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Abstract
Modern medical imaging techniques enable the acquisition of in-vivo high resolution images of the
vascular system. Most common methods for the detection of vessels in these images, such as
multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel
there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points
that are easily observed in all but the most focused vascular image studies. In this paper, we propose
a novel method for detecting vessels in medical images that relaxes this single cylinder assumption.
We directly exploit local neighborhood intensities and extract characteristics of the local intensity
profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity
profile. We present a new method to capture the common properties shared by polar neighborhood
intensity profiles for all the types of vascular points belonging to the vascular system. The new method
enables us to detect vessels even near complex extreme points, including branching points. Our
method demonstrates improved performance over standard methods on both 2D synthetic images
and 3D animal and clinical vascular images, particularly close to vessel branching regions.
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1 Introduction
The detection and quantification of arteriogenesis associated with coronary occlusion is critical
for management of patients with cardiovascular disease. Modern medical imaging systems
including micro X-ray Computed Tomography (microCT) and Magnetic Resonance
Angiography (MRA) provide the capability to non-invasively image the arteriogenesis process
of forming collateral vessels in vivo [5,12,17,27]. An automated quantification and in vivo
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evaluation of arteriogenesis using vascular images would facilitate our understanding of the
pathophysiology and could potentially allow in vivo monitoring of therapeutic interventions
[4,21,31,32,42]. However, accurate and robust quantification of vascular images still remains
a problem because of the geometrical complexity of vascular structures.

The analysis of vascular images can be divided into four steps: (i) Feature Extraction – detect
vessel points; (ii) Geometric Model – connect the vessel points to form vascular trees; (iii)
Quantify properties of the vascular tree; and in the case of serial imaging, (iv) quantify
differences in these properties over time. For example, a typical vascular segmentation
algorithm may consist of a combination of the first two steps in addition to image preprocessing
steps. In most cases the methods rely on the detection of local tubular structures based on the
local intensity characteristics. Then, global segmentation methods, varying from level sets
[6,20,22,41], region growing [13,26,30], to Kalman or particle filters [48], are applied to finally
segment vascular structures via the global connectivity constraints.

Most image analysis research in this field has focused almost exclusively on the geometric
model. The feature extraction process, whether implemented as a separate step or incorporated
within the tracking/level set evolution framework, has for the most part used methods based
on operators relying on the single cylinder model. Many published techniques, which include
matched filters [9,33], Hessian operator [14,29] and model-based detection methods [19,23,
40], suffer from their simple assumption that there exists only one local oriented structure.
Some of these methods [9,33,23] are especially useful for finding locations of center lines of
vessels. However, they perform poorly at points away from vessel center lines, thus reducing
their ability to correctly estimate vessel volume. Hessian-based methods [14,19] are not valid
for crossing or branching points, and highly curved vessel points, both of which are essential
for measuring vessel connectivity and understanding arteriogenesis. We emphasize that
branching points are very common in most angiography problems outside of a few isolated
cases of relatively large vessels.

The work presented in this paper focuses exclusively on this first feature extraction step and
is aimed at relaxing the single oriented structure assumption common to most published
methods. We propose a new method to detect complex vascular structures without the strong
single cylinder assumption. We demonstrate that our new algorithm yields significant
improvements over previously published methods. In particular, we present a novel
“vesselness” measure based on the neighborhood intensity profile in spherical polar
coordinates. By “vesselness” measure, we refer to the image in which the image intensity at a
certain voxel is proportional to the likelihood that the voxel belongs to a blood vessel in the
original image. Instead of assuming a single cylindrical structure at any voxel, we based our
approach on the observation that the change of intensities in at least one conical-shaped
neighborhood region (whose tip is at the voxel of interest) is very small if these conical region
lies in a blood vessel (and high otherwise). This observation holds at both ordinary vessel
points, branching points, vessel end-points, and points away from the vessel centerline. This
key insight is formalized mathematically using a nonparametric model that does not depend
on image derivatives.

The rest of the paper reads as follows: We first give a brief review of the vessel detection and
enhancement methods in the literature (Section 2), and then provide additional motivation for
our method in Section 3. In Section 4, we define the neighborhood intensity profile in spherical
polar coordinates and show that it captures the characteristics of all desired vascular structures
(Section 4.1). Next, we derive our new “vesselness” measure based on the intensity profile
(Section 4.2). Section 5 describes experimental results for both 2D synthetic and real 3D images
(MRA and microCT).
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2 Literature Review
Many published approaches for vessel segmentation and tracking are based on filtering
vascular structures correctly [1,18,48,34]. We categorize the state-of-the-art vessel detection
or enhancement techniques roughly into integral-based and derivative-based methods, both
with the addition of multiscale techniques.

