but the amplifica-
tion factor for FSO4 is higher making it more sensitive to
noise. As can be seen in Fig. 10, F2C method outperforms
all the other methods, even S3C, under extremely noisy
conditions. Another benefit of F2C is the ability to use
either dataset repetition (F2C*, marked with cross in Figs.
7 and 8) or constant (zero) outside values (marked with
circle).

As a conclusion, the two-stage resampling method F2C
(or S2C) is a solid choice in applications needing ultimate
quality for resampling. It provides better results than any
of the previously used methods under realistic or higher
noise levels. Nevertheless, F2C is still faster than the sup-
port 6 (or above) methods, especially in 3-D where the size
of the support becomes crucial. If dataset repetition is
acceptable for outside values, version F2B4 might provide
even higher quality results unless the data contain excessive
amounts of noise.

One specific field where two-stage resampling methods
should be advantageous is volume registration applications
in medical imaging, such as fMRI motion correction. In the
registration process, the resampling of one volume is

360 M. Seppä / Medical Image Analysis 11 (2007) 346–360
repeated many times when the correct registration param-
eters are searched for. Thus, the up-sampling of the two-
stage resampling method is necessary to perform just once
and only the second stage is recalculated during iterations.
In this special case, it is beneficial to use magnification
factor of 3 or 4 for the up-sampling stage and use fast
small-support shifted-linear (support 2) resampling for
the second stage (e.g. S3S). Due to high temporary memory
consumption, magnification factors 3 and 4 might not be
practical or even possible for high-resolution volumes.
On the other hand, fMRI volumes are typically relatively
small and therefore are very fit to this kind of a method.

Acknowledgements

I thank Riitta Hari and Kimmo Uutela for comments
on the manuscript and Ulla Ruotsalainen for useful ad-
vices. This work was supported by the Academy of Finland
(National Centers of Excellence Program).

References

Blu, T., Thévenaz, P., Unser, M., 1999. Generalized interpolation: higher
quality at no additional cost. In: Proceedings of IEEE International
Conference Image Proc. ’99, vol. III. Kobe, Japan, pp. 667–671.

Blu, T., Thévenaz, P., Unser, M., 2001. MOMS: maximal-order interpo-
lation of minimal support. IEEE Trans. Image Proc. 10 (7), 1069–1080.

Blu, T., Thévenaz, P., Unser, M., 2004. Linear interpolation revitalized.
IEEE Trans. Image Proc. 13 (5), 710–719.

Catmull, E., Smith, A.R., 1980. 3-D transformations of images in scanline
order. Proc. SIGGRAPH ’80. ACM Press, New York, USA, pp. 279–
285.

Du, Y.P., Parker, D.L., Davis, W.L., Cao, G., 1994. Reduction of partial-
volume artifacts with zero-filled interpolation in three-dimensional
MR angiography. J. Magn. Reson. Imaging 4 (5), 733–741.

Gonzalez, R.C., Woods, R.E., 1992. Digital Image Processing. Addison
Wesley, Reading, Massachusetts.

Goshtasby, A., Turner, D.A., Ackerman, L.V., 1992. Matching of
tomographic slices for interpolation. IEEE Trans. Med. Imaging 11
(4), 507–516.

Grevera, G.J., Udupa, J.K., 1996. Shape-based interpolation of multidi-
mensional grey-level images. IEEE Trans. Med. Imaging 15 (6), 881–
892.

Grevera, G.J., Udupa, J.K., 1998. An objective comparison of 3-D image
interpolation methods. IEEE Trans. Med. Imaging 17 (4), 642–
652.

Hou, H.S., Andrews, H.C., 1978. Cubic splines for image interpolation
and digital filtering. IEEE Trans. Acoust., Speech, Signal Proc. 26 (6),
508–517.

Jaroslavski, L.P., 1981. Comments on FFT algorithm for both input and
output pruning. IEEE Trans. Acoust., Speech, Signal Proc. 29 (3),
448–449.
Keys, R.G., 1981. Cubic convolution interpolation for digital image
processing. IEEE Trans. Acoust., Speech, Signal Proc. 29 (6), 1153–
1160.

Lehmann, T.M., Gönner, C., Spitzer, K., 1999. Survey: Interpolation
methods in medical image processing. IEEE Trans. Med. Imaging 18
(11), 1049–1075.

