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Abstract
The process of constructing an atlas typically involves selecting one individual from a sample on
which to base or root the atlas. If the individual selected is far from the population mean, then the
resulting atlas is biased towards this individual. This, in turn, may bias any inferences made with the
atlas. Unbiased atlas construction addresses this issue by either basing the atlas on the individual
which is the median of the sample or by an iterative technique whereby the atlas converges to the
unknown population mean. In this paper, we explore the question of whether a single atlas is
appropriate for a given sample or whether there is sufficient image based evidence from which we
can infer multiple atlases, each constructed from a subset of the data. We refer to this process as
atlas stratification. Essentially, we determine whether the sample, and hence the population, is multi-
modal and is best represented by an atlas per mode. In this preliminary work, we use the mean shift
algorithm to identify the modes of the sample and multidimensional scaling to visualize the clustering
process on clinical MRI neurological image datasets.
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1 Introduction
Atlas-based techniques have many applications in medical image analysis. Atlases take on
many forms, ranging from an intensity image of the average subject to more detailed shape,
intensity and functional models of specific structures. Atlases are used in basic research on
population analysis, as guides in gross segmentation and seed point selection, as context in
navigation tasks, and as models to overcome signal limitations and indistinct boundaries.
Atlases may be based on a single individual or on a sample of a population. Atlases can be
deterministic, where each region of space is associated with a single structure, or atlases can
be probabilistic, where each region of space is assigned a likelihood of belonging to a variety
of structures.

When atlases are constructed from a sample of a population, the imagery for the subjects in
the sample are transformed into a common coordinate frame prior to consolidating their
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information. This step of rooting the atlas is common to both deterministic and probabilistic
atlas construction. Establishing this common coordinate frame is a critical step that impacts
the quality of the resulting atlas. A common practice is to select one subject from the sample
on which to base the atlas. If the selected subject is far from the population mean, the resulting
atlas will be biased towards this individual. This, in turn, may bias any inferences made with
the atlas. This issue has led to recent interest in unbiased atlas construction. Unbiased atlases
can be constructed by searching for the subject closest to the population mean [1,2] and rooting
the atlas on that subject, or by searching for the common coordinate frame in the center of the
population [3,4,5,6,7] and rooting the atlas on that coordinate frame.

Current atlas construction techniques are based on an implicit assumption that the population
is best described by a single atlas, treating the population as unimodal after transformation to
the common coordinate frame. While this transformation may be non-rigid, and may therefore
normalize away a portion of the inter-subject variability, substantial inter-subject variability
may remain. Studying this remaining variability is the subject of population analysis. However,
this same variability may render an atlas ineffective when used as a prior to combat signal
limitations and indistinct boundaries. For these applications, variations beyond unimodal are
particularly troubling.

In this paper, we explore the question of whether a population is best described by a single
atlas or whether there is sufficient evidence to infer multiple atlases, each constructed from a
subset of the data. We refer to this process as atlas stratification. We discover the modes in
the population using a mean shift algorithm [8]. Each mode represents a subspace of the
population which requires a unique atlas. In the process of identifying the modes, we determine
which subjects should be used in constructing the atlas for each mode. The stratification process
has many possible implementations, this work is our initial exploration of atlas stratification.

2 Mean Shift
Fukunaga and Hostetler introduced the mean shift algorithm [8] to estimate the gradient of a
probability density function given a set of samples from the distribution. Using hill climbing,
this gradient estimate can be used to identify the modes of the underlying distribution. The
mean shift algorithm has been used for clustering [8,9], segmentation [10], and tracking [11].

Following the notation and derivation in [8], let X1,X2,…,XN be a set of N iid. n-dimensional
random vectors. The kernel density estimate of the underlying distribution is

(1)

where k(X) is a scalar function satisfying the requirements for a kernel [12] and h is a parameter
often referred to as the bandwidth [12]. If k(X) is a differentiable function, the gradient of the
density estimate is

(2)

where ▽x is the gradient operator with respect to x1,x2,…,xn. A simple kernel of the form

(3)

where c is a normalizing constant chosen to make the kernel integrate to one, satisfies the
conditions for the density estimate to be asymptotically unbiased, consistent, and uniformly
consistent [8]. Substituting this kernel into (2) yields
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(4)

where Sh(X) is a neighborhood with a radius equal to the bandwidth, h.