The integral-based methods, including matched filters [9,29,33], wavelets [45], geometrical
moments [28], and model-based inferencing methods [23,40], are especially useful for finding
locations or center lines of vascular structures. However, they do not generate good measures
for points away from center lines. Therefore, they either cannot provide accurate estimates for
the size or volume of vascular structures or they need extra procedures to have better measures
[1,2,18,19,29]. For example, vessel connectivity constraints [1,2,18] improves detection
performance with post-processing filtered images.

Among derivative-based methods, Hessian operator based methods [1,14,19] are popular as
its eigensystem captures the characteristics of tubular structures. Other methods based on the
orientation tensor [37] have also been implemented to describe local structures. The idea behind
eigenvalue analysis of either Hessian or orientation tensor is to extract the principal directions
in which the local structure of the image can be decomposed. This directly gives the direction
of smallest curvature, which is the direction of the tubular structure, and avoids the time-
consuming line filters in multiple orientations. However, these methods are not valid at
branching points because the assumption of the characteristics of the eigen structure does not
hold. The decomposition is not valid when there is no longer a simple dominant eigenvector
present. Hence, they also have limitations for robust quantification of complex vascular
structures, especially when images are noisy, contain branching points, crossing points, and
other extreme cases including stenosis and aneurysms.

For the consequent analysis of vascular images, a variety of approaches have been published.
For instance, level set methods and topologically adaptable active contour models [6,20,22,
25,35,36,41] are very active research subjects. Based on statistical properties of intensities or
vessel orientations in images, researchers have demonstrated the effectiveness of the
Expectation Maximization (EM) algorithm for the analysis of vascular images [7,39]. With the
integration of local spatial constraints, region-growing approaches have also been illustrated
useful in segmenting vasculature in the angiograms [13,26,30]. Different minimum cost path
techniques [3,10,18,20] provide automatic and robust vessel centerline extraction for vascular
analysis after segmentation. Skeleton-based vascular segmentation algorithms [1,35,38] were
also proposed for both size measurement and the connectivity analysis simultaneously. In most
of these methods, they integrate the results from the aforementioned feature extraction
methods, which are inadequate at branching points. This is true even for very recently
published paper [48], which proposes an elegant and sophisticated geometrical modeling
technique with particle filters.

The accuracy of the analysis of the vascular system is determined by the vessel detection or
enhancement techniques. The limitations of the aforementioned techniques may result in
uncertain, even incorrect vessel tracing or extraction results. In this paper, we propose a new
method to detect complex vascular structures without the strong single cylinder assumption.
We demonstrate that our new method yields significant improvements over existing
techniques, especially at complex extreme cases such as branching points.

The proposed method has the similar motivation as the nonparametic methods implemented
for lung nodule detection [43]. It can also be considered as the modification to steerable filters
[44,47,49] for corner and junction detection in computer vision. In medical image analysis,
one-dimensional cores [52] have been proposed for extracting tubular objects, where they also
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consider local intensities in polar coordinates for finding medial axes at scale. With a corner
detector [50], they extend the work to track branches based on the connectivity of extracted
cores [51].

3 Motivation
In this section, we first demonstrate the relative inadequacy of a standard approach using
Hessian operator for general vascular structure detection. We then provide additional
motivation for our proposed algorithm by investigating the intensities within appropriate local
neighborhoods of voxels in different places of interest (e.g. center line, branching point, etc.).

We start with the analysis of a synthetic image (Fig. 1(a)) with a single vessel model. The axis
of vessel is the y axis and the section of the vessel begin a Gaussian function

, where σ = 5. Following the derivation of Frangi’s vesselness measure based
on the eigen decomposition of the Hessian matrix (Appendix A) [14], we can get the vesselness
measure:

We plot the response with respect to distance to the vessel center in Fig. 1(d). Clearly, the
response drops quickly from the vessel center to the boundary points away from the center.
This might cause problems for vascular analysis, especially when the correct estimation of
vessel size is important. Multiscale techniques can help alleviate the problem. Another way to
overcome this problem is to have an extra post-processing step [19]. By computing the integral
of the inner product between the vessel direction (the eigenvector of Hessian matrix
corresponding to the eigenvalue close to 0) and image gradients along different directions in
multiple scales, the vessel size can be decided by finding the scale with minimum response.

To illustrate another problem of this Hessian-based method, we further examine another
synthetic image with a branching model (Fig. 2(a)). For this image, we compute V (x) in
multiple scale spaces and the final vesselness measure (Fig. 2(d)) is the maximum of V (x) over
multiple scales. The response again drops from the vessel center to the boundary points away
from the center. The more serious problem is that this Hessian-based measure is not valid any
more at the branching point 1 in Fig. 2(a) due to the ambiguity of the directions of the Hessian
eigenvectors.

If we directly look at the neighborhood intensities around these points, we find they have some
common properties, making it possible to have a measure valid for both center and boundary
points. The following observation motivates our new vesselness measure and is critical for
appreciating our proposed method.

