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Abstract
Efficiently obtaining a reliable coronary artery centerline from computed tomography angiography
data is relevant in clinical practice. Whereas numerous methods have been presented for this
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purpose, up to now no standardized evaluation methodology has been published to reliably
evaluate and compare the performance of the existing or newly developed coronary artery
centerline extraction algorithms. This paper describes a standardized evaluation methodology and
reference database for the quantitative evaluation of coronary artery centerline extraction
algorithms. The contribution of this work is fourfold: 1) a method is described to create a
consensus centerline with multiple observers, 2) well-defined measures are presented for the
evaluation of coronary artery centerline extraction algorithms, 3) a database containing thirty-two
cardiac CTA datasets with corresponding reference standard is described and made available, and
4) thirteen coronary artery centerline extraction algorithms, implemented by different research
groups, are quantitatively evaluated and compared. The presented evaluation framework is made
available to the medical imaging community for benchmarking existing or newly developed
coronary centerline extraction algorithms.
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1. Introduction
Coronary artery disease (CAD) is currently the primary cause of death among American
males and females [1] and one of the main causes of death in the world [2]. The gold
standard for the assessment of CAD is conventional coronary angiography (CCA) [3].
However, because of its invasive nature, CCA has a low, but non-negligible, risk of
procedure related complications [4]. Moreover, it only provides information on the coronary
lumen.

Computed Tomography Angiography (CTA) is a potential alternative for CCA [5]. CTA is a
noninvasive technique that allows, next to the assessment of the coronary lumen, the
evaluation of the presence, extent, and type (non-calcified or calcified) of coronary plaque
[6]. Such non-invasive, comprehensive plaque assessment may be relevant for improving
risk stratification when combined with current risk measures: the severity of stenosis and the
amount of calcium [3]. A disadvantage of CTA is that the current imaging protocols are
associated with a higher radiation dose exposure than CCA [7].

Several techniques to visualize CTA data are used in clinical practice for the diagnosis of
CAD. Besides evaluating the axial slices, other visualization techniques such as maximum
intensity projections (MIP), volume rendering techniques, multi-planar reformatting (MPR),
and curved planar reformatting (CPR) are used to review CTA data [3]. CPR and MPR
images of coronary arteries are based on the CTA image and a central lumen line (for
convenience referred to as centerline) through the vessel of interest [8]. These reformatted
images can also be used during procedure planning for, among other things, planning the
type of intervention and size of stents [9]. Efficiently obtaining a reliable centerline is
therefore relevant in clinical practice. Furthermore, centerlines can serve as a starting point
for lumen segmentation, stenosis grading, and plaque quantification [10, 11, 12].

This paper introduces a framework for the evaluation of coronary artery centerline
extraction methods. The framework encompasses a publicly available database of coronary
CTA data with corresponding reference standard centerlines derived from manually
annotated centerlines, a set of well-defined evaluation measures, and an on-line tool for the
comparison of coronary CTA centerline extraction techniques. We demonstrate the potential
of the proposed framework by comparing thirteen coronary artery centerline extraction
methods, implemented by different authors as part of a segmentation challenge workshop at
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the Medical Image Computing and Computer-Assisted Intervention (MICCAI) conference
[13].

In the next two sections we will respectively describe our motivation of the study presented
in this paper and discuss previous work on the evaluation of coronary segmentation and
centerline extraction techniques. The evaluation framework will then be outlined by
discussing the data, reference standard, evaluation measures, evaluation categories, and
web-based framework. The paper will be concluded by presenting the comparative results of
the thirteen centerline extraction techniques, a discussion of these results, and a conclusion
about the work presented.

2. Motivation
The value of a standardized evaluation methodology and a publicly available image
repository has been shown in a number of medical image analysis and general computer
vision applications, for example in the Retrospective Image Registration Evaluation Project
[14], the Digital Retinal Images for Vessel Extraction database [15], the Lung Image
Database project [16], the Middlebury Stereo Vision evaluation [17], the Range Image
Segmentation Comparison [18], the Berkeley Segmentation Dataset and Benchmark [19],
and a workshop and on-line evaluation framework for liver and caudate segmentation [20].

Similarly, standardized evaluation and comparison of coronary artery centerline extraction
algorithms has scientific and practical benefits. A benchmark of state-of-the-art techniques
is a prerequisite for continued progress in this field: it shows which of the popular methods
are successful and researchers can quickly apprehend where methods can be improved.

It is also advantageous for the comparison of new methods with the state-of-the-art. Without
a publicly available evaluation framework, such comparisons are difficult to perform: the
software or source code of existing techniques is often not available, articles may not give
enough information for re-implementation, and if enough information is provided, re-
implementation of multiple algorithms is a laborious task.

The understanding of algorithm performance that results from the standardized evaluation
also has practical benefits. It may, for example, steer the clinical implementation and
utilization, as a system architect can use objective measures to choose the best algorithm for
a specific task.

Furthermore, the evaluation could show under which conditions a particular technique is
likely to succeed or fail, it may therefore be used to improve the acquisition methodology to
better match the post-processing techniques.

It is therefore our goal to design and implement a standardized methodology for the
evaluation and comparison of coronary artery centerline extraction algorithms and publish a
cardiac CTA image repository with associated reference standard. To this end, we will
discuss the following tasks below:

• Collection of a representative set of cardiac CTA datasets, with a manually
annotated reference standard, available for the entire medical imaging community;

• Development of an appropriate set of evaluation measures for the evaluation of
coronary artery centerline extraction methods;

• Development of an accessible framework for easy comparison of different
algorithms;
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• Application of this framework to compare several coronary CTA centerline
extraction techniques;

• Public dissemination of the results of the evaluation.