When Sh(X) is small, pN(x) over the restricted domain of Sh(X) is approximately uniform. The
terms prior to the summation in (4) can be shown to be proportional to the density of an n-
dimensional uniform distribution over Sh(X). Therefore, we can approximate the normalized
gradient (see [8] for details)

(5)

where

(6)

Mh(X) is referred to as the sample mean shift, or simply the mean shift, and k is the number of
samples in Sh(X).

We can use this approximation to the normalized gradient to cluster samples Xj, j = 1, 2,…,
N, using the update equations

(7)

(8)

Using (5) and setting , yields a simplified update equation

(9)

This derivation of the mean shift is a k-nearest neighbor formulation, where the distance to the
kth nearest neighbor defines the bandwidth h. Figure 1 illustrates the mean shift algorithm,
where a set of random samples have been drawn from a bimodal mixture of gaussians. At each
iteration of the mean shift algorithm, the neighborhood of each sample point is found, Figure
1(b), the mean shift is calculated for one point, the samples are updated in Figure 1(c), and
ultimately converge to the modes of the distribution, Figure 1(d).

In the mean shift algorithm, the kernel density estimate of the underlying probability density
function (PDF) changes from iteration to iteration as the sample points are updated. This leads
to a sharp peaking of the PDF as the algorithm converges, illustrated by the narrowing of the
peaks in Figure 1. If we modify the mean shift scheme, such that the neighborhood and mean
shift quantities are calculated using the original samples, the modes are identified by traversing
a constant kernel density estimate of the underlying PDF of the samples. We refer to this
distribution as a stationary PDF. Here, the mean shift is less likely to identify false modes but
has slower convergence. This concept is explored in Section 3.2.2 and Section 3.2.4. Figure 2
shows an example of the stationary mean shift using the data from Figure 1. In contrast to
Figure 1, the PDF in Figure 2 does not change with iterations.
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3 Atlas Stratification
The question of whether a population is described sufficiently by a single atlas or by multiple
atlases is best answered by evidence in the imagery itself. Atlas stratification is the process of
discovering the atlas modes in the population. Each mode represents a subspace of the
population requiring a unique atlas. There are two goals in this process, 1) identification of the
number of modes in a population and 2) identification of which subjects construe a mode. By
finding the number of modes in a population we gain an understanding of the diversity of the
population. Identification of the subjects comprising a mode is the basis for exploring the
distinctions between subjects in different modes.

3.1 Techniques
Mean shift essentially clusters “feature vectors” into modes. There are many ways for the mean
shift algorithm to be applied to atlas stratification. First are image based approaches where the
entire image is treated as the feature vector, albeit in a high dimensional space. Second are
feature based approaches where descriptors derived from an image, for instance gradients,
curvatures, texture descriptors, wavelet coefficients, etc. are composited to form the feature
vectors used to stratify the subjects. Third are shape based approaches where shape descriptors
derived from segmented objects are composited to form the feature vectors used to stratify the
subjects. Each of these approaches provides a rich area of exploration but in our presentation
here we focus on image based atlas stratification. Future work will study feature and shape
based approaches, where the selection of descriptors, bandwidths, and distance metrics are rich
areas of investigation.

3.2 Image Based Approaches
To apply the mean shift algorithm to the problem of atlas stratification, we consider the image
of a subject as one sample. As such, each sample sits in a very high dimensional space (rows
× cols × slices). In this section, we change notation for the samples from the generic X to  to

indicate the image of subject j at iteration t, with Ij or  the original image for subject j.

At each iteration t, we form the neighborhood of subjects near each subject. The neighborhood
function is:

(10)

where  is the “distance” between two images. In the general case, dk is replaced by d,
the neighborhood radius, and may be chosen in absolute terms. In all our experiments, dk is
chosen as the distance to the kth nearest neighbor of . We empirically study the impact of k
on the stratification process in Section 3.2.5, where larger values of k yield fewer modes and
smoother atlases.