In Fig. 1(a), we choose 3 points from the vessel center to the boundary point; and the green
circles define the local neighborhoods of the selected points. We first plot the intensity profiles
with respect to different directions along the green circles in Fig. 1(b). The profiles have the
same shape and the only difference is the distance between peaks of intensities. Next, within
the green circles in the figure, we take the sampled intensities as the distance from the labeled
point increases from 0 to the radius of the green circle. Fig. 1(c) illustrates the variation of the
sampled intensities with respect to different directions. We can see that the plots for these points
again are similar. One obvious common property is that all of them have two narrow bands of
directions where the intensities are relatively large and the variation of intensities is small.
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Furthermore, we plot the sampled intensities within the local neighborhood of a branching
point in Fig. 2. They have 3 peaks for the intensity profile. More importantly, we can also see
multiple narrow bands of directions with relatively large intensities and small intensity
variation.

We show the examples in 2D while there are similar phenomena in 3D, which implies that we
can design better measures directly based on the local neighborhood intensities. The rest of the
section presents the mathematical modeling required to capture the common characteristics of
neighborhood intensities for vascular points. We first define Polar Neighborhood Intensity
Profile in section 4.1. A new method is proposed to compute the responses for vesselness
measures based on Polar Neighborhood Intensity Profile in section 4.2.

4 Methods
4.1 Polar Neighborhood Intensity Profile

The polar neighborhood intensity profile underlies our new vessel enhancement method. We
explicitly exploit the characteristics of sampled intensities in an appropriate neighborhood. We
show visually that the necessary information deciding whether the points belong to vascular
structures can be captured from the variation of neighborhood intensities.

The efficacy of the neighborhood intensity profile is first illustrated by examining a synthetic
2D image containing almost all typical cases encountered in vascular structure analysis (see
Fig. 3(a)). We label both vessel points (1–9) and background points (10–15) and plot the
sampled intensities in a 31 × 31 neighborhood around each labeled point with respect to the
relative direction to that point. We define our polar neighborhood intensity profile as the
variation of sampled intensities with respect to the relative direction in polar coordinates.

A visual inspection of the polar neighborhood intensity profiles (Fig. 3) reveals that for all
types of vessel points (1–9), there exists at least one narrow band of relative directions, i.e.
constant angle in polar space, in which the variation of intensities along the radial direction is
relatively small compared to the other directions. Also, the sampled intensities in the narrow
band are above those along close-by directions. On the other hand, for background points, we
see that the intensity variation is mostly similar along all directions. Especially note that in the
curvilinear regions between two nearby vessels (points 11–12), there are also narrow
orientation bands with small intensity variations but the intensities within these bands are
relatively low, which also leads to easy classification from true vessel points – this last case
hardly occurs in 3D. For points belonging to non-vascular structures illustrated as a large blob
in the figure (points 14–15), the polar neighborhood intensity profiles are different from
vascular points: they have wide bands of directions with small intensity variation.

For 3D volumes, we observe the same phenomena and vascular points have tight oriented
neighborhood regions with small intensity variation in spherical polar coordinates. Fig. 4 shows
the polar neighborhood intensity profiles for points in the hindlimb portion of a 3D mouse
vascular contrast-microCT. Hence, in both 2D and 3D cases, there is sufficient information to
extract from the neighborhood intensities to measure the probability of having a vessel at an
individual voxel, which we will term its “vesselness”. The task now is to mathematically
quantify the common property shared by all types of points belonging to different vascular
structures: there exist certain oriented neighborhood regions where the intensity variation is
relatively small.

4.2 A Polar Neighborhood Profile “Vesselness” Measure
Based on the polar neighborhood intensity profile, we now derive our new “vesselness”
measure, which we will term the polar profile vesselness (PPV) measure. Here we assume that
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vascular structures are bright in the images. As noted above, previous measures fail for extreme
cases, including branching points, because the single cylinder assumption is not adequate to
model all the cases in vascular structures. We propose an explicit way to model all possible
cases nonparametrically. In this model, voxels will have a high vesselness measure if they
satisfy the following two requirements:

1. Tight local orientation clusters with small intensity variation: In the neighborhood of
vessel points, there must exist at least one narrow oriented conic zones along which
the variation of the intensities is low. We also need to exclude points in non-vascular
bright structures where the intensity change is small along all directions.

2. Locally bright structures: Since we are looking for bright vessels, it is important to
exclude locally dark structures so that we can distinguish true vessel points from the
points between two nearby vessels in 2D images (for example, points 11–12 in Fig.
3).

We derive our new measure in two separate parts in the rest of the section. We focus on the
derivation in the three-dimensional case. (The two-dimensional case is similar.)

4.2.1 Tight Orientation Clusters with Small Intensity Variation—Here we introduce
our approach to measure the tightness of small variation directions, which is proportional to
our new “vesselness” measure and is at the heart of this proposed method. Our measure is based
on the observation that there is always certain direction along which the intensity does not
change much for vascular points. As indicated in section 4.1, the starting point is to choose an
appropriate neighborhood in which we can clearly capture this feature.