3. Previous work
Approximately thirty papers have appeared that present and/or evaluate (semi-)automatic
techniques for the segmentation or centerline extraction of human coronary arteries in
cardiac CTA datasets. The proposed algorithms have been evaluated by a wide variety of
evaluation methodologies.

A large number of methods have been evaluated qualitatively [21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37]. In these articles detection, extraction, or segmentation
correctness have been visually determined. An overview of these methods is given in Table
1.

Other articles include a quantitative evaluation of the performance of the proposed methods
[38, 39, 40, 41, 42, 43, 12, 10, 44, 45, 11, 46]. See Table 2 for an overview of these
methods.

None of the abovementioned algorithms has been compared to another and only three
methods were quantitatively evaluated on both the extraction ability (i.e. how much of the
real centerline can be extracted by the method?) and the accuracy (i.e. how accurately can
the method locate the centerline or wall of the vessel?). Moreover, only one method was
evaluated using annotations from more than one observer [44].

Four methods were assessed on their ability to quantify clinically relevant measures, such as
the degree of stenosis and the number of calcium spots in a vessel [36, 40, 12, 11]. These
clinically oriented evaluation approaches are very appropriate for assessing the performance
of a method for a possible clinical application, but the performance of these methods for
other applications, such as describing the geometry of coronary arteries [47, 48], can not
easily be judged.

Two of the articles (Dewey et al. [40] and Busch et al. [39]) evaluate a commercially
available system (respectively Vitrea 2, Version 3.3, Vital Images and Syngo Circulation,
Siemens). Several other commercial centerline extraction and stenosis grading packages
have been introduced in the past years, but we are not aware of any scientific publication
containing a clinical evaluation of these packages.

4. Evaluation framework
In this section we will describe our framework for the evaluation of coronary CTA
centerline extraction techniques.

4.1. Cardiac CTA data
The CTA data was acquired in the Erasmus MC, University Medical Center Rotterdam, The
Netherlands. Thirty-two datasets were randomly selected from a series of patients who
underwent a cardiac CTA examination between June 2005 and June 2006. Twenty datasets
were acquired with a 64-slice CT scanner and twelve datasets with a dual-source CT scanner
(Sensation 64 and Somatom Definition, Siemens Medical Solutions, Forchheim, Germany).

A tube voltage of 120 kV was used for both scanners. All datasets were acquired with ECG-
pulsing [49]. The maximum current (625 mA for the dual-source scanner and 900 mA for
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the 64-slice scanner) was used in the window from 25% to 70% of the RR-interval and
outside this window the tube current was reduced to 20% of the maximum current.

Both scanners operated with a detector width of 0.6 mm. The image data was acquired with
a table feed of 3.8 mm per rotation (64-slice datasets) or 3.8 mm to 10 mm, individually
adapted to the patient’s heart rate (dual-source datasets).

Diastolic reconstructions were used, with reconstruction intervals varying from 250 ms to
400 ms before the R-peak. Three datasets were reconstructed using a sharp (B46f) kernel, all
others were reconstructed using a medium-to-smooth (B30f) kernel. The mean voxel size of
the datasets is 0.32 × 0.32 × 0.4mm3.

4.1.1. Training and test datasets—To ensure representative training and test sets, the
image quality of and presence of calcium in each dataset was visually assessed by a
radiologist with three years experience in cardiac CT.

Image quality was scored as poor (defined as presence of image-degrading artifacts and
evaluation only possible with low confidence), moderate (presence of artifacts but
evaluation possible with moderate confidence) or good (absence of any image-degrading
artifacts related to motion and noise). Presence of calcium was scored as absent, modest or
severe. Based on these scorings the data was distributed equally over a group of 8 and a
group of 24 datasets. The patient and scan parameters were assessed by the radiologist to be
representative for clinical practice. Table 3 and 4 describe the distribution of respectively the
image quality and calcium scores in the datasets.

The first group of 8 datasets can be used for training and the other 24 datasets are used for
performance assessment of the algorithms. All the thirty-two cardiac CTA datasets and the
corresponding reference standard centerlines for the training data are made publicly
available.

4.2. Reference standard
In this work we define the centerline of a coronary artery in a CTA scan as the curve that
passes through the center of gravity of the lumen in each cross-section. We define the start
point of a centerline as the center of the coronary ostium (i.e. the point where the coronary
artery originates from the aorta), and the end point as the most distal point where the artery
is still distinguishable from the background. The centerline is smoothly interpolated if the
artery is partly indistinguishable from the background, e.g. in case of a total occlusion or
imaging artifacts.

This definition was used by three trained observers to annotate centerlines in the selected
cardiac CTA datasets. Four vessels were selected for annotation by one of the observers in
all 32 datasets, yielding 32 × 4 = 128 selected vessels. The first three vessels were always
the right coronary artery (RCA), left anterior descending artery (LAD), and left circumflex
artery (LCX). The fourth vessel was selected from the large side branches of these main
coronary arteries and the selection was as follows: first diagonal branch (14x), second
diagonal branch (6x), optional diagonal coronary artery (6x), first obtuse marginal branch
(2x), posterior descending artery (2x), and acute marginal artery (2x). This observer
annotated for all the four selected vessels points close to the selected vessels. These points
(denoted with ‘point A’) unambiguously define the vessels, i.e. the vessel of interest is the
vessel closest to the point and no side-branches can be observed after this point.

After the annotation of these 128 points, the three observers used these points to
independently annotate the centerlines of the same four vessels in the 32 datasets. The
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observers also specified the radius of the lumen at least every 5 mm, where the radius was
chosen such that the enclosed area of the annotated circle matched the area of the lumen.
The radius was specified after the complete central lumen line was annotated (see Figure 4).