The mean shift is defined as

(11)

 is the average distance between the subjects in the local neighborhood  to subject
. The  operator denotes a possible transformation of the subject j to bring it into alignment

with subject i before the calculation of the mean shift. The samples are updated with the mean
shift
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(12)

(13)

Samples  and  from the previous iteration are used to construct the transformations  and

the distance measures , the distance measures define the nearest neighbor sets

, and the nearest neighbor sets are used to update the samples  according to (13). As
the iterations of (potential) registrations, neighborhood set determination, and mean shift
updates progress, the samples converge to the modes of the population. The process flow is
illustrated in Figure 3.

The choice of the neighborhood function Sh(Ij) greatly influences the composition of modes.
The standard vector norm will drive the modes in different directions than information theoretic
measures, overlap metrics, or shape similarity metrics. We have intentionally chosen a loose

definition of  to allow experimentation with different metrics and measures of
similarity. In the following sections we apply two different methods of calculating Sh(Ij), mean
squares and mutual information.

In the following sections, we outline eight experiments. Computational burdens have permitted
only five of these to be explored in this presentation.

3.2.1 Mean Shift with Mean Square Metric—We consider data that have already been
affine transformed to a standard coordinate frame, bias corrected, and delineated with regions
of interest for analysis, see Section 4 for details. Here, we eliminate the transformations 
from the stratification process. This returns us to a standard L2 norm to define the distance
between subjects. The neighborhood function is then

(14)

where images are treated as column vectors. The update equation is unchanged from (13).

3.2.2 Mean Shift with Mean Square Metric on Stationary PDF—In the derivation of
the mean shift algorithm for images, the gradient of the kernel density estimate (4) is estimated
from the updated samples,  (or  for images), yielding the update equation (8). If instead the
gradient is estimated from the original samples, the PDF effectively becomes stationary. In
this case, the neighborhood function and mean shift become

(15)

(16)

 and  are now calculated from the original images Ii rather than . This ensures
the estimate of the gradient of the probability density function is taken from the best available
data, namely the original samples. Again, we consider delineated regions from image data that
have been spatially normalized and bias corrected. The stationary mean shift process is
graphically illustrated in Figure 2.
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3.2.3 Mean Shift with Mutual Information Metric—Medical images, and MR images in
particular, may not repeatably measure the same intensity for the same tissue inter- nor intra-
subject. This may result in large distances between subjects even if they are visually similar.
Mutual information as used in registration [13,14,15,16] provides a good measure of similarity
in this case. While mutual information is not strictly mathematically correct for the mean shift
algorithm, it's properties make it interesting for experimentation [17]. The neighborhood
function becomes

(17)

where  is the mutual information between the two images and dk is kth largest mutual
information value relative to the image . The update equation remains (13). We again consider
delineated images bias corrected, and normalized to a standard space, so no spatial
transformation is necessary.

3.2.4 Mean Shift with Mutual Information Metric on Stationary PDF—In this

experiment, we replace the norm in the calculation of  in (16) with mutual information

(18)

where  is the mutual information between the two images and dk is kth largest mutual
information value relative to the image . The update equation remains (13). As in Section
3.2.3, we consider delineated, bias corrected, and spatially normalized subjects.

3.2.5 Mean Shift and Registration with MI Metric—Delineated, intensity normalized
image datasets transformed into a standard space may not always be available. Even if
available, the transform to the standardized space may not be the proper transform. If the
application demands extremely accurate registration, it may be desirable to register subject
images during the stratification process. Incorporating registration into the process is
accomplished by modifying the neighborhood function and image update step.

In this experiment, at each iteration t, we align each pair of subjects using Mattes' formulation
of mutual information [13] to determine . We used an affine transformation for . The

mutual information values for each pair of subjects is denoted . The nearest
neighbor set for the mean shift iteration is the set

(19)

where dk is kth largest mutual information value relative to the image .