We first estimate the intensity variation along relative directions since our objective is to
capture the characteristics that the neighborhood intensity variation is small along certain
direction from the point of interest. One way to do that is to calculate the average squared
intensity deviation along different relative directions θ = {ψ, φ} (ψ and φ are the azimuth and
elevation angles; ψ ∈ [0, 2π) and φ ∈ [0,π]) with respect to location of any voxel in the image
x = {x1, x2, x3}:

(1)

where I is the image intensity and h(u) is a function of relative position of neighborhood points
from x defined in a local neighborhood N(x). Different h(u) gives different partition functions
or weighting schemes to collect statistics in the neighborhood. We propose to use spherically

separable filters h(u) = hr(u) · hθ(u) = hr(r) · hθ (ψ, φ), where  is the radial

coordinate and ψ = arctan(x2/x1), . Both the radial and angular parts of
the filter can be either a Gaussian function or a simple rectangle function as shown in both Fig.
6 and Fig. 5. We focus on the discussion of the angular part here. The neighborhood region N
(x) is uniformly partitioned into nψ × nφ regions along different directions covering the whole
sphere as shown in Fig. 6(a). We can select better directions by using spherical barycentric
coordinates [46] while the rest of the formulae are exactly the same. (For 2D cases, we have
an even simpler partition as shown in Fig. 5(a).)

For simple average partition functions with rectangle functions for both radial and angular
parts, we can calculate the average squared intensity deviation for all sample points u from the
local intensity in each region Sθ:

(2)
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For Gaussian functions, the radial part of the filter hr(r) is shown in both Fig. 6(b) and Fig. 5
(b). At each direction, the angular part of the filter hθ(ψ, φ) is a 2D Gaussian function (Fig. 6
(c)). Fig. 5(c) illustrates the simpler forms for the angular part in 2D cases. In the direction of
θ = {ψi, φj}, we have:

where D(ψ, ψi) = min(|ψ − ψi|, |ψ − ψj +2π|, |ψ − ψj − 2π|) is the minimal circular difference
between ψ and ψi as the azimuth angle ψ is periodic in [0, 2π). We can get Dev(x, θ) by
substituting both radial and angular parts in (1).

Next we express the probability, pυ (x, θ), of having small intensity variation within the
discretized orientation region Sθ as:

(3)

where c is the normalization factor and β can be set either to a constant, or proportional to the
maximum intensity variation along all the directions. Adaptively tuning β helps to get robust
results. We can interpret this probability based on the assumption that the noise is normally
distributed. Within the orientation regions where there are vascular structures, I(x) is the local
intensity of vascular structures and β relates to the variance of the normal distribution. In this
sense, this measure is similar to line model based inferencing methods [9] but they compute
the generalized likelihood ratio test in the whole neighborhood instead of discretized
orientation slabs. They are not adequate for extreme cases because of the single cylinder
assumption.

The representative probability density functions in polar coordinates for typical cases, in Figs.
3 and 4, are illustrated in Fig. 7. The plots show clearly that the directions with large
probabilities (small intensity variation) correlate with the vessel direction in both 2D and 3D
images very well. The density functions for the vascular points are more concentrated than
those of background points which are close to uniform distribution.

We use the entropy of the density functions to derive our final measure. The entropy [8] for a
given density function measures the spread (or tightness) of the function. The entropy gets
smaller when the spread of the distribution decreases. Thus, using the entropy of the density
function, we define our tightness measure as:

(4)

Here, τ could either be a constant or a function. 1 In this paper, since the ratio of the number
of directions with small intensity variation will be very different for vascular structures and
large structures in our experiments, we can simply set τ = 1.

4.2.2 Locally Bright Structures—To account for intensity inhomogeneities in images, we
label vessel candidate voxels as being locally brighter than the background.

Intuitively, vessel candidates have to the points whose oriented neighborhood regions with
small intensity deviation contain more pixels with high intensities. Hence, we define a
brightness function for each pixel x:

1When we introduce τ as a function, we want to distinguish unimodal direction distributions from multimodal ones with similar spread.
By doing that, we wish to emphasize narrow bands that exhibit in vascular structures instead of large blobs in images. We borrow some
summary statistics used in directional statistical analysis [24]. There have been a few papers using the excess mass estimate for hypothesis
testing of multimodality but they are in bootstrap form and relatively time consuming [16].
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(5)

where s(d) = 1/(1 + e−αd) is a sigmoid function; μ(ISθmin(x)) is the mean intensity within the
orientation region with the minimum deviation; and μ(ISθmax(x)) is the mean within the region
with the maximum intensity deviation. These values come at no additional computational cost
since we have them from the calculation of Dev(x, θ).

Another possible function follows the same derivation of Frangi’s vesselness measure [14].
We simply consider the gray values of μ(ISθmin(x)) and set:

(6)

where γ is a constant.