The paths of the three observers were combined to one centerline per vessel using a Mean
Shift algorithm for open curves: The centerlines are averaged while taking into account the
possibly spatially varying accuracy of the observers by iteratively estimating the reference
standard and the accuracy of the observers. Each point of the resulting reference standard is
a weighted average of the neighboring observer centerline points, with weights
corresponding to the locally estimated accuracy of the observers [50].

After creating this first weighted average, a consensus centerline was created with the
following procedure: The observers compared their centerlines with the average centerline
to detect and subsequently correct any possible annotation errors. This comparison was
performed utilizing curved planar reformatted images displaying the annotated centerline
color-coded with the distance to the reference standard and vice-versa (see Figure 2). The
three observers needed in total approximately 300 hours for the complete annotation and
correction process.

After the correction step the centerlines were used to create the reference standard, using the
same Mean Shift algorithm. Note that the uncorrected centerlines were used to calculate the
inter-observer variability and agreement measures (see section 4.5).

The points where for the first time the centerlines of two observers lie within the radius of
the reference standard when traversing over this centerline from respectively the start to the
end or vice versa were selected as the start- and end point of the reference standard. Because
the observers used the abovementioned centerline definition it is assumed that the resulting
start points of the reference standard centerlines lie within the coronary ostium.

The corrected centerlines contained on average 44 points and the average distance between
two successive annotated points was 3.1 mm. The 128 resulting reference standard
centerlines were on average 138 mm (std. dev. 41 mm, min. 34 mm, max. 249 mm) long.

The radius of the reference standard was based on the radii annotated by the observers and a
point-to-point correspondence between the reference standard and the three annotated
centerlines. The reference standard centerline and the corrected observer centerlines were
first resampled equidistantly using a sampling distance of 0.03 mm. Dijkstra’s graph
searching algorithm was then used to associate each point on the reference standard with one
or more points on each annotated centerline and vice versa. Using this correspondence, the
radius at each point of the reference standard was determined by averaging the radius of all
the connected points on the three annotated centerlines (see also Figure 3 and Figure 4). An
example of annotated data with corresponding reference standard is shown in Figure 1.
Details about the connectivity algorithm are given in section 4.3.

4.3. Correspondence between centerlines
All the evaluation measures are based on a point-to-point correspondence between the
reference standard and the evaluated centerline. This section explains the mechanism for
determining this correspondence.

Before the correspondence is determined the centerlines are first sampled equidistantly using
a sampling distance of 0.03 mm, enabling an accurate comparison. The evaluated centerline
is then clipped with a disc that is positioned at the start of the reference standard centerline
(i.e. in or very close to the coronary ostium). The centerlines are clipped because we define
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the start point of a coronary centerline at the coronary ostium and because for a variety of
applications the centerline can start somewhere in the aorta. The radius of the disc is twice
the annotated vessel radius and the disc normal is the tangential direction at the beginning of
the reference standard centerline. Every point before the first intersection of a centerline and
this disc is not taken into account during evaluation.

The correspondence is then determined by finding the minimum of the sum of the Euclidean
lengths of all point-point connections that are connecting the two centerlines over all valid
correspondences. A valid correspondence for centerline I, consisting of an ordered set of
points pi (0 ≤ i < n, p0 is the most proximal point of the centerline), and centerline II,
consisting of an ordered set of points qj (0 ≤ j < m, q0 is the most proximal point of the
centerline), is defined as the ordered set of connections C = {c0, …, cn+m−1}, where ck is a
tuple [pa, qb] that represents a connection from pa to qb, which satisfies the following
conditions:

• The first connection c0 connects the start points: c0 = [p0, q0].

• The last connection cn+m−1 connects the end points: cn+m−1 = [pn−1, qm−1].

• If connection ck = [pa, qb] then connection ck+1 equals either [pa+1, qb] or [pa,
qb+1].

These conditions guarantee that each point of centerline I is connected to at least one point
of centerline II and vice versa.

Dijkstra’s graph search algorithm is used on a matrix with connection lengths to determine
the minimal Euclidean length correspondence. See Figure 3 for an example of a resulting
correspondence.

4.4. Evaluation measures
Coronary artery centerline extraction may be used for different applications, and thus
different evaluation measures may apply. We account for this by employing a number of
evaluation measures. With these measures we discern between extraction capability and
extraction accuracy. Accuracy can only be evaluated when extraction succeeded; in case of a
tracking failure the magnitude of the distance to the reference centerline is no longer
relevant and should not be included in the accuracy measure.

4.4.1. Definition of true positive, false positive and false negative points—All
the evaluation measures are based on a labeling of points on the centerlines as true positive,
false negative or false positive. This labeling, in its turn, is based on a correspondence
between the points of the reference standard centerline and the points of the centerline to be
evaluated. The correspondence is determined with the algorithm explained in section 4.3.

A point of the reference standard is marked as true positive TPRov if the distance to at least
one of the connected points on the evaluated centerline is less than the annotated radius and
false negative FNov otherwise.

A point on the centerline to be evaluated is marked as true positive TPMov if there is at least
one connected point on the reference standard at a distance less than the radius defined at
that reference point, and it is marked as false positive FPov otherwise. With ‖·‖ we denote
the cardinality of a set of points, e.g. ‖TPRov‖ denotes the number of reference points
marked true positive. See also Figure 5 for a schematic explanation of these terms and the
terms mentioned in the next section.
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4.4.2. Overlap measures—Three different overlap measures are used in our evaluation
framework.

