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Abstract

In this paper, we utilize the N-point correlation functions (N-pcfs) to construct an appropriate 

feature space for achieving tissue segmentation in histology-stained microscopic images. The N-

pcfs estimate microstructural constituent packing densities and their spatial distribution in a tissue 

sample. We represent the multi-phase properties estimated by the N-pcfs in a tensor structure. 

Using a variant of higher-order singular value decomposition (HOSVD) algorithm, we realize a 

robust classifier that provides a multi-linear description of the tensor feature space. Validated 

results of the segmentation are presented in a case-study that focuses on understanding the genetic 

phenotyping differences in mouse placentae.
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1 Introduction

Developments in microscopy imaging technologies (Levenson and Hoyt, 2000; Stephens 

and Allan, 2003) have generated large high resolution datasets that have spurred medical 

researchers to conduct investigations into tissue organization, interfaces and internal cellular 

arrangements (Wu et al., 2003; Wenzel et al., 2007). Deeper insights into mechanisms of 

onset and growth of disease including cancer are now possible. For example, existing 

imaging modalities and imaging agents allow the microstructure characterization of the 
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tumor microenvironment (Sloane et al., 2006). The tumor microstructure is best described 

by the composition and three-dimensional arrangement of cellular matrices, vasculature, and 

ducts that are embedded into a salient tissue structure. In this work, we focus on achieving 

tissue segmentation in histology images obtained from light microscopy by exploiting the 

properties of the microstructure. Segmentation of tissue layers when combined with other 

information (genetic and molecular expressions) will further the understanding of disease 

mechanisms (Ohtake et al., 2001).

Tissue layers differ mainly in the spatial distributions and packing of microstructure 

components such as the red blood cells (RBCs), nuclei, extracellular matrix and background 

material. We algorithmically process high-resolution datasets to determine these 

distributions. These large images are generated from serial-section stacks that were digitized 

using light microscopy. Robust segmentation involves the discovery of feature spaces that 

estimate and spatially delineate component distributions, wherein the tissue layers naturally 

appear as salient clusters. The clusters can then be suitably classified.

Figure 1 shows a typical mouse placenta section that we encounter in our work. The 

interface between two tissue types at full resolution is marked out using a red boundary. 

Note the clear lack of a well-defined boundary between the two tissue types. Instead, the 

change is better perceived by noting the subtle changes in microstructure properties (texture) 

that manifests within each tissue region. Figure 2 shows another histology-stained section of 

the mouse mammary tissue. The epithelial cell lining surrounding a duct has a characteristic 

packing arrangement. The material surrounding the duct consists of fat cells arranged in 

honeycomb-like cellular matrices. Our examples serve to illustrate that the tissues are best 

identified by the relative packing densities and spatial distributions of nuclei, RBCs, 

extracellular material and background components.

In Section 3, we propose the use of N-point correlation functions (N-pcfs) borrowed from the 

material science literature (Torquato, 2004) for image segmentation. These functions 

efficiently characterize the microstructure in a heterogeneous substrate (Gokhale, 2004; 

Gokhale et al., 2005; Singh et al., 2006). The N-pcfs estimate a feature tensor at each pixel 

location. The tensor encodes information relevant to the spatial proximity of different 

components relative to each other. In order to classify the tensors into salient tissue classes, 

we invoke higher-order singular value decomposition (de Lathauwer et al., 2000) methods. 

This allows us to identify fundamental descriptors that best explain the unique distributions 

spanned by a salient tissue in the tensor space.

Finally, in Section 4, we apply these methods to a genetic phenotyping study and provide 

rigorous validation proof. Using manual ground-truth, we compare the performance of the 

tensor classification framework with the k-nearest neighbor method. The segmentations 

from using the N-pcf measures are compared with the Haralick and Gabor measures. 

Additionally, the automated segmentations on the entire image stack are compared against 

manual segmentations. Thus, we obtain effective high-resolution tissue segmentations as 

shown in Figure 14 (placental labyrinth) and Figure 15.
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2 Related Work

Medical research has focussed on trying to understand the cellular and molecular 

mechanisms of transformation especially in cytogenetics (Streicher et al., 2000) and cancer 

pathology (Braumann et al., 2005; Sloane et al., 2006) by utilizing high-resolution 

microscopy. Imaging studies have had a high impact in terms of providing automated and 

objective methods for comparative analysis (Wenzel et al., 2007). In this context, pertinent 

research in serial section visualization focusses on (i) extracting/segmenting relevant 2D 

features (neurons, vasculature, ductal profiles etc) and regions (labyrinth layer, mammary 

epithelial tissue etc.) (ii) performing automated serial-section alignment (Fiala and Harris, 

2002; Mosaliganti et al., 2005; Cooper et al., 2006; Huang et al., 2006) and (ii) evaluating 

3D structure from 2D profiles (Jeong and Radke, 2006; Fiala, 2005; Sharp et al., 2007). The 

work presented in (Ohtake et al., 2001; Fridman et al., 2004) follows this mantra 

successfully to get 3D tangible reconstructions of duct/vasculature anatomy. In this work, 

we address 2D segmentation challenges that these tasks require as a precursor to 3D 

reconstructions.