4.2.3 The Polar Profile Vesselness Measure—Finally, our polar profile vesselness
measure is the product of the local brightness constraint (equation (5) or (6)) and the local
orientation constraint (equation (4)):

(7)

5 Experimental Evaluation
We perform a detailed evaluation of the performance of our new “vesselness” measure visually
and quantitatively on 2D synthetic images and 3D animal vascular images from both MRI
(MRA) and micro-CT images.

In Section 5.1, we use 2D synthetic data sets to perform both validation (at increasing level of
noise) of the performance of our method as well as a comparison of its performance against
that of the standard multiscale Hessian-based vesselness measure [14]. In addition, we perform
a sensitivity analysis to demonstrate the relative insensitivity of our new method’s performance
to parameter variations.

Next in Section 5.2, we present validation results for our methods against manual
segmentations of a set of N = 12 3D MRA lamb pulmonary artery images. We demonstrate
that our method yields statistically significant performance improvements over the Hessian
method.

Finally, in Section 5.3, we present a set of results using micro-CT rodent images. These results
visually demonstrate the improved performance of our method in data with truly complex
vascular structures.

We note that, as part of our processing, all the images are first normalized into the range from
0 to 1. In all experiments, we choose the size of neighborhood region k as roughly 2 times
larger than the size of the largest desired vessels in images. Based on k and image dimension,
we choose the other parameters accordingly.

5.1 Validation and Parameter Sensitivity on 2D Synthetic Data Sets
First, we evaluate the new algorithm using a series of 2D synthetic images containing a variety
of vascular structures. A series of synthetic images (see Fig. 8) have been derived by adding
varying amounts of Gaussian noise, ranging from noise variance of 1% to 50%. We use the
phantom image (from [23]) for the performance evaluation. This class of images contains a
wide range of different vascular structures as illustrated in Fig. 8(a). We present results from
three sets of experiments. First we plot the detection rates (sensitivity) and false alarm rates
(1-specificity) of our methods using a fixed threshold with varying noise level (Fig. 9(a, b, c)).
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Since there are a couple of important parameters involved in our new algorithm, a sensitivity
analysis using these images is necessary to show that the algorithm is insensitive to different
settings. We therefore perform a sensitivity analysis of the performance of our algorithms with
respect to key parameters (Fig. 10(a, b, c)). Afterwards, we compare the performance of our
method to a Hessian-based measure obtained by eigen decomposition of multiscale Hessian
operators (Fig. 8(c–e)).

(i) Detection and False Alarm Rates—In this first set of experiments, we use the
following parameters settings: k = 55, nθ = 36 and β = 300.0. To calculate detection rates and
false alarm rates, we need to threshold our “vesselness” measures. When k is twice larger than
the size of the largest desired vascular structure in the images, the angle covered by the
directions with small intensity variation cannot be more than π for vascular points. For entropy-
based measure, we set the threshold according to the entropy

, giving us υT = 2/nθ. The brightness function (6) with γ =
0.015 is used for this set of experiments. Figs. 9(a) and (b) summarize the performance of our
algorithm with different filters h(u). Detection rates and false alarm rates are plotted as
functions of the noise level. We find that the performance is similar for Gaussian or rectangle
filters as the radial part hr(u) when the effective width of Gaussian filters is comparable to k
(Fig. 9(a)). For the angular part hθ(u), the performance of Gaussian filters depends on the extent
of overlap (width of Gaussian functions) between neighboring orientations. When the overlap
is small, the performance is close to that of the rectangle filter. While the width of Gaussian
functions increases, both the detection and false alarm rates are lower than using rectangle
functions for noisy images because of the smoothing effect as shown in Fig. 9(b).

To compare the two different brightness functions defined in equations (5) and (6), we plot the
performance of our algorithm using rectangle functions for both the radial and angular part in
Fig. 9(c). We choose α = 1000 and γ = 0.015 for the comparison. The plots show that the
brightness function (6) is a little bit better for this set of synthetic images because we could
miss the low contrast structures when there are bright structures nearby using the sigmoid
brightness function (5).

As we have shown, different filter settings lead to similar performance. In the rest of the section,
we show the experimental results using rectangle filters for the radial part as well as the angular
part with which the fine structures are well preserved. The brightness function uses (6) with
γ = 0.015.

(ii) Sensitivity Analysis—We explore here the sensitivity performance of our algorithm
with respect to parameter settings. First, although the selection of k can be chosen manually
based on the vascular structures in images, we plot the detection and false alarm rates for images
with the noise variance of 15% using different k in Fig. 10(a) (nθ = 36, β = 300). We show that
we achieve good performance when k is larger than a certain number, or more specifically, two
times of the largest size of a vascular structure.