Overlap (OV) represents the ability to track the complete vessel annotated by the human
observers and this measure is similar to the well-known Dice coefficient. It is defined as:

Overlap until first error (OF) determines how much of a coronary artery has been
extracted before making an error. This measure can for example be of interest for image
guided intravascular interventions in which guide wires are advanced based on pre-
operatively extracted coronary geometry [51]. The measure is defined as the ratio of the
number of true positive points on the reference before the first error (TPRof) and the total
number of reference points (TPRof + FNof):

The first error is defined as the first FNov point when traversing from the start of the
reference standard to its end while ignoring false negative points in the first 5 mm of the
reference standard. Errors in the first 5 mm are not taken into account because of the
strictness of this measure and the fact that the beginning of a coronary artery centerline is
sometimes difficult to define and for some applications not of critical importance. The
threshold of five millimeters is equal to the average diameter annotated at the beginning of
all the reference standard centerlines.

Overlap with the clinically relevant part of the vessel (OT) gives an indication of how well
the method is able to track the section of the vessel that is assumed to be clinically relevant.
Vessel segments with a diameter of 1.5 mm or larger, or vessel segments that are distally
from segments with a diameter of 1.5 mm or larger are assumed to be clinically relevant [52,
53].

The point closest to the end of the reference standard with a radius larger than or equal to
0.75 mm is determined. Only points on the reference standard between this point and the
start of the reference standard and points on the (semi-)automatic centerline connected to
these reference points are used when defining the true positives (TPMot and TPRot), false
negatives (FNot) and false positives (FPot). The OT measure is calculated as follows:

4.4.3. Accuracy measure—In order to discern between tracking ability and tracking
accuracy we only evaluate the accuracy within sections where tracking succeeded.

Average inside (AI) is the average distance of all the connections between the reference
standard and the automatic centerline given that the connections have a length smaller than
the annotated radius at the connected reference point. The measure represents the accuracy
of centerline extraction, provided that the evaluated centerline is inside the vessel.

Schaap et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2013 November 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.5. Observer performance and scores
Each of the evaluation measures is related to the performance of the observers by a relative
score. A score of 100 points implies that the result of the method is perfect, 50 points
implies that the performance of the method is similar to the performance of the observers,
and 0 points implies a complete failure. This section explains how the observer performance
is quantified for each of the four evaluation measures and how scores are created from the
evaluation measures by relating the measures to the observer performance.

4.5.1. Overlap measures—The inter-observer agreement for the overlap measures is
calculated by comparing the uncorrected paths with the reference standard. The three
overlap measures (OV, OF, OT) were calculated for each uncorrected path and the true
positives, false positives and false negatives for each observer were combined into inter-
observer agreement measures per centerline as follows:

where i = {0, 1, 2} indicates the observer.

After calculating the inter-observer agreement measures, the performance of the method is
scored. For methods that perform better than the observers the OV, OF, and OT measures
are converted to scores by linearly interpolating between 100 and 50 points, respectively
corresponding to an overlap of 1.0 and an overlap similar to the inter-observer agreement
value. If the method performs worse than the inter-observer agreement the score is obtained
by linearly interpolating between 50 and 0 points, with 0 points corresponding to an overlap
of 0.0:

where Om and Oag define the OV, OF, or OT performance of respectively the method and
the observer. An example of this conversion is shown in Figure 6(a).

4.5.2. Accuracy measures—The inter-observer variability for the accuracy measure AI
is defined at every point of the reference standard as the expected error that an observer
locally makes while annotating the centerline. It is determined at each point as the root mean
squared distance between the uncorrected annotated centerline and the reference standard:

where n = 3 (three observers), and d(p(x), pi) is the average distance from point p(x) on the
reference standard to the connected points on the centerline annotated by observer i.

The extraction accuracy of the method is related per connection to the inter-observer
variability. A connection is worth 100 points if the distance to the reference standard is 0
mm and it is worth 50 points if the distance is equal to the inter-observer variability at that
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point. Methods that perform worse than the inter-observer variability get a decreasing
amount of points if the distance increases. They are rewarded per connection 50 points times
the fraction of the inter-observer variability and the method accuracy:

where Am(x) and Aio(x) define the distance from the method centerline to the reference
centerline and the inter-observer accuracy variability at point x. An example of this
conversion is shown in Figure 6(b).

The average score over all connections that connect TPR and TPM points yields the AI
observer performance score. Because the average accuracy score is a non-linear combination
of all the distances, it can happen that a method has a lower average accuracy in millimeters
and a higher score in points than another method, or vice versa.

Note that because the reference standard is constructed from the observer centerlines, the
reference standard is slightly biased towards the observer centerlines, and thus a method that
performs similar as an observer according to the scores probably performs slightly better.
Although more sophisticated methods for calculating the observer performance and scores
would have been possible, we decided because of simplicity and understandability for the
approach explained above.

4.6. Ranking the algorithms
In order to rank the different coronary artery centerline extraction algorithms the evaluation
measures have to be combined. We do this by ranking the resulting scores of all the methods
for each measure and vessel. Each method receives for each vessel and measure a rank
ranging from 1 (best) to the number of participating methods (worst). A user of the
evaluation framework can manually mark a vessel as failed. In that case the method will be
ranked last for the flagged vessel and the absolute measures and scores for this vessel will
not be taken into account in any of the statistics.

The tracking capability of a method is defined as the average of all the 3(overlap measures)
× 96 (vessels) = 288 related ranks. The average of all the 96 accuracy measure ranks defines
the tracking accuracy of each method. The average overlap rank and the accuracy rank are
averaged to obtain the overall quality of each of the methods and the method with the best
(i.e. lowest) average rank is assumed to be the best.