Direct volume rendering using transfer functions has a limited scope in the visualization of 

the raw image stacks since it requires the presence of 3D image gradients and color 

variations. In serial-section microscopy, information is available on a per image basis with 

little or no correspondence of structures in subsequent slides owing to the thick sections 

(Fiala and Harris, 2002) that are often acquired. Furthermore, all the tissue layers resemble a 

multi-phase sample having the same microstructural components. They vary in the 

presentation of ensemble properties. Hence, a segmentation of the various regions (Fiala, 

2005) is first required before meaningful visualizations are obtained.

Segmentation techniques reported for histology image segmentation in the literature may be 

categorized into two specific classes: color-based and image-based. Color space methods 

target features of interest that are easily discriminated and extracted solely on the basis of 

color at every pixel or local region. For example, in our case, the nuclei (dark), red blood 

cells/blood vessels (scarlet) and extracellular material/neoplasm (mauve) appear with 

distinctive hues in the standard H&E histological staining protocol. In an earlier effort, Pan 

and Huang (2005) devised a Bayesian supervised segmentation method incorporating image 

features such as windowed color and gradient histograms into a long feature vector for 

classification. This approach did not exploit the spatial arrangement patterns of the 

microstructural components.

The image-based methods seek to outline salient regions in the image. Often, their goal is to 

detect boundaries or interfaces between different regions. Hence, they come under the 

broader class of region segmentation algorithms. The level-set methods (Malladi et al., 

1995; Fernandez-Gonzalez et al., 2004), active contour models (Caselles et al., 1997), Gibbs 

models (Chen and Metaxas, 2005), watershed methods (Beucher, 1991) and texture analysis 

methods (Haralick et al., 1973) are prime examples of this approach in the medical imaging 

literature. They have found popular use in separating overlapping nuclei clusters, cellular 

constellations, ductal and vasculature pathways. In (Huang and Murphy, 2004), the authors 

use an extended Haralick feature set to locate sub-cellular patterns in fluorescence 
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microscopy images. Our images do not present easily discernible boundaries Figure 1 and 

Figure 2). Salient regions are identified by the subtle changes in ensemble properties. 

Therefore, we adapt methods from material science literature for obtaining region 

segmentations.

The quantitative characterization of spatial distributions of finite-size objects or points in 

multidimensional spaces has been studied in several disciplines such as spatial statistics 

(Torquato, 2004; Stoyan et al., 1985), materials science (Gokhale, 2004; Gokhale et al., 

2005), signal processing (Aste and Weaire, 2000), biology (Zou and Wu, 1995), physics 

(Chandrasekhar, 1996), and astronomy (Babu and Feigelson, 1943). Microstructure 

irrespective of its origin (material science or biological sections) may be defined as a 

collection (ensemble) of points, lines, internal surfaces, and volumes (Gokhale et al., 2005). 

Each microstructural feature is associated with size, shape, volume, surface area, length, 

curvature attributes etc., morphological orientation, and location. Statistical distributions of 

such geometric attributes of ensembles of microstructural features collectively specify the 

geometric state of a microstructure. Mathematically, these properties of the microstructure 

are formalized by the statistical N-point correlation functions (N-pcfs) (Stoyan et al., 1985). 

There are fundamental geometric constraints that are enforced while realizing N-pcfs. These 

constraints, therefore, provide useful user-input in choosing a certain functional form of the 

function that is best representative of the microstructure. A formal introduction to N-pcfs 

with applications in material characterization studies can be found in Torquato (Torquato, 

2004). In practice, the 2-pcf is most useful for microstructure representation (Saheli et al., 

2004; Sundararaghavan and Zabaras, 2005). Recently, a digital image analysis based 

technique has been developed for the realistic computer simulation or reproduction of 

microstructure from measurements of the two-point correlation functions on 2D sections 

(Singh et al., 2006).

The N-pcf features are similar to the co-occurrence matrices of Haralick et al. (1973) in 

some sense. However, significant conceptual as well implementation differences exist. For 

example, the computation of the N-pcfs is randomized and does not exploit the pixel grid 

structure. These functions are used to compute other physical properties of the tissue 

substrate (such as porosity, etc.). The functions capture both the geometry and statistical 

nature of textural regions. Given the inherent generality of the N-pcfs, we explore their use 

in segmenting light microscopy images.

The work describe in this paper is a culmination of several related efforts. Ridgway et al. 