In this section, we mainly test the performance with different nθ and β. We set k = 55 and test
on images with the noise variance of 15%. The plots of detection rates and false alarm rates
with respect to different parameters are given in Fig. 10(b) (β = 300.0) and (c) (nθ = 36). We
can see that when nθ is beyond a certain value (36 in the figure), the detection rate does not
increase. This depends on the image resolution and whether there are enough sample points
along different directions to correctly estimate the intensity variation Dev(x, θ). For the
parameter β, the false alarm rate increases with increasing β as large β magnifies the difference
between orientation slabs and introduces more false positives.
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(iii) Comparison with Multiscale Hessian-based Method—For the comparison to
multiscale Hessian-based methods, we display the measure maps from our proposed algorithm
and Frangi’s algorithm [14]. The results for the synthetic image in Fig. 8(b) are shown in Fig.
8(c) and (d). By comparison, the new measure maps are visually better at branching points and
highly curved points as shown in the figure. We also compare their detection rates with fixed
false alarm rates of 0.5% in Fig. 8(e). For our new measure, we set the same parameters as in
the first set of experiments. We use 12 uniformly sampled Gaussian scales ranging from 0.5
to 12 pixels for the Hessian-based measure. The detection rates at (c), (d) in Fig. 8(e) are
obtained based on the measure maps shown in Fig. 8(c) and (d). From the figures, we find that
the detection rate decreases faster with the increasing noise level for the Hessian-based measure
as it is based on the second derivatives of image intensities.

We further compare our results with the results from a variety of matched filter methods in
[23]. As the method in [23] is especially designed for vessel center detection, the true positive
and false positive rates in [23] were only measured based on the ground truth of vessel center
lines since the method does not perform robustly for the points away from center lines. While
our method is designed for all points belonging to vascular structures, we measure the true
positive rates and false positive rates using the whole vascular structure. If the true positive
rates for our measure are higher than those in [23], it is reasonable to say that our measure has
better performance as we treat center line points and points away from center lines in the same
way. By comparison, at false alarm rate 0.5%, the true positive rates in this experiment are
higher than those in [23] with the false alarm rate being described as “almost zero”.

5.2 Validation on 3D MRA Lamb Data
We further validate our algorithm using a set of 3D MRA lamb images at 1.5T. MRA was
performed using a 3D MPRAGE acquisition with 25cm FOV, 1.1mm slice thickness, 128
slices, TE=3ms, TR=24ms, 2 averages, alpha=45°, 192×256 matrix and bandwidth = 220Hz/
pixel. The data was then resampled to have isotropic voxel size equal to 0.78125 mm prior to
all processing.

The results of both our new method and the Hessian-based method are compared to manual
“gold standard” segmentations of a portion of the pulmonary arteries. Manual segmentation of
3D vascular structure is extremely complex and time-consuming. We created a special software
tool which is now a part of our BioImage Suite software package (www.bioimagesuite.org) to
allow for simultaneous tracing in multiple orthogonal planes, which helps the expert to obtain
faithful segmentation results. The validation is performed using the part of the image
encompassed by dilating the manual segmentations by 5 voxels. This enables us to compute
the detection rates and the false alarm rates from thresholding the vesselness measures within
these regions. We set k = 55, β = 800, nψ = 16, and nφ = 8 for our new measure. Multiscale
Hessian-based measure is computed in 20 uniformly sampled Gaussian scales ranging from
0.5 to 10 voxels. Note that we compute our new measure by implementing convolutions via
the Fast Fourier Transform (FFT) and that the computational time is comparable to the
multiscale Hessian-based algorithm.

We implemented our algorithm in MATLAB. The computational time was approximately 4
hours for each MRA image (image size = 101×256×101), on a 2.0 GHz Intel Xeon CPU under
Windows XP. The computational time can be reduced substantially by implementing the
convolution operations (which take up almost all of the computational time) using hardware
acceleration on graphical processing units (GPUs) found on most high end graphics cards. For
the implementation of the Hessian-based method, we also used an FFT based-implementation
for the convolutions with the appropriate derivatives of the multiscale Gaussian kernels. This
enabled the use of relatively large kernel sizes and resulted in significant improvements in the
performance of the Hessian based method.
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In Fig. 11, we plot the ROC curves for 12 3D images using our new algorithm and the traditional
Hessian-based measure [14]. Among 12 curves with entropy-based measures from our new
algorithm, 9 of them (except (d), (f), and (i)) are above the corresponding curves from the
multiscale Hessian-based algorithm and have better detection performance when the false
alarm rates are below 20%. When the false alarm rates are below 10%, all 12 ROC curves from
our algorithm are above the corresponding curves from the multiscale Hessian-based
algorithm. Table 1 has the average detection rates for our algorithm and the standard multiscale
Hessian-based algorithm with false alarm rates fixed at 5%, 10% and 20%. Note that our
proposed algorithm’s performance is better than that obtained using the Hessian-based
measure. The results at the false alarm rate level of 5% demonstrate statistically significant
improvement over the Hessian-based measure (with two-tailed p-value < 0.001). Fig. 12 shows
the segmentation surfaces of one good example with the best detection rates (Fig. 11(h)) and
one bad example with the worst detection rates (Fig. 11(f)) in 12 volumes by thresholding the
measure maps; note especially the improved performance at branching points.