5. Algorithm categories
We discern three different categories of coronary artery centerline extraction algorithms:
automatic extraction methods, methods with minimal user interaction and interactive
extraction methods.

5.1. Category 1: automatic extraction
Automatic extraction methods find the centerlines of coronary arteries without user
interaction. In order to evaluate the performance of automatic coronary artery centerline
extraction, two points per vessel are provided to extract the coronary artery of interest:

• Point A: a point inside the distal part of the vessel; this point unambiguously
defines the vessel to be tracked;
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• Point B: a point approximately 3 cm (measured along the centerline) distal of the
start point of the centerline.

Point A should be used for selecting the appropriate centerline. If the automatic extraction
result does not contain centerlines near point A, point B can be used. Point A and B are only
meant for selecting the right centerline and it is not allowed to use them as input for the
extraction algorithm.

5.2. Category 2: extraction with minimal user interaction
Extraction methods with minimal user interaction are allowed to use one point per vessel as
input for the algorithm. This can be either one of the following points:

• Point A or B, as defined above;

• Point S: the start point of the centerline;

• Point E: the end point of the centerline;

• Point U: any manually defined point.

Points A, B, S and E are provided with the data. Furthermore, in case the method obtains a
vessel tree from the initial point, point A or B may be used after the centerline determination
to select the appropriate centerline.

5.3. Category 3: interactive extraction
All methods that require more user-interaction than one point per vessel as input are part of
category 3. Methods can use e.g. both points S and E from category 2, a series of manually
clicked positions, or one point and a user-defined threshold.

6. Web-based evaluation framework
The proposed framework for the evaluation of CTA coronary artery centerline extraction
algorithms is made publicly available through a web-based interface (http://
coronary.bigr.nl). The thirty-two cardiac CTA datasets, and the corresponding reference
standard centerlines for the training data, are available for download for anyone who wishes
to validate their algorithm. Extracted centerlines can be submitted and the obtained results
can be used in a publication. Furthermore, the website provides several tools to inspect the
results and compare the algorithms.

7. MICCAI 2008 workshop
This study started with the workshop ‘3D Segmentation in the Clinic: A Grand Challenge II’
at the 11th International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) in September 2008 [13]. Approximately 100 authors of related
publications, and the major medical imaging companies, were invited to submit their results
on the 24 test datasets. Fifty-three groups showed their interest by registering for the
challenge, 36 teams downloaded the training and test data, and 13 teams submitted results:
five fully-automatic methods, three minimally interactive methods, and five interactive
methods. A brief description of the thirteen methods is given below.

During the workshop we used two additional measures: the average distance of all the
connections (AD) and the average distance of all the connections to the clinical relevant part
of the vessel (AT). In retrospect we found that these accuracy measures were too much
biased towards methods with high overlap and therefore we do not use them anymore in the
evaluation framework. This resulted in a slightly different ranking than the ranking
published during the MICCAI workshop [13]. Please note that the two measures that were
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removed are still calculated for all the evaluated methods and they can be inspected using
the web-based interface.

7.1. Fully-automatic methods
• AutoCoronaryTree [54, 55]: The full centerline tree of the coronary arteries is

extracted via a multi-scale medialness-based vessel tree extraction algorithm which
starts a tracking process from the ostia locations until all coronary branches are
reached.

• CocomoBeach [56]: This method starts by segmenting the ascending aorta and the
heart. Candidate coronary regions are obtained using connected component
analysis and the masking of large structures. Using these components a region
growing scheme, starting in the aorta, segments the complete tree. Finally,
centerlines within the pre-segmented tree are obtained using the WaveProp [10]
method.

• DepthFirstModelFit [57]: Coronary artery centerline extraction is accomplished by
fitting models of shape and appearance. A large-scale model of the complete heart
in combination with symmetry features is used for detecting coronary artery seeds.
To fully extract the coronary artery tree, two small-scale cylinder-like models are
matched via depth-first search.

• GVFTube’n’Linkage [58]: This method uses a Gradient Vector Flow [59] based
tube detection procedure for identification of vessels surrounded by arbitrary
tissues [60, 61]. Vessel centerlines are extracted using ridge-traversal and linked to
form complete tree structures. For selection of coronary arteries gray value
information and centerline length are used.

• VirtualContrast [62]: This method segments the coronary arteries based on the
connectivity of the contrast agent in the vessel lumen, using a competing fuzzy
connectedness tree algorithm [34]. Automatic rib cage removal and ascending aorta
tracing are included to initialize the segmentation. Centerline extraction is based on
the skeletonization of the tree structure.

7.2. Semi-automatic methods
• AxialSymmetry [63]: This method finds a minimum cost path connecting the aorta

to a user supplied distal endpoint. Firstly, the aorta surface is extracted. Then, a
two-stage Hough-like election scheme detects the high axial symmetry points in the
image. Via these, a sparse graph is constructed. This graph is used to determine the
optimal path connecting the user supplied seed point and the aorta.

• CoronaryTreeMorphoRec [64]: This method generates the coronary tree iteratively
from point S. Pre-processing steps are performed in order to segment the aorta,
remove unwanted structures in the background and detect calcium. Centerline
points are chosen in each iteration depending on the previous vessel direction and a
local gray scale morphological 3D reconstruction.

• KnowledgeBasedMinPath [65]: For each voxel, the probability of belonging to a
coronary vessel is estimated from a feature space and a vesselness measure is used
to obtain a cost function. The vessel starting point is obtained automatically, while
the end point is provided by the user. Finally, the centerline is obtained as the
minimal cost path between both points.
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7.3. Interactive methods
• 3DInteractiveTrack [66]: This method calculates a local cost for each voxel based

on eigenvalue analysis of the Hessian matrix. When a user selects a point, the
method calculates the cost linking this point to all other voxels. If a user then
moves to any voxel, the path with minimum overall cost is displayed. The user is
able to inspect and modify the tracking to improve performance.