(2006) initially introduced the N-pcfs for histology image segmentation in conjunction with 

the HOSVD classifier. Some initial promising results were observed on individual 2D 

images. The segmentation results were however validated on a single marked image. Janoos 

et al. (2007) extended the above approach to incorporate multi-resolution scale-space 

strategies to achieve better time performance. They note that the coarse segmentation results 

at lower resolutions as a trade-off against better time performance. In this work, we provide 

a consolidated and rigorously validated solution on large serial-section stacks.
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3 Segmentation Algorithm

We describe our segmentation framework as a consequence of three processing stages. 

Please refer to Figure 3 for a flowchart.

i. Identifying homogeneous phase components: At the outset, we identify the 

microstructural components namely, the nuclei, RBC, extracellular material and 

background from color images using a standard Gaussian maximum likelihood 

estimation (MLE) framework (Section 3.1).

ii. Estimating component distributions: We treat a slice as a multi-phase material 

wherein each tissue layer can be independently analyzed for the ensemble 

properties. The tissue regions present salient packing and spatial distributions of the 

components that are measured by the N-pcfs. In Section 3.2, the N-pcfs are 

estimated using a sliding window strategy that is applied throughout the image to 

yield a feature tensor at each pixel location.

iii. Tensor Classification: The N-pcf features of a tissue sample are naturally expressed 

as N + 1 mode (order N + 1) tensors. In Section 3.3, we decompose the tensor 

feature space for a given tissue type by using the higher-order singular value 

decomposition method on training data. Novel tissue regions are then projected 

onto a lower-dimensional tensor space and classified.

3.1 Color Segmentation

The RGB pixel data is color-classified to determine the individual microstructural 

components in the image (denoted as I). We use a standard Gaussian MLE classifier to label 

each pixel p ∈ I as belonging to one of the 4 classes, namely, (i) nuclei, (ii) RBC, (iii) 

extracellular material and (iv) white background. The MLE algorithm assumes that the 

histograms of the bands of data have normal distributions (shown in Figure 4(a)).

The a-priori information related to the four classes is learnt from training data. Pixel wise 

labeled data was generated using a random sampling of the given image. A custom-built 

application randomly displays patches of the training image, and highlights the center pixel. 

The user then chooses between red blood cells, cytoplasm, background, nuclei, and pass. 

The spatial location, RGB triplet values, and the user chosen class are used as class 

attributes. Covariance matrices (Σi), mean (μi) and prior probability weights (ai) are then 

calculated for each individual class.

(1)

Equation 1 determines the probability (Pi(p)) associated with a pixel p towards a class i. The 

maximum logarithmic probability rule is invoked to determine the final class membership 

π(p). The result of this classification is a material component labeled image that is shown in 

Figure 4(b). Having identified the microstructural components in the image, we would like 
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to measure their relative packing and spatial distributions. The functions defined in the next 

section describe an elegant way to do so.

3.2 N-Point Correlation Functions

The histology images normally are composed of four component phases as explained earlier. 

However, to simplify the presentation here, assume the presence of only two phases in an 

image I, namely, 0 (black) and 1 (white). Examples of such image textures are shown in 

Figure 6. Consider placing a N-sided regular polyhedron with edge length ℓ in I. The 

probability that all the N-vertices lie in phase 0 is defined as an N-point correlation function 

(N-pcf), , where im = 1. The subscript im denotes the phase of the mth polyhedron 

vertex. The N-pcf for a regular polyhedron of edge length ℓ depends on its orientation (θ,ϕ) 

and location in the 3D space of the microstructure. The orientation averaged N-pcf  can 

be computed from the corresponding direction-dependent functions  as follows:

(2)

We now provide some insight into the probability measures captured by these functions. 

Consider the simple case of a 1-pcf, say P0. It represents the probability that a point p is in 

phase 0. This quantity measures the volume fraction of phase 0 in the microstructure. 

Similarly, P1 is the volume fraction of phase 1 and we have:

(3)

A 2-pcf is the probability of a straight line segment of length ℓ randomly placed in the 

microstructure such that one end is in phase i1 ∈ {0,1} and the other end is in phase i2 ∈ 

{0,1}. For a 2-phase microstructure, there are four possible 2-pcfs namely  and 

 and:

(4)

Parameters f0 and f1 represent the volume fractions of the individual phases. Similarly, the 3-

pcf descriptor of the material ensemble is , where i1, i2, i3 ∈ {0, 1} are the phase 

indices of the three points, and ℓ is the separation distance between them (the three points 

describe an equilateral triangle whose side has length ℓ) and:

(5)

Note that each individual texture class in an image may provide a unique or characteristic N-

pcf feature measure for a certain value of the separation distance ℓ. The presentation of these 
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characteristic values makes the texture class to be easily identified. It is not known a priori 

what these values of ℓ are for a given image. Hence, in practice, a range of values need to be 

explored while estimating these functions for the given image. The set of possible integral 

values that ℓ may assume is represented by the discrete set K ⊂ ℤ and the set of all 

component phases by Q ⊂ ℤ. The N-pcf feature descriptor for a tissue region represented by 

 is an N +1 mode tensor.