For each mean shift iteration, the pairwise registrations are repeated using  and  from the
previous iteration, producing new transformations  and mutual information metric values

. At each iteration, we update the samples according to (13), transforming 
before subtracting 

3.2.6 Other Stratification Methods—Many other permutations and combinations of
distance metrics, neighborhood functions and updates may be incorporated into the atlas
stratification framework. We mention three additional possibilities: the registration experiment
in Section 3.2.5 could be repeated with a stationary PDF. Replacing the affine transformation

Blezek and Miller Page 6

Med Image Anal. Author manuscript; available in PMC 2008 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with a B-splines [18] transformation extends the previous experiment to deformable
registration (non-stationary and stationary PDF methods could be applied).

4 Data
The data used in our experiments was drawn from two sources: a random selection of 222 MR
scans from the High Field MRI Studies of Neurodegenerative Disease conducted at the Albany
Medical College's Neuroimaging Center and the freely available Open Access Series of
Imaging Studies (OASIS) neuroimaging dataset [19].

The AMC scans were acquired on a 3T scanner (GE Medical Systems, Milwaukee WI). Mean
age of the subjects was 74 years and ranged from 55-90 years. The scans were SPGR T1
weighted acquisitions with 15 deg flip angle, 12.1/5.2 TR/TE, 22cm FOV, 2mm slice thickness.
In each scan, 96 coronal slices were acquired.

The OASIS dataset consists of a cross-sectional collection of subjects aged 18 to 96. For each
subject, 3 or 4 individual T1-weighted MRI scans obtained in single scan sessions are included.
The first acquired scan was registered to the Talairach and Tournoux atlas space using a 12
parameter affine transformation, and the remaining scans from the session were registered to
the first [20,19]. Scan to scan transforms were composed with the scan to atlas transform, and
the scans were resampled to 1 × 1 × 1mm3 in a common coordinate system. For the experiments
using this dataset, all images were skull stripped, transformed to a common coordinate system
and intensity normalized. The subjects are all right-handed and include both men and women.

5 Multidimensional Scaling
Multidimensional scaling (MDS) is a cluster analysis technique that constructs a low-
dimensional representation of a set of high dimensional samples given just the pairwise
intersample distances [22,21]. MDS has previously been used in atlas construction by Park et
al [2] to identify a subject close to the geometric mean of the population and rooting their atlas
on that subject. Here, we use MDS as a qualitative tool to visualize the mean shift clustering
process. In the results sections, Figures 5,7,9,11(a) and 13, show the results of MDS applied
to inter-subject distances throughout the stratification process. Subjects in the same cluster at
the last iteration are labeled with the same symbol. These symbol assignments are propagated
back to earlier iterations to illustrate the clustering process. Note that MDS produces a
representation unique up to rotation/flip/permutation. Therefore, the visualizations across the
iterations or down the bandwidth may vary in configuration by a rotation/flip/permutation. The
MDS presentations use either a metric stress or a Sammon [22] criteria depending on which
provided a clearer picture of the modes.

To apply MDS to the results of the mean shift algorithm, we build a dissimilarity matrix which
is symmetric with zeros on the diagonals and positive values on the off diagonals. The off
diagonal elements are derived from the pairwise distance measures (either mutual information
or mean square).

6 Results
For each of the experiments outlined in Section 3.2, we present the evolution of a single subject
through the process, MDS results, and visual comparison of the modes. The atlas stratification
algorithms were implemented using the Insight Segmentation and Registration Toolkit [23]
and command line tools from the AFNI software package [24].

The stratification algorithms of (Sections 3.2.1, 3.2.3, 3.2.2 and 3.2.4) were run on 416 of the
OASIS subjects. The AMC data was used for the algorithm of Section 3.2.4. The latter
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experiment explored the bandwidth and iteration parameter space. The increased numbers of
subjects available in the OASIS dataset increased the computation and I/O burden, limiting
these experiments to 10 iterations at one bandwidth. The parameter exploration results indicate
10 iterations with a 30 neighbor bandwidth ought to be sufficient to distinguish clusters.

In experiments involving the OASIS subjects, 172 640 (416×415) distance calculations and
416 volume averages of 30 volumes were required at each iteration. This resulted in roughly
7 million volumetric distance calculations. For the AMC dataset, 49 062 (222×221) volume
registrations were performed followed by 222 averages of k volumes. The registrations were
limited to estimate affine transformations. In total, the processing comprised over 3 million
registrations. All processing was distributed over a 500 node compute cluster. Computation
time was approximately 4 cpu hours per subject, per iteration.