• ElasticModel [67]. After manual selection of a background-intensity threshold and
one point per vessel, centerline points are added by prediction and refinement.
Prediction uses the local vessel orientation, estimated by eigen-analysis of the
inertia matrix. Refinement uses centroid information and is restricted by continuity
and smoothness constraints of the model [68].

• MHT [69]: Vessel branches are in this method found using a Multiple Hypothesis
Tracking (MHT) framework. A feature of the MHT framework is that it can
traverse difficult passages by evaluating several hypothetical paths. A minimal path
algorithm based on Fast Marching is used to bridge gaps where the MHT
terminates prematurely.

• Tracer [70]: This method finds the set of core points (centers of intensity plateaus
in 2D slices) that concentrate near vessel centerlines. A weighted graph is formed
by connecting nearby core points. Low weights are given to edges of the graph that
are likely to follow a vessel. The output is the shortest path connecting point S and
point E.

• TwoPointMinCost [71]: This method finds a minimum cost path between point S
and point E using Dijkstra’s algorithm. The cost to travel through a voxel is based
on Gaussian error functions of the image intensity and a Hessian-based vesselness
measure [72], calculated on a single scale.

8. Results
The results of the thirteen methods are shown in Table 5, 6, and 7. Table 6 shows the results
for the three overlap measures, Table 7 shows the accuracy measures, and Table 5 shows the
final ranking, the approximate processing time, and amount of user-interaction that is
required to extract the four vessels. In total 10 extractions (< 1%) where marked as failed
(see section 4.6).

We believe that the final ranking in Table 5 gives a good indication of the relative
performance of the different methods, but one should be careful to judge the methods on
their final rank. A method ranked first does not have to be the method of choice for a
specific application. For example, if a completely automatic approximate extraction of the
arteries is needed one could choose GVF-Tube’n’Linkage [58] because it has the highest
overlap with the reference standard (best OV result). But if one wishes to have a more
accurate automatic extraction of the proximal part of the coronaries the results point you
toward DepthFirstModelFit [57] because this method is highly ranked in the OF measure
and is ranked first in the automatic methods category with the AI measure.

The results show that on average the interactive methods perform better on the overlap
measures than the automatic methods (average rank of 6.30 vs. 7.09) and vice versa for the
accuracy measures (8.00 vs. 6.25). The better overlap performance of the interactive
methods can possibly be explained by the fact that the interactive methods use the start- and/
or end point of the vessel. Moreover, in two cases (MHT [69] and 3DInteractive-Track [66])
additional manually annotated points are used, which can help the method to bridge difficult
regions.
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When vessels are correctly extracted, the majority of the methods are accurate to within the
image voxel size (AI < 0.4mm). The two methods that use a tubular shape model (MHT [69]
and DepthFirst-ModelFit [57]) have the highest accuracy, followed by the multi-scale
medialness-based AutoCoronary-Tree [54, 55] method and the CocomoBeach [56] method.

Overall it can be observed that some of the methods are highly accurate and some have great
extraction capability (i.e. high overlap). Combining a fully-automatic method with high
overlap (e.g. GVFTube’n’Linkage [58]) and a, not necessarily fully-automatic, method with
high accuracy (e.g. MHT [69]) may result in an fully-automatic method with high overlap
and high accuracy.

8.1. Results categorized on image quality, calcium score and vessel type
Separate rankings are made for each group of datasets with corresponding image quality and
calcium rating to determine if the image quality or the amount of calcium has influence on
the rankings. Separate rankings are also made for each of the four vessel types. These
rankings are presented in Table 8. It can be seen that some of the methods perform relatively
worse when the image quality is poor or an extensive amount of calcium is present (e.g.
CocomoBeach [56] and DepthFirstModelFit [57]) and vice versa (e.g.
KnowledgeBasedMinPath [65] and VirtualContrast [62]).

Table 8 also shows that on average the automatic methods perform relatively worse for
datasets with poor image quality (i.e. the ranks of the automatic methods in the P-column are
on average higher compared to the ranks in the M- and G-column). This is also true for the
extraction of the LCX centerlines. Both effects can possibly be explained by the fact that
centerline extraction from poor image quality datasets and centerline extraction of the (on
average relatively thinner) LCX is more difficult to automate.

8.2. Algorithm performance with respect to distance from the ostium
For a number of coronary artery centerline extraction applications it is not important to
extract the whole coronary artery; only extraction up to a certain distance from the coronary
ostium is required (see e.g. [73, 74]).

In order to evaluate the performance of the methods with respect to the distance from the
ostium, charts are generated that demonstrate the average performance over all 96 evaluated
centerlines for each of the methods at a specific distance from the ostium (measured along
the reference standard). Figure 7(a) shows these results for the automatic methods, Figure
7(b) shows the results for the methods with minimal user-interaction, and Figure 7(c) shows
the results for the semi-automatic methods.

The graphs show that all the evaluated methods are better able to extract the proximal part of
the coronaries than the more distal part of the vessels.

They also show that after approximately 5 cm the accuracy of almost all the methods is
relatively constant. Furthermore, the graphs again demonstrate the fact that the automatic
methods are on average more accurate than the semi-automatic or interactive methods.

8.3. More statistics available online
Space limitations prevent us to incorporate more statistics here, but the on-line evaluation
framework (http://coronary.bigr.nl) provides the possibilities to rank the methods based on
different measures or scores, create statistics on a subset of the data and create overview
tables for specific measures, categorized on image quality or score. It is for example
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possible to create Table 5, 6, and 7 for a specific subset of the data or to create Table 8 with
a measure or score of choice, instead of the overall ranks.