3.2.1 Algorithms for the 2-pcf and 3-pcf—Essentially, a N-pcf is a multivariate 

distribution function. To estimate this function, we resort to using samples. Conceptually, 

for a given separation length ℓ, one needs to create auto- and cross-histograms at every point 

in the discrete image plane. Therefore, Monte Carlo methods were used to sample the 

distributions of material components using a sliding window. To estimate the functions at a 

given point in the image, the number of samples (S) and window sizes (Ω) need to be 

specified. The minimum window size is proportional to the maximum distance that the 

functions will be evaluated for, and the sample size is chosen to keep the variance of the 

measured result to a desired range.

To evaluate the 2-pcf for separation distance ℓ and phases i, j in a region containing m-

phases, we place a number of randomly oriented and positioned lines. We then count the 

fraction of line segments that have an end point in phase i and the other in j to give an 

estimate of the 2-pcf . A similar procedure is used to evaluate the 3-pcf  among phases 

i, j and l.

3.3 HOSVD-based Tensor Decomposition

We briefly describe the HOSVD decomposition. More details can be found in de Lathauwer 

et al. (2000). Consider the M-mode tensor ∈ ℜI1×I2×…IM where the dimension of the mode 

i is Ii. The column vectors are referred to as mode-1 vectors and row vectors as mode-2. The 

mode-n vectors are the column vectors of matrix A(n) ∈ ℜIn×(I1×I2×…×In−11×In+1×…×IM) 

obtained by flattening along the nth mode. (See Figure 5)

The mode-n product of a matrix X ∈ ℜJn×In with a tensor ∈ ℜ I1×I2×…×In×…×IM is denoted 

by ×n and results in the tensor ∈ ℜ I
1×I2×…×In−1×Jn×In+1×…×IM. It’s entries are 

bi1…in−1jnin+1…iM = Σinai1…in−1inin+1…iMxjnin. In terms of the flattened matrices, B(n) = 

XA(n).

Singular Value Decomposition (SVD) is a 2-mode tool commonly used in signal processing 

to reduce the dimensionality of the space and thereby reduce noise. SVD decomposes a 

matrix A into three other matrices, A = USVT, where the columns of U spans the row space 

of A and V spans the column space of A, while S is a diagonal matrix of singular values. By 

a similar extension, the N-mode SVD or Higher Order SVD (HOSVD) decomposes the 

multi-linear space spanned by tensor yielding a core tensor and orthonormal matrices 

spanning the vector spaces of each mode of the tensor, i.e:

(6)
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The core tensor is analogous to the diagonal singular value matrix from traditional SVD 

and coordinates the interaction of matrices to produce the original tensor. Additionally, the 

Frobenious-norm of the sub-tensors of estimates the variance of the corresponding part of 

the original tensor. This could be used to reduce the feature space.

Dimensionality Reduction—Matrices Ui are orthonormal and their columns span the 

space of the flattened tensor T(i). The row vectors of Ui are the coefficients describing each 

dimension along mode i. 1 After conducting the HOSVD on a given image data, the 

dimensionality with respect to any mode can be reduced independently, unlike the PCA 

where dimensionality reduction is only based on the variance. By reducing the number of 

dimensions in one mode, we can selectively control how that mode explains the original 

space, and eliminate noise from each mode separately. The dimensions also are reduced by 

removing the last m-column vectors from the tensor flattened along the desired mode. The 

error after dimensionality reduction is bounded by the Frobenius norm of the corresponding 

hyper-planes in the core tensor.

3.4 Classification

Let C, L and K be discrete sets of tissue classes, training samples for each class and 

separation distances used in the computation of the 2-pcfs. As described in the preceding 

sections, for each distance ℓ ∈ K used in the 2-pcf computation, we extract a Q ×Q 

correlation matrix, where Q = 4 is the number of material phases in the tissue 2. We pack all 

these features, into a 5-mode tensor ∈ ℜ C×L×K×Q×Q. The first mode corresponds to the 

tissue classes, the second mode to the training instances, third mode to the separation 

distances, and fourth and fifth mode to vertex phases in the 2-pcf. This tensor is decomposed 

as:

(7)

The row vectors of  are the coefficients describing each class and are used in 

classification.