6.1 Mean Shift with Mean Square Metric
The mean shift with mean square algorithm was run for 10 iterations using 416 subjects from
the OASIS dataset. Figure 4 shows axial and coronal images from one randomly chosen subject;
original image then iterations 2, 4, and 9. MDS identified 5 modes containing 72, 216, 46, 28
and 54 subjects. Figure 5 shows the mode evolution through iterations 1, 2, 4, and 9. Colored
symbols group subjects into modes. In contrast to later experiments, MDS exhibits the behavior
of collapsing the modes in one axis. The matrix in Figure 6 shows exemplar subjects from each
MDS identified mode on the diagonal. Off-diagonal elements are difference images between
the modes displayed with the same contrast settings with mid-gray indicating zero difference.
The last two modes appear quite similar.

6.2 Mean Shift with Mean Square Metric on Stationary PDF
The algorithm of Section 3.2.2 was run for 10 iterations on 416 subjects from the OASIS
dataset. MDS results are shown in Figure 7 for iteration 9. MDS failed to identify clear modes
in the data. The colored symbols of Figure 7(b) are taken from the non-stationary MDS results
and assigned to the same subjects. In this manner, we may compare the modes from the non-
stationary experiment to this one. It would appear that several of the modes are clustered
together, and have not separated as before. Two modes (green “pluses” and blue “crosses”)
appear diffusely mixed. More iterations may be needed to properly identify the modes in the
stationary PDF case; for this work, we did not pursue additional iterations.

6.3 Mean Shift with Mutual Information Metric
This experiment explored mean shift using mutual information as described in Section 3.2.3.
The algorithm was run with a bandwidth of 30 neighbors for 10 iterations. Figure 8 is the
example subject's original image followed by the evolving image at iterations 2, 4, and 9. MDS
again identified 5 modes containing 27, 153, 53, 105 and 78 subjects. Figure 9 shows the MDS
results for iterations 1, 2, 4, and 9, again with distinct modes identified by colored symbols.
The MDS algorithm used to generate these results was a metric stress criteria. It is expected
that the different MDS algorithms give differently shaped projections. While MDS identified
5 modes, the first two modes in Figure 10 are very similar. This may indicate the mode (“blue
x's”) completely surrounded by a second mode (“green pluses”) should be combined into one
mode.

A comparison of exemplar subjects from each mode (Figure 10) shows less pronounced
differences than mean shift with mean square metric (Figure 6). The first two modes appear
quite similar, differing mainly in the region of the ventricles. The modes with enlarged
ventricles found with the mean square metric are not present in this experiment. The modes of
the two experiments are directly compared in Figure 15.

Blezek and Miller Page 8

Med Image Anal. Author manuscript; available in PMC 2008 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6.4 Mean Shift with Mutual Information Metric on Stationary PDF
We performed ten iterations of the mean shift with mutual information metric on a stationary
PDF. As in the previous stationary PDF experiment, MDS did not form distinct clusters (Figure
11). The symbols used for the non-stationary PDF modes were placed on the MDS projection
in Figure 11(b), showing potential clustering of the “purple diamonds” on the left. Again, we
did not perform additional iterations in this experiment.

6.5 Mean Shift and Registration with Mutual Information Metric
Using this flavor of atlas stratification, twenty iterations were performed on 222 subjects drawn
from the AMC subjects using mean shift bandwidths (k) of 7, 15, and 30 neighbors. Figure 12
shows a single subject chosen at random from the k = 30 experiment though different iterations.

Figure 13 shows the mean shift algorithm identifies multiple modes in the population. The
number of modes being a function of the mean shift bandwidth. For a bandwidth of 30
neighbors, the mean shift algorithm produces 5 clusters containing 33, 39, 43, 47, and 60
subjects. As expected from the kernel density estimation definition in (1), larger bandwidths
give fewer modes (as found by MDS).