The website also contains the most recent version of the results. The on-line results may be
different from the results reported in this paper because of recent improvements in
implementation of the different methods.

9. Discussion
A framework for the evaluation of CTA coronary artery centerline extraction techniques has
been developed and made available through a web-based interface (http://coronary.bigr.nl).
Currently thirty-two cardiac CTA datasets with corresponding reference standard centerlines
are available for anyone how wants to benchmark a coronary artery centerline extraction
algorithm.

Although the benefits of a large-scale quantitative evaluation and comparison of coronary
artery centerline extraction algorithms are clear, no previous initiatives have been taken
towards such an evaluation. This is probably because creating a reference standard for many
datasets is a laborious task. Moreover, in order to get a good reference standard, annotations
are needed from multiple observers and combining annotations from multiple observers is
known to be difficult [75] and until recently unexplored for three-dimensional curves [50].
Furthermore, an appropriate set of evaluation measures has to be developed and a
representative set of clinical datasets have to be made available. By addressing these issues
we were able to present and use the proposed framework.

A limitation of the current study is the point-based vessel selection step for fully-automatic
methods. Because the coronary artery tree contains more vessels than the four annotated
vessels this selection step had to be included, but it introduced the problem that fully-
automatic methods can extract many false-positives but still obtain a good ranking. This fact
combined with the presented results of the fully-automatic methods for the four evaluated
vessels makes us believe that a future evaluation framework for coronary artery extraction
methods should focus on the complete coronary tree. An obvious approach for such an
evaluation would be to annotate the complete coronary artery tree in all the 32 datasets, but
this is very labor intensive. An alternative approach would be to use the proposed
framework for the quantitative evaluation of the four vessels and to qualitatively evaluate
the complete tree. In this qualitative evaluation an observer should score if any vessels are
falsely extracted and if all vessels of interest are extracted.

A further limitation of this study is that all the data have been acquired on two CT scanners
of the same manufacturer in one medical center. We aim to extend the collection of datasets
with datasets from different manufacturers and different medical centers. Further studies
based on this framework could extend the framework with the evaluation of coronary lumen
segmentation methods, coronary CTA calcium quantification methods or methods that
quantify the degree of stenosis.

10. Conclusion
A publicly available standardized methodology for the evaluation and comparison of
coronary centerline extraction algorithms is presented in this article. The potential of this
framework has successfully been demonstrated by thoroughly comparing thirteen different
coronary CTA centerline extraction techniques.
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Figure 1.
An example of the data with corresponding reference standard. Top-left: axial view of data.
Top-right: coronal view. Bottom-left: sagittal view. Bottom-right: a 3D rendering of the
reference standard.
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Figure 2.
An example of one of the color-coded curved planar reformatted images used to detect
possible annotation errors.
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Figure 3.
An illustrative example of the Mean Shift algorithm showing the annotations of the three
observers as a thin black line, the resulting average as a thick black line, and the
correspondence that are used during the last Mean Shift iteration in light-gray.
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Figure 4.
An example of the annotations of the three observers in black and the resulting reference
standard in white. The crosses indicate the centers and the circles indicate the radii.
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Figure 5.
An illustration of the terms used in the evaluation measures (see section 4.4). The reference
standard with annotated radius is depicted in gray. The terms on top of the figure are
assigned to points on the centerline found by the evaluated method. The terms below the
reference standard line are assigned to points on the reference standard.
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Figure 6.
Figure (a) shows an example of how overlap measures are transformed into scores. Figure
(b) shows this transformation for the accuracy measures.
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Figure 7.
The algorithm performance of each method with respect to the distance from the ostium
averaged over all 96 evaluated vessels over the first 175mm (only 10% of the vessels were
longer than 175mm). Overlap: the fraction of points on the reference standard marked as
true positive. Accuracy: the average distance to the centerline if the point is marked true
positive. Each of the three graphs shows in light-gray the results of all the thirteen evaluated
methods and in color the results of the respective algorithm category. The graphs also show
in black the average accuracy and overlap for all thirteen evaluated methods.
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Table 1

An overview of CTA coronary artery segmentation and centerline extraction algorithms that were qualitatively
evaluated. The column ‘Time’ indicates if information is provided about the computational time of the
algorithm.

Article Patients /
observers

Vessels Evaluation details Time

Bartz et al. [21] 1/1 Complete tree Extraction was judged to be satisfactory. Yes

Bouraoui et al. [22] 40/1 Complete tree Extraction was scored satisfactory or not. No

Carrillo et al. [23] 12/1 Complete tree Extraction was scored with the number of ex
tracted small branches.

Yes

Florin et al. [24] 1/1 Complete tree Extraction was judged to be satisfactory. Yes

Florin et al. [25] 34/1 6 vessels Scored with the number of correct extractions. No

Hennemuth et al. [26] 61/1 RCA, LAD Scored with the number of extracted vessels
and categorized on the dataset difficulty.

Yes

Lavi et al. [27] 34/1 3 vessels Scored qualitatively with scores from 1 to 5
and categorized on the image quality.

Yes

Lorenz et al. [28] 3/1 Complete tree Results were visually analyzed and criticized. Yes

Luengo-Oroz et al. [29] 9/1 LAD & LCX Scored with the number of correct vessel ex
tractions. The results are categorized on the
image quality and amount of disease.