Let K×Q×Q be the 2-pcf feature tensor for one training instance, with class c ∈ C and 

training instance number l ∈ L. Let  be the jth row in the class matrix 

 describing class j and  be the lth row vector of the instance matrix, 

, describing instance l in the training data. Then by projecting into the 

decomposed space in Equation 7, we are able to reconstruct:

1They are similar to the coefficients extracted from PCA but there exist different sets of coefficients for each mode in a typical 
HOSVD analysis. Please refer to Vasilescu and Terzopoulos (200) for details.
2nuclei, RBCs, cytoplasm and background
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For a test feature tensor ℤK×Q×Q, the goal is now to find the class coefficients z1×C that will 

minimize its reconstruction error. Then, the reconstructed feature tensor is:

(8)

(9)

(10)

The best class coefficients  are obtained by minimizing the following objective 

function:

(11)

The solution to this optimization problem turns out to be the solution to the linear system: 

A(l)x(l) = b(l) where

(12)

(13)

The best coefficient set z1×C is obtained by first selecting the training instance l that 

minimizes the error ε(l), and then computing the corresponding z1×C

4 Results

4.1 k-Nearest Neighbor classification using the 2, 3-pcf features

Here, we illustrate the working of the N-pcf features on very simple images with binary 

components. The N-pcfs were evaluated using three synthetic images with well-defined 

textures shown in Figure 6. The images consisted of two phases represented as black (phase 

0) and white (phase 1) regions. The 2-pcfs were evaluated using line segments having 

varying lengths ℓ ∈ [1,25] pixel-units. Similarly, the 3-pcfs were evaluated using equilateral 

triangles with edge lengths ℓ ∈ [1,25] pixel units. The random sampling parameter was set as 

S = 500 with image windows Ω of size 40×40.

A k-nearest neighbor classifier (k=5) was used to identify the different texture types based 

on the observed 2-pcf and 3-pcf evaluations. This relatively simple classifier to study the 

feature space spanned by the N-pcfs. The training set for the classifier consisted of hundred 

regions randomly chosen from each texture type. For example, Image-1 presented four 
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different textures. Therefore, the training set consisted of the 2-pcf and 3-pcf output on 400 

regions. Classification was performed by considering the 2-pcf and the 3-pcf features 

independently. We present our results in Figure 7, Figure 8 and Figure 9. The algorithm 

generated region labels (along the column) are tabulated against the ground-truth labels 

(along the rows).

The accuracies for each texture class in Image-1 (Figure 7) was over 95% for both the 2-pcf 

and the 3-pcf features. At the same time, the rate of false identifications was low (<5%). The 

only notable exception was observed in class 3 (the vertical bars). The vertical bars fared 

poorly when evaluated using the 2-pcf feature set having a false positive rate of 9.1%. Most 

of the inaccuracies were confined to the boundaries since textures are not well-defined 

locally. Window patches at texture boundaries contain material from different tissues. 

Hence, the microstructure properties as captured by the N-pcf are representative of an 

intermediate material.

Image-2 suffered from higher inaccuracies but still maintained acceptable performance 

(>82%) for four of the five textures (Figure 8). The performance was relatively poor on the 

portion of the image with wide horizontal bars. The classification of the bars was often 

confused with that of the circles in the center of the image. The ambiguity occurred 

primarily at the boundaries. This was mainly a result of the features not being sufficiently 

discriminating at the scale of distances (ℓ) considered in the N-pcf features. As a 

consequence, this resulted in a classification accuracy ranging from 70% to 75% for the 

horizontal bars and false positive rates of 3.5% to 6%. It should be noted that the false 

positive rates for the circles in the center were higher than the normal 4% to 50%. The 3-pcf 

features performed much better than the 2-pcf. The high false positive rates are attributed to 

the same reasons of scale that was discussed above. This experiment shows that 

incorporating the right scale of N-pcf features is important in obtaining good accuracies 

while maintaining a low false positive rate.

Classification accuracy in Image-3 was within the range of 82.3 to 98.8% (Figure 9). 

Significantly, both the best and worst performance occurred while using the 2-pcf features. 

The thin concentric circles was identified with 98.8% accuracy while the wider concentric 

circles were identified with an accuracy of 82.3%. The lack of accuracy in the latter case 

was the result of identifying the wide concentric circles near the image boundary as vertical 

bars. This is well illustrated in Figure 10 where circles at large radii are similar to vertical 

bars. False positives were limited to the range of 0.5% and 21.6%. From this experiment, we 

observe that the 2-pcf features performed better as compared to the 3-pcf features which is a 

change from the trend observed in Image-2 wherein the 3-pcf features fared better.

We now make the following observations about the performance of N-pcfs:

1. The textures regions are well-identified in the interiors. Ambiguity arise at the 

boundaries where the texture is not well-defined locally. The resolution depends on 

the window sizes Ω considered.