Figure 14 compares the 5 modes found in the 30 neighborhood bandwidth experiment. The
diagonal images are coronal slices of a representative of each mode from Figure 13. Off
diagonal entries are difference images of the corresponding modes from the diagonal. Note,
the image datasets in this experiment were not skull stripped, nor intensity normalized.

6.6 Mode Overlap
Given the results of the various experiments, we explore the differences in the modes identified.
We compare modes found with mean shift with mean square metric to those found by mean
shift with mutual information using Dice similarity coefficients (DSC) [25]. DSC is defined
as

where A and B are sets and |A| denotes the cardinality of A. DSC ranges from 0 when sets have
a empty intersection to 1 when A == B. The sets used in the DSC calculations are the subject
identifiers for the subjects assigned to each mode in each experiment. Several modes in the
experiments overlap to some degree as shown in Table 1. Here the columns are the modes
identified in the mean shift with mean square metric experiment while rows are modes from
mean shift with mutual information metric. The numbers in parenthesis are the size of the
mode. The DSC of MS 2 and MI 2, MS 2 and MI 4, and MS 5 and MI 4 indicate a moderate
level of overlap in the modes. Exact DSC agreement was not expected due to the different
modes found by MS and MI.

Figure 15 visually displays the differences and similarities between modes in the experiments
compared in Table 1. The first row displays exemplar subjects from modes found by the mean
shift with mean squares metric experiment while the first column displays exemplar subjects
from the modes in the mean shift with mutual information experiment. The remaining entries
in the figure show the cross-experiment differences in modes.

7 Conclusions
In this paper, we investigate atlas stratification, questioning whether a single atlas is
appropriate for a given sample or whether there is evidence from which we can infer multiple
atlases, each constructed from a subset of the data. We use the mean shift algorithm to search
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for modes in the population. If a population has multiple modes, the population should be
described by multiple atlases to minimize bias. We have explored only a small portion of the
permutations possible with the general atlas stratification framework, considering two different
distance metrics, moving and stationary PDFs, and incorporating registration into the
framework. Aside from the stationary PDF cases, as the iterations progress, the subjects
converge to potential modes of the population. Changes in nearest neighbor measures,
stationary vs. non-stationary PDF, update method and bandwidth produce different modes.
Further experimentation is required to fully explore the case of stationary PDFs. For practical
applications of atlas stratification, the non-stationary approach appears to converge more
rapidly than the stationary method.

In the usual course of atlas construction the transformation between a subject and the
constructed atlas is preserved. It is possible to maintain the relationship between the original
data and the final mode in atlas stratification, however, the purpose of this initial work is to
find the modes in the population. As we seek the modes of the distribution, modification of
the original samples is necessary. In principle, the outlined approach could be used to identify
subjects belonging to each mode for input into arbitrary construction methods. However, we
feel the distance metric used for atlas stratification should be linked to the atlas construction
method.

While the approach taken here is direct, it is not the only possible construction. For instance,
the distance metric does not have to be based on mean squares or mutual information. Overlap
metrics or shape similarity metrics on presegmented structures could also be used in this mean
shift framework. While our studies were based on an affine transform between subjects, higher
order transformations and deformable registrations could be used. Mean shift formulations
other than the nearest neighbor variant could also be used.

Aside from the above refinements, we've identified three areas of future research for atlas
stratification. The first is a study of the algorithm itself, quantifying the differences between
the atlases produced by atlas stratification. The second is a study of the algorithm in context,
quantify an improvement in an atlas-based technique when multiple atlases are available. This
will require a method to select the most appropriate atlas for a particular subject [26,27]. A
final study would involve finding correlations between clinical data and the modes discovered
by atlas stratification.
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Fig. 1.
Graphical illustration of the mean shift algorithm where sample points were randomly drawn
from a bi-modal mixture-of-gaussians distribution. In (a), the sample points are displayed on
top of a kernel density estimate of the underlying distribution (see equation (1)). At each
iteration of the mean shift, samples from the neighborhood Sh(X) are used to form the mean
shift, Mh(X). This is shown in (b) for t = 3 and a sample point  marked by an “X”, with the