Yes

Nain et al. [30] 2/1 Left tree Results were visually analyzed and criticized. No

Renard et al. [31] 2/1 Left tree Extraction was judged to be satisfactory. No

Schaap et al. [32] 2/1 RCA Extraction was judged to be satisfactory. No

Szymczak et al. [33] 5/1 Complete tree Results were visually analyzed and criticized. Yes

Wang et al. [34] 33/1 Complete tree Scored with the number of correct extractions. Yes

Wesarg et al. [35] 12/1 Complete tree Scored with the number of correct extractions. Yes

Yang et al. [36] 2/1 Left tree Extraction was judged to be satisfactory. Yes

Yang et al. [37] 2/1 4 vessels Scored satisfactory or not. Evaluated in ten
ECG gated reconstructions per patient.

Yes
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Table 2

An overview of the quantitatively evaluated CTA coronary artery segmentation and centerline extraction
algorithms. With ‘centerline’ and ‘reference’ we respectively denote the (semi-)automatically extracted
centerline and the manually annotated centerline. The column ‘Time’ indicates if information is provided
about the computational time of the algorithm. ‘Method eval.’ indicates that the article evaluates an existing
technique and that no new technique has been proposed.

Article Patients /
observers

Vessels Used evaluation measures and details Time Method
eval.

Bulow et al. [38] 9/1 3-5 vessels Overlap: Percentage reference points having
a centerline point within 2 mm.

No

Busch et al. [39] 23/2 Complete tree Stenoses grading: Compared to human per-
formance with CCA as ground truth.

No ×

Dewey et al. [40] 35/1 3 vessels Length difference: Difference between ref-
erence length and centerline length. Stenoses
grading: Compared to human performance
with CCA as ground truth.

Yes ×

Khan et al. [12] 50/1 3 vessels Stenoses grading: Compared to human per-
formance
with CCA as ground truth.

No ×

Larralde et al. [41] 6/1 Complete tree Stenoses grading and calcium detection:
Compared to human performance.

Yes

Lesage et al. [42] 19/1 3 vessels Same as Metz et al. [44] Yes

Li et al. [43] 5/1 Complete tree Segmentation: Voxel-wise similarity indices. No

Marquering et al.
[10]

1/1 LAD Accuracy: Distance from centerline to reference
standard.

Yes

Metz et al. [44] 6/3 3 vessels Overlap: Segments on the reference standard
and centerline are marked as true positives,
false positives or false negatives. This scoring
was used to construct similarity indices.
Accuracy: Average distance to the reference
standard for true positive sections.

No

Olabarriaga et al.
[45]

5/1 3 vessels Accuracy: Mean distance from the centerline
to the reference.

No

Wesarg et al. [11] 10/1 3 vessels Calcium detection: Performance compared
to human performance.

No ×

Yang et al. [46] 2/1 3 vessels Overlap: Percentage of the reference standard
detected. Segmentation: Average distance
to contours.

No

Med Image Anal. Author manuscript; available in PMC 2013 November 29.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Schaap et al. Page 30

Table 3

Image quality of the training and test datasets.

Poor Moderate Good Total

Training 2 3 3 8

Testing 4 8 12 24
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Table 4

Presence of calcium in the training and test datasets.

Low Moderate Severe Total

Training 3 4 1 8

Testing 9 12 3 24
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Table 5

The overall ranking of the thirteen evaluated methods. The average overlap rank, accuracy rank and the
average of these two is shown together with an indication of the computation time and the required user-
interaction.

Method Challenge Avg. Ov.
rank

Avg. Acc.
rank

Avg.
rank

Computation
time

User-
interaction

1 2 3

MHT [69] × 2.07 1.58 1.83 6 minutes 2 to 5 points

Tracer [70] × 4.21 2.52 3.37 30 minutes Point S and point E

DepthFirstModelFit [57] × 6.17 3.33 4.75 4-8 minutes

KnowledgeBasedMinPath [65] × 4.31 8.36 6.34 7 hours Point E

AutoCoronaryTree [54] × 7.69 5.18 6.44 < 30 seconds

GVFTube’n’Linkage [58] × 5.39 8.02 6.71 10 minutes

CocomoBeach [56] × 8.56 5.04 6.80 70 seconds

TwoPointMinCost [71] × 5.30 8.80 7.05 12 minutes Point S and point E

VirtualContrast [62] × 8.71 7.74 8.23 5 minutes

AxialSymmetry [63] × 6.95 9.60 8.28 5 minutes Point E

ElasticModel [67] × 9.05 8.29 8.67 2-6 minutes Global intens. thresh.
+ 1 point per axis

3DInteractiveTrack [66] × 7.52 10.91 9.22 3-6 minutes 3 to 10 points

CoronaryTreeMorphoRec [64] × 10.42 11.59 11.01 30 minutes Point S
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Table 7

The accuracy of the thirteen evaluated methods. The average distance, score and rank of each is shown for the
accuracy when inside (AI) measure.

Method Challenge AI

1 2 3 mm score rank

MHT [69] × 0.23 47.9 1.58

Tracer [70] × 0.26 44.4 2.52

DepthFirstModelFit [57] × 0.28 41.9 3.33

KnowledgeBasedMinPath [65] × 0.39 29.2 8.36

AutoCoronaryTree [54] × 0.34 35.3 5.18

GVFTube’n’Linkage [58] × 0.37 29.8 8.02

CocomoBeach [56] × 0.29 37.7 5.04

TwoPointMinCost [71] × 0.46 28.0 8.80

VirtualContrast [62] × 0.39 30.6 7.74

AxialSymmetry [63] × 0.46 26.4 9.60

ElasticModel [67] × 0.40 29.3 8.29

3DInteractiveTrack [66] × 0.51 24.2 10.91

CoronaryTreeMorphoRec [64] × 0.59 20.7 11.59
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