2. The correct scale of separation distances need to be considered. A wrong choice 

can lead to ambiguity across different texture classes.
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3. While the 2-pcf and the 3-pcf output trends are correlated in most textures, some 

cases cause one of the measures to perform relatively better. Hence, it is useful to 

consider both the measures in any given image.

We now apply our segmentation framework to datasets acquired from phenotyping studies.

4.2 Mouse Placenta Phenotyping

A central issue in human cancer genetics requires the understanding of how the genotype 

change (e.g., gene mutations and knockout) affects phenotype (e.g., tissue morphology or 

animal behavior) and is valuable in the development of therapies to treat the diseases such as 

cancers. In common experimental conditions, the genotype change can be well controlled. 

Therefore, it is useful to quantitatively assess the corresponding phenotype change in the 

organism. Serial-section imaging (Fiala and Harris, 2002; Fiala, 2005; Wu et al., 2003; 

Wenzel et al., 2007) is one of the widely used phenotyping tools for making large-scale 

objective and automated analysis. We have applied our methods to two phenotyping studies 

that required a significant image analysis component. Image analysis is capable of providing 

viable biomarkers that can be used towards hypothesis generation,

We implemented our framework using the National Library of Medicine’s (NIH/ NLM) 

Insight Segmentation and Registration Toolkit (ITK) (Ibáñez and Schroeder, 2003) and the 

Visualization Toolkit (VTK) from Kitware Inc. The classified volumetric datasets are loaded 

into Kitware’s VolView volume visualization software to render the surface appropriately in 

both the case-studies. All our tasks were conducted on a 2.5GHz Pentium machines running 

Linux with 1GB main memory. The segmentation software processed a placenta slice 

completely in under 15 minutes. The mammary sections required 3–5 minutes owing to the 

use of a single 2-pcf feature.

Mouse placentas are composed of three distinct layers: the labyrinth, spongiotrophoblast, 

and glycogen layers as shown in Figure 1. The phenotyping experiments (Wu et al., 2003; 

Wenzel et al., 2007) required the quantification of morphological parameters related to the 

surface area, volume of the labyrinth and its interface with the spoongiotrophoblast layer. 

Hence, segmentation was deemed necessary and important.

The microscopic images are obtained from the standard histologically stained slides of both 

a wildtype and a mutated (Rb−) mouse placenta. The slides are collected by sectioning the 

wax fixed sample (placenta) at 3μm thickness. They are then digitized using a an Aperio 

Scanscope digitizer using a 20× magnification objective lens, producing effective 

magnification of 200× under which each image is of size between 500Mb and 1Gb. A total 

of more than 2,000 images are obtained (1,278 images for the wildtype and 786 images for 

the Rb−) with total file size of approximately 1.7 Terabytes.

4.3 Segmenting the Placental Tissue Layers

The first step consisted of identifying the tissue components. These were identified by 

modeling each component as a Gaussian distribution in the RGB color space. The modeling 

was performed by using the pixel training data gathered by the method described in Section 

3. The 2 and 3-pcfs were evaluated at distances k ∈ [1,24] pixel units. A window size Ω of 
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51 × 51 dimensions was considered with sample size S = 1000. Since we were interested in 

comparing the utility of the N-pcf features with those of Haralick and Gabor features, 

classification was accomplished using the k-NN scheme (k = 5). Training data for the k-NN 

method was obtained as follows:

Training data—Image tissue patches of size 20 × 20 were generated and labeled as either 

labyrinth (Lab), spongiotrophoblast (SP), Glycogen (Glyc) or background (BG). A total of 

2200 regions were selected from one image slide (800 for labyrinth, 800 for 

spongiotrophoblast, and 600 for the background). A total of 150 of these regions were used 

in training (50 for each region) and the rest is used for testing.

In Figure 11, we observe that the N-pcf s identified and labeled the labyrinth layer with an 

acceptable level of accuracy (≈ 96%) and a low false positive rate of 8.5–10.5%. The 

spongiotrophoblast was also classified with an accuracy of ≈ 96% and a false positive rate 

of 6–8%. The background material is identified with an accuracy of 99% to 100%. Glycogen 

was identified with an accuracy of only ≈ 50%. This was because the glycogen regions are 

smaller than the window size. They have almost the same microstructure characteristics as 

the labyrinth layer (refer to Figure 1). They are often difficult to perceive even to the human 

eye.

The Haralick features fared well on the labyrinth layer (95%) and the spongiotrophoblast 

(89%) but still presented slightly lower values than the N-pcf features. The Gabor features 

performed poorly only delivering a classification accuracy of 53% for the labyrinth and 80% 

for the spongiotrophoblast. The correlation functions meanwhile had the lowest rate of false 

positives of all of the features.

The better performance observed with the material science measures is a result of the 

component hierarchy used in the technique. While the Gabor and Haralick features are 

concerned with the luminance and co-occurrence of the image features, the newer measures 

are able to leverage the knowledge of the components and spatial distributions for better 

segmentations.