Lehmann, T.M., Gönner, C., Spitzer, K., 2001. Addendum: B-spline
interpolation in medical image processing. IEEE Trans. Med. Imaging
20 (7), 660–665.

Markel, J.D., 1971. FFT pruning. IEEE Trans. Audio Electroacoust. 19
(4), 305–311.

Meijering, E.H., Zuiderveld, K.J., Viergever, M.A., 1999. Image recon-
struction by convolution with symmetrical piecewise nth-order poly-
nomial kernels. IEEE Trans. Image Proc. 8 (2), 192–201.

Meijering, E.H., Niessen, W.J., Viergever, M.A., 2001. Quantitative
evaluation of convolution-based methods for medical image interpo-
lation. Med. Image Anal. 5 (2), 111–126.

Nagai, K., 1986. Pruning the decimation-in-time FFT algorithm with
frequency shift. IEEE Trans. Acoust., Speech, Signal Proc. 34 (4),
1008–1010.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1988.
Numerical Recipes in C. Cambridge University Press, Cambridge.

Rangarajan, S.R., Srinivasan, S., 1997. Generalised method for pruning
an FFT type of transform. IEE Proc.-Vis. Image Signal Process. 144
(4), 189–192.

Reichenbach, S.E., Geng, F., 2003. Two-dimensional cubic convolution.
IEEE Trans. Image Proc. 12 (8), 857–865.

Seppä, M., 2007. FSM – Fast sinc magnification algorithm in C. URL
http://neuro.hut.fi/~mseppa/fsm/.

Skinner, D.P., 1976. Pruning the decimation-in-time FFT algorithm.
IEEE Trans. Acoust., Speech, Signal Proc. 24, 193–194.

Smit, T., Smith, M.R., Nichols, S.T., 1990. Efficient sinc function
interpolation technique for center padded data. IEEE Trans. Acoust.,
Speech, Signal Proc. 38 (9), 1512–1517.

Smith, M.R., Nichols, S.T., 1988. Efficient algorithms for generating
interpolated (zoomed) MR images. Magn. Res. Med. 7 (2), 156–171.

Sreenivas, T.V., Rao, P.V.S., 1979. FFT algorithm for both input and
output pruning. IEEE Trans. Acoust., Speech, Signal Proc. 27 (3),
291–292.

Thévenaz, P., Blu, T., Unser, M., 2000. Interpolation revisited. IEEE
Trans. Med. Imaging 19 (7), 739–758.

Tsuchida, N., Yamada, Y., Ueda, M., 1987. Hardware for image rotation
by twice skew transformations. IEEE Trans. Acoust., Speech, Signal
Proc. 35 (4), 527–532.

Unser, M., 1999. Splines: a perfect fit for signal and image processing.
IEEE Signal Proc. Mag. 16 (6), 22–38.

Unser, M., Aldroubi, A., Eden, M., 1993a. B-spline signal processing: Part
I-theory. IEEE Trans. Signal Proc. 41 (2), 821–833.

Unser, M., Aldroubi, A., Eden, M., 1993b. B-spline signal processing: Part
II-efficient design and applications. IEEE Trans. Signal Proc. 41 (2),
834–848.

Unser, M., Thévenaz, P., Yaroslavsky, L., 1995. Convolution-based
interpolation for fast, high-quality rotation of images. IEEE Trans.
Image Proc. 4 (10), 1371–1381.

Yaroslavsky, L.P., 1997. Efficient algorithm for discrete sinc interpolation.
App. Opt. 36 (2), 460–463.

http://neuro.hut.fi/mseppa/fsm/

	High-quality two-stage resampling for 3-D volumes in medical imaging
	Introduction
	Methods
	Traditional interpolation
	Generalized interpolation
	Up-sampling in Fourier domain
	DFT
	Zero-filled up-sampling
	Shifted DFT (SDFT) algorithm
	Pruned FFT algorithms
	FSM - Fast sinc magnification algorithm
	Practical issues
	Limitations

	Two-stage resampling
	Up-sampling stage
	Resampling stage

	Results
	Up-sampling
	Two-stage resampling
	Resampling errors

	Discussion
	Acknowledgements
	References