points in  marked by open circles. The algorithm converges rapidly, (d) shows the
updated sample points converged to the modes of the underlying distribution at t = 8. In this
case, we have updated the kernel density estimate at each iteration, resulting in a narrowing of
the peaks in (d).
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Fig. 2.
Stationary mean shift algorithm. In (a), the sample points are drawn on top of a kernel density
estimate of the underlying distribution. At each iteration of the mean shift, samples from the
neighborhood  are used to form the mean shift, . This is shown in (b) for t = 3 and

a sample point  marked by an “X”, with the points in  marked by open circles. The
stationary algorithm converges more slowly than the original mean shift requiring 20 iterations
shown in (d) as opposed to t = 8 in 1(d). There is no associated narrowing of the peaks as the
stationary algorithm converges in contrast to 1(d).
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Fig. 3.

Atlas stratification process. Ij are the initial subjects. At each iteration for each subject j, 

is calculated from the subject at the tth iteration and the mean shift of the subject, . The
process of computing a subject's mean shift is illustrated on the right. The neighborhood

 is chosen from the kth nearest neighbors forming  for update.
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Fig. 4.
Axial and coronal views of one subject from the mean shift with mean square metric
experiment. The original subject image is on the left followed by iterations 2, 4, and 9.

Blezek and Miller Page 15

Med Image Anal. Author manuscript; available in PMC 2008 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
MDS results for mean shift with mean square metric experiment. The plots show MDS results
for iterations 1, 2, 4 and 9 of the algorithm. Colored symbols indicate modes from iteration 9,
indicating the evolution of the modes. Five modes were identified containing 72, 216, 46, 28
and 54 subjects.
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Fig. 6.
Exemplar subjects from five modes (diagonal images) identified by the mean shift with mean
square metric experiment using a bandwidth of 30 neighbors and the difference between these
atlases (off-diagonal images). The same contrast settings are used in all difference images with
mid-gray indicating zero difference.
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Fig. 7.
MDS results for iteration 9 of mean shift with mean square metric on stationary PDF (a). In
(b) colored symbols indicate subjects corresponding to the modes found by MDS in iteration
9 of the non-stationary experiment (Figure 5). Though not clearly clustered, there is a
suggestion of clustering into modes similar to the non–stationary PDF experiment.
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Fig. 8.
Axial and coronal views of one subject from the mean shift with mutual information
experiment. The original subject image is on the left followed by iterations 2, 4, and 9.
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Fig. 9.
MDS results of the mean shift with mutual information algorithm. Iterations 1, 2, 4 and 9 are
shown. Five modes were identified containing 27, 153, 53, 105 and 78 subjects.
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Fig. 10.
Exemplar subjects from five modes (diagonal images) identified by the mean shift with mutual
information experiment using a bandwidth of 30 neighbors. Off-diagonal images are difference
between these modes.
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Fig. 11.
MDS results for iteration 9 of mean shift with mutual information on stationary PDF (a). In
(b) colored symbols indicate subjects corresponding to the MDS modes from iteration 9 of the
non-stationary experiment (Figure 9). Though not clearly clustered, there is a suggestion of
clustering into modes similar to the non–stationary PDF experiment.
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Fig. 12.
A single subject chosen at random from the mean shift and registration experiment with k =
30. The original subject is shown in the upper left, with iterations 1 through 9 increasing to the
right. The remaining iterations are not visibly different.
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Fig. 13.
MDS results for mean shift and registration with mutual information metric. The columns show
MDS at iterations 1, 2, 4, and 20. The rows illustrate the effect of bandwidth for nearest
neighbor sizes 7, 15, and 30. Good convergence is observed for all bandwidths. As expected,
MDS shows fewer modes with smaller neighborhoods.
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Fig. 14.
Exemplar subjects from modes identified by the mean shift and registration with mutual
information metric algorithm (k = 30) are on the diagonal. Difference images are on the off-
diagonals.
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Fig. 15.
Comparison of the mean shift with mean square metric and mutual information metric. The
first row is modes of the mean square metric experiment, the leftmost column are modes from
the mutual information experiment. The remaining entries are difference images between
modes from the two experiments.
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