5.3 Vesselness for Micro-CT Rodent Data
To further investigate the performance, especially at branching places in vascular structures,
we implement our new entropy-based measure on a number of ex-vivo 3D small animal micro-
CT data sets using barium-sulfate contrast. Images were acquired at a resolution of 100 × 100
× 100μm. We present here three examples for visual comparison. The first is from an excised
rat heart with the size 124×119×166. The other two data sets are hindlimb images from two
different mice. The sizes are 251 × 131 × 131 and 251 × 131 × 171. We set k = 23, β = 600,
nθ= 12, and nφ = 6 along the azimuth and elevation directions for our new measure. In Fig. 13
(a-1),(b-1) and (c-1), we show the surfaces of the segmentation by thresholding the measure
maps. As the mouse hindlimb micro-CTs in (b-1) and (c-1) also contain elongated tubular bone
structures, the algorithm can pick up some of bones depending on their size. These figures
show that it does look promising for capturing vascular structures displayed in the volumes.
In Fig. 13(a-2),(b-2) and (c-2), the multiscale Hessian-based measure is computed in 10
uniformly sampled Gaussian scales ranging from 0.5 to 5 voxels. We see that the Hessian-
based algorithm does not give strong responses for branching points in all three data sets. Also,
it misses some thin vessels and regions of stenosis for the rat heart data set in Fig. 13(a-2).

6 Discussion and Conclusions
We have proposed a new polar profile vesselness measure for characterizing vascular
structures. This is the first vesselness measure to our knowledge using the information entropy
to depict the tightness of oriented clusters with small intensity variation. An important feature
of the measure is that it directly exploits the intensity information of underlying structures and
does not assume the single cylinder model like other available measures. The new measure is
valid for all vascular structures, including points away from the center line, branching points,
and other extreme cases. We demonstrate that our new algorithm performs better at those places
and the overall detection performance is also marginally better as compared to the conventional
multiscale Hessian-based operators, using both 2D synthetic and 3D in vivo lamb MRA
acquisitions.

The major limitation of our new method is its relatively high computational cost. We are
actively investigating GPU-based implementation of the convolutions to reduce the execution
time. Some preliminary testing using the NVIDIA CUDA [53] toolkit suggests that
computational improvements of the order of ten to fifty times are possible on modestly priced
graphics cards.

Our new vesselness measure is also less smooth than the Hessian-based measure. The most
likely source for this is that the Hessian method invokes a parametric model for the data, hence,
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when the model is correct (the single cylinder assumption) it is able to take advantage of the
model to reduce the effect of noise. We use a non-parametric method (no single cylinder
assumption) and hence we do not have this luxury. A solution might be to explicitly go to a
multi-cylinder type model, either a multi-tensor estimation or a higher order parameterization.
The use of a multiple scales might also yield improved performance. At the same time, if we
only consider our proposed method as a pre-processing detection step, the relative lack of
smoothness could be alleviated if we use global connectivity information for the final
segmentation.

As well as providing good results to emphasize vascular structures using the new measure, the
intermediate results from the derivation of the measure can also be useful, especially for
assisting vessel segmentation and tracking. For example, in the Markov Random Field
segmentation framework, the prior probability of the segmentation can be described by a Gibbs
distribution of the form  to capture the spatial homogeneity, where C(x) is the
set of all possible cliques of x and W(x, c(x)) is known as clique potential [15]. As we can see
from Fig. 7, pυ(x, θ) correlates correctly with the vessel direction, we can have a similar prior
probability and let W(x, c(x)) = ∫ pυ(x, θ)pυ(c(x), θ)dθ to force the continuity of the vessel
direction and help segment vascular structures robustly.

This type of methodology with the use of different neighborhoods – the h(u)’s of equation 1,
could also be used in the future to detect regions of different local shape properties such as
sheets. The later being useful in the segmentation of the brain cortical gray matter layer as an
additional constraint to intensity-based segmentation. In the case of sheets, the neighborhoods
would be shaped as half or quarter- discs (as opposed to the conical filters used for vessels).