4.4 Comparing the k-Nearest Neighbor and the HOSVD Classification

In this section, we compare the performance of the simple k-NN and HOSVD classification 

scheme using the same labeled data that was prepared for the experiments in Section 4.3.

The resulting confusion matrix while using the k-NN classification on the N-pcf features is 

shown in Table 1. The k-NN classifier achieves above 90% in the labyrinth and the 

spongiotrophoblast regions. Notably, the k-NN algorithm performs very well in the 

spongiotrophoblast regions and achieves a classification accuracy of 96.8% but provides a 

high false positive rate of detection. Meanwhile, the HOSVD classifier without any 

dimensional reduction performs comparably to the k-NN classifier in Table 2. HOSVD 

improves the results to 94% in the labyrinth region but the accuracy decreases to 93.9% in 

the spongiotrophoblast areas. Nevertheless, the false positive rate of detection is consistently 

lower. The classification accuracy for the background is at 100% with 0% false positive rate 

for both the classifiers.
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Figure 12(a) shows the classification accuracies observed for all the four (4) classes when 

the dimension is reduced in the instance mode alone. The accuracy of detection sharply rises 

for the labyrinth layer when thirty-five (35) instances per class are considered. Meanwhile, 

the spongiotrophoblast detection is better while using around 9 samples. These numbers 

indicate that the variance of features describing spongiotrophoblast is mostly due to the 

noise, whereas the variance for the labyrinth is due to the variation in the data. We present 

the confusion matrices for both the cases in Table 2 (thirty-five(35) and nine (9) 

respectively).

Figure 12(b) shows the classification accuracies observed for all the four (4) classes when 

the dimension is reduced in the distance mode alone. The classification accuracy for the 

labyrinth layer decreases monotonically while the spongiotrophoblast remains unaffected. 

Finally, a choice that would serve both the labyrinth and spongiotrophoblast regions equally 

may be obtained by reducing the dimensionality by thirty (30) in instances mode and by two 

(2) in distance mode. This setup produces the confusion matrix shown in Table 3.

To summarize our results:

1. The high accuracy in detection of the k-NN classifier are offset by the presence of 

high false positive rate.

2. The HOSVD scheme with dimensional reduction eliminates the modes that do not 

explain the tensor feature space and retains the significant ones. Hence, it helps in 

eliminating noise and cause better data separation.

3. Our results indicate that dimensionality reduction helps in providing the user more 

control in obtaining better segmentations on a particular region-of-interest as a 

trade-off against other regions.

In addition to the standard validation, we also measure the efficacy of the framework by 

inspecting the labyrinth-spongiotrophoblast interface.

4.5 Labyrinth-Spongiotrophoblast Interface Validation

Our framework processed four (4) pairs (eight in total) placenta datasets. Validation was 

carried out on three (3) placenta datasets. For each placenta, manual segmentation of the 

labyrinth layer was carried out on ten images that are evenly spaced throughout the image 

stack. In Figure 13, the automatically segmented labyrinth is overlaid on the manually 

segmented labyrinth tissue. For all the manually segmented images, the error is measured as 

the ratio of area difference between the two segmentations to the area of the manual 

labyrinth segmentation. Formally, let Im and Ia represent the manually and automatically 

segmented images. The boundary estimation error is defined as . For the three 

samples, the boundary estimation errors are 6.61.6%, 5.33.3%, and 16.77.4%. The errors are 

quite low for two of the three placentas given the fact that the validation has been conducted 

across the serial-section stack. As shown in Figure 13e and Figure 13f, the error can be 

attributed to two major reasons: (i) large window sizes in the N-pcf algorithm leads to a 

boundaries that suffer from a stair-case effect. (ii) discrepancy in assigning the large white 

areas on the boundary. The latter reason also explains why the automatic segmentation 
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works less reliably in the case of the third placenta with the largest error (16.77.4%). The 

other two placenta (one wildtype and one mutant) with mean error less than 7% were then 

used for visualization. Figure 14 shows a placenta with marked up boundaries and the final 

segmentation result. Figure 15 shows the pair of selected wildtype and mutant placentas 

whose labyrinth layer is rendered as a binary volume using a simple transfer function.