The current paper provides good results for obtaining a vesselness measure map as a pre-
processing step of consequent vessel tracking and connectivity analysis. Our future work
includes the enhancement of our new algorithm. For example, the capability to have adaptive
parameters for the given images is important. By correctly estimating the largest vessel size,
we can automatically choose the kernel size k. We are also interested in using the proposed
measures to design better connectivity analysis algorithms and help improve the performance
for the analysis of vascular structures.
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APPENDIX

A Eigenvalues for a Vessel Model with Gaussian Cross-section

The Hessian matrix of the image  is as following:

Therefore, the eigenvalues are , λ2=0. Following the same reasoning of
getting 3D vesselness measure in [14], we can get the vesselness measure (assuming bright
vessels) as
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Figure 1.
(a) A synthetic image with a Gaussian profile vessel and 3 labeled points from the vessel center
line to vessel boundary (The green circles on the image represent 31×31 local neighborhoods.);
(b) The intensity profiles with respect to different directions along the green circles in (a); (c)
The variation of the sampled intensities (The ordinates in the plots are proportional to intensity
values) with respect to different directions along the circles with varying radii within the green
circles in (a): Narrow bands of directions with relatively large intensities and small intensity
variations are illustrated by the green bars; (d) The vesselness response using eigen
decomposition of the Hessian operator. The abscissa shows the distance to the vessel center.
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Figure 2.
(a) A synthetic image with a branching point labeled in the figure (The green circle on the
image represents a 31 × 31 neighborhood.); (b) The intensity profile along the green circle and
the sampled intensities along different directions within the green circle in (a). Narrow bands
of directions with relatively large intensities and small intensity variations are illustrated by
the green bars. (c) The vesselness response using eigen-decomposition of Hessian operators
in multiple scale spaces [14]
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Figure 3.
A synthetic image with labeled extreme points. The green circle on the image represents a 31
× 31 neighborhood. (a) Polar neighborhood intensity profiles for all the labeled points in polar
coordinates: The distances of red points to the origin are proportional to the sampled intensities.
The green circle’s radii are proportional to the intensities of the corresponding labeled points.
(b) 5 typical cases plotted in Cartesian coordinates: The plots show the sampled intensities
along different directions.
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Figure 4.
3D polar intensity profiles: (a) Volume rendering of a mouse hindlimb microCT; (b) The
sampled intensities in polar coordinates for the labeled points in a 27 × 27 × 27 window. Note
the clusters of the sampled intensities (red points) with small variation from the local intensities
(green sphere) for vessel points 1–2.
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Figure 5.
Partition 2D neighborhood regions into oriented regions: (a) Partitions; (b) Radial part of the
filter (k is the radius/size of the filter); (c) Angular part of the filter
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Figure 6.
Partition 3D neighborhood regions into oriented regions: (a) Partitions; (b) Radial part of the
filter (k is the radius/size of the filter); (c) Angular part of the filter
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Figure 7.
Density functions to calculate “vesselness”: (a) The probability density functions in polar
coordinates for the points in Fig. 3; (b) The density functions in spherical polar coordinates for
the points in Fig. 4.
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Figure 8.
(a) The ground truth synthetic image; (b) A synthetic image with the noise variance of 15%;
(c) Our entropy-based measure map with zoomed parts; (d) The standard Hessian-“vesselness”
measure map with zoomed parts; (e) Detection rates with false alarm rates fixed at 0.5% for 2
different measures.
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Figure 9.
Performance Summary: (a) Detection and false alarm rates of our entropy-based measure with
fixed threshold using the same rectangle filter for the angular part; (b) Detection and false alarm
rates of our entropy-based measure with fixed threshold using the same rectangle filter for the
radial part; (c) Detection and false alarm rates with different brightness functions (5) and (6)
with fixed threshold. The terms inside the parentheses with Gaussian filters denote the standard
deviations of Gaussian functions. k is the size of filters; a = 2π/nθ.
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Figure 10.
Sensitivity of the algorithm: (a) Sensitivity with respect to k; (b) Sensitivity with respect to
nθ; (c) Sensitivity with respect to β.
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Figure 11.
ROC curves for 12 lamb MRAs for our new entropy-based algorithm and the Hessian-based
algorithm [14]
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Figure 12.
Volume rendering of 2 MRAs with thresholded vesselness measures: (a) Original image; (b)
Ground truth; (c) Our entropy-based measure; (d) The standard Hessian-based measure. Top
row: One example with the best detection rates (Fig. 11(h)); Bottom row: One example with
the worst detection rates (Fig. 11(f)). Places where the Hessian-based algorithm is not adequate
are marked for comparison.
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Figure 13.
Volume rendering of micro-CT images with thresholded vesselness measure: (a-1) Our new
entropy-based measure map for the rat heart data set; (a-2) The standard multiscale Hessian-
based measure for the rat heart; (b-1) and (c-1) Our new entropy-based measures for the
hindlimb mouse data sets; (b-2) and (c-2) The standard multiscale Hessian-based measures for
the mouse data sets. Some of places where the Hessian-based algorithm is not adequate are
marked in the figure.
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Table 1
Means and standard deviations of detection rates with false alarm rates fixed at 5%, 10% and 20% for 12 3D lamb
MRAs.

Detection performance (Mean ± STD)

False alarm rate Our Method Hessian (Frangi et al [14])
5% 61.23% ± 7.89% 50.96% ± 9.95%
10% 76.40% ± 7.80% 68.17% ± 8.22%
20% 88.57% ± 5.56% 86.01% ± 3.57%
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