5 Summary

In this paper, we described a tissue segmentation algorithm that is applicable in histology 

images obtained from serial-section microscopy. We estimated the packing and material 

component distribution locally using the N-point correlation functions. These functions are 

realized using suitable windowing and sampling strategies to provide tensor feature 

representations. Multi-linear properties of the tensor feature space are then extracted using a 

variant of the HOSVD algorithm. The algorithm allows the reduction of the dimensionality 

of the tensor feature space with respect to the significant modes thereby achieving robust 

classification. Our methods have been applied in a mouse model phenotyping study 

requiring the segmentation of the labyrinth tissue layer in the placenta. The classifier 

performance and the final segmentation output was validated extensively using manual 

ground-truth. In future, we would like to extend the feature set with additional spatial 

proximity measures that efficiently represent the microstructure. These measures would 

address some of the challenges in the segmentation of large histology images. Additionally, 

we would like to investigate possible enhancements in performance that may be obtained 

from utilizing efficient structures such as the quadtrees and kd-trees on large images.
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Fig. 1. 
A slice of the placenta tissue showing the labyrinth-spongiotrophoblast interface (red). The 

yellow circles show glycogen tissue embedded within the labyrinth. The green boundary is 

the interface between the spongiotrophoblast and the remaining maternal layers. Note the 

subtle change in tissue microstructure across the boundaries.
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Fig. 2. 
A histology section of the mouse mammary gland showing several duct cross-sections. A 

zoomed duct section reveals the characteristic packing densities of the epithelial cell lining.
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Fig. 3. 
Segmentation pipeline for serial-section stacks.
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Fig. 4. 
(a) RGB histograms of the placenta section are shown to be approximately having a normal 

distribution. (b) Component labeled image C of the original RGB placenta image I shown in 

Figure 1.
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Fig. 5. 
Unfolding the 3-mode tensor ∈ ℜ I1×I2×I3 to the matrices A(1) ∈ ℜ I1×(I2×I3), A(2) ∈ 

ℜ I2×(I3×I1) and A(3) ∈ ℜ I3×(I1×I2) (From (de Lathauwer et al., 2000))
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Fig. 6. 
Synthetic images constructed 2 phases namely the black and white areas. Each image is 

composed of different texture regions that depend on the spatial distribution of these two 

phases.
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Fig. 7. 
Classification results tabulated against the ground-truth on synthetic Image-1.
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Fig. 8. 
Classification results tabulated against the ground-truth on synthetic Image-2.
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Fig. 9. 
Classification results tabulated against the ground-truth on synthetic Image-3.
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Fig. 10. 
Window patches from (a) texture class 2 and (b) texture class 4. Note the similarity in 

organization observed locally.
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Fig. 11. 
Comparison of the placenta segmentation output using four different feature sets. Acc: 

Accuracy. FP: False positives. Lab: Labyrinth layer. ST: Spongiotrophoblast. Glyc: 

Glycogen. BG: Background.
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Fig. 12. 
Classification accuracies observed after dimensionality changes in (a) instances mode alone 

(b) distance mode alone.
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Fig. 13. 
Evaluation of the automatic segmentation algorithm. (a): The solid line is the manually 

marked boundary and the dashed line is the automatic segmentation result. (b), (c) and (d): 

examples of images with boundary estimation errors being 2.5%, 8.4% and 16.5%. (e) and 

(f): a larger view of the difference between manual segmentation (cyan) and automatic 

segmentation (purple).

Mosaliganti et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2015 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
(a) Cropped placenta image with the boundary between labyrinth and maternal layer 

outlined in black, the interface between and labyrinth and spongiotrophoblast marked as 

white, and glycogen marked as gray (b) Segmentation using N-pcfs with the labyrinth as 

dark gray, glycogen as medium gray and spongiotrophoblast as light gray.
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Fig. 15. 
Volume rendering of the binary labyrinth segmentation masks for (a) wildtype and (b) 

mutant placenta.
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Table 1

Confusion matrix entries for k-NN.

Lab SP BG Acc

Lab 684 66 0 91.2%

SP 61 726 0 96.8%

BG 0 0 550 100%

FP 8.1% 8.3% 0% -

Acc: Accuracy. FP: False positives. Lab: Labyrinth layer. ST: Spongiotrophoblast. BG: Background.
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Table 2

Confusion matrix entries for HOSVD classification with no dimensional reduction/35 dimensions/9 

dimensions respectively.

Lab SP BG Acc

Lab 705 | 717 | 617 45 | 33 | 47 0 94 | 95.6 | 92.3%

SP 46 | 53 | 30 704 | 697 | 720 0 93.9 | 92.9 | 96.3%

BG 0 0 550 100%

FP 6 | 6.8 | 4.6% 6 | 4 | 6.1% 0% -

Acc: Accuracy. FP: False positives. Lab: Labyrinth layer. ST: Spongiotrophoblast. BG: Background.
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Table 3

Confusion matrix for combined dimensional reduction using the HOSVD scheme.

Lab SP BG Acc

Lab 692 58 0 92.30%

SP 35 715 0 95.30%

BG 0 0 550 100%

FP 5.0 8.11 0

Acc: Accuracy. FP: False positives. Lab: Labyrinth layer. ST: Spongiotrophoblast. Glyc: Glycogen. BG: Background.
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