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Abstract

Real-time three-dimensional (RT3D) echocardiography is a new image acquisition technique that 

allows instantaneous acquisition of volumetric images for quantitative assessment of cardiac 

morphology and function. To quantify many important diagnostic parameters, such as ventricular 

volume, ejection fraction, and cardiac output, an automatic algorithm to delineate the left ventricle 

(LV) from RT3D echocardiographic images is essential. While a number of efforts have been 

made towards segmentation of the LV endocardial (ENDO) boundaries, the segmentation of 

epicardial (EPI) boundaries remains problematic. In this paper, we present a coupled deformable 

model that addresses this problem. The idea behind our method is that the volume of the 

myocardium is close to being constant during a cardiac cycle and our model uses this coupling as 

an important constraint. We employ two surfaces, each driven by the image-derived information 

that takes into account ultrasound physics by modeling the speckle statistics using the Nakagami 

distribution while maintaining the coupling. By simultaneously evolving two surfaces, the final 

segmentation of the myocardium is thus achieved. Results from 80 sets of synthetic data and 286 

sets of real canine data were evaluated against the ground truth and against outlines from three 

independent observers, respectively. We show that results obtained with our incompressibility 

constraint were more accurate than those obtained without constraint or with a wall thickness 

constraint, and were comparable to those from manual segmentation.
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1. Introduction

Two-dimensional (2-D) echocardiography is routinely used in clinical practice to measure 

left ventricular (LV) morphology and function. However, the examination of the three-

dimensional (3-D) heart structure using two-dimensional (2-D) images is inherently 

problematic due to the dynamic nature of the heart. To circumvent the shortcomings of two-
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dimensional (2-D) echocardiography, real-time 3-D (RT3D) echocardiography has recently 

been developed based on the design of an ultrasound transducer with a matrix array that 

instantaneously acquires volumetric images of the heart, allowing more reliable evaluation 

of cardiac anatomy and function. To acquire the cardiac geometry and function parameters, 

such as left ventricular (LV) volume, cardiac output, and ejection fraction, one needs to 

retrieve the left ventricular (LV) shape for a complete cardiac cycle. Nevertheless, manual 

segmentation of large data sets, such as those produced by real-time 3-D (RT3D) 

echocardiography, is tedious and time consuming. Therefore, the development of a robust 

and accurate automatic segmentation algorithm is essential.

Most research on echocardiographic segmentation has been focused on endocardial (ENDO) 

border detection. The available methods include use of texture (Binder et al., 1999), local 

phase (Mulet-Parada and Noble, 2000), a gradient-based deformable model (Coppini et al., 

1995), a region-based deformable model (Lin et al., 2003; Mignotte et al., 2001), and pixel-

wise clustering (Boukerroui et al., 2003). Shape and time information have also been 

incorporated in an Active Appearance Motion Model (AAMM) (Bosch et al., 2002), an 

extended Kalman filter (Orderud et al., 2007), or a manifold learning-based framework 

(Yang et al., 2008). A more comprehensive overview is given in Noble et al. (2006).

Compared with endocardial (ENDO) segmentation, the automation of epicardial (EPI) 

segmentation is inherently more challenging due to the severe imaging and anatomical 

factors. First, the speckle pattern, caused by the interference of energy from randomly 

distributed scatters too small to be resolved by ultrasound systems, creates a characteristic 

granular appearance of the ultrasound image. Speckle can be taken as signal carrying useful 

information or as noise to be reduced, depending on the application. In ultrasound elasticity 

imaging, some researchers (Dickinson and Hill, 1982; Ledesma-Carbayo et al., 2005; Chen 

et al., 2005; Duan et al., 2009) and companies (e.g. Philips) have developed correlation-

based speckle tracking methods that allow estimation of myocardial deformation. However, 

from a segmentation perspective, speckle is undesirable, because it largely degrades the 

quality of the ultrasound image. At clinical frequencies of 2.5–5 MHz, there exist 

significantly more scatters from myocardial tissues than from the blood pool, and thus 

reduces the distinction of epicardial (EPI) boundaries in tissue structure, as shown in Fig. 1.

Second, the myocardium/background contrast is lower than the myocardium/blood pool 

contrast. This is because the myocardium and its adjacent tissues (such as liver) have similar 

echogenicities, and therefore yield very similar intensity values in ultrasound images. It 

makes the inferior and lateral sectors of the epicardial (EPI) boundary very ambiguous, as 

shown in Fig. 2a.

Third, the left ventricular (LV)/right ventricular (RV) junctures pose additional challenges 

for epicardial (EPI) segmentation. Since the left ventricular (LV) myocardium and right 

ventricular (RV) myocardium are similar in appearance, separation of one from the other at 

the juncture point is difficult, as shown in Fig. 2b.

Less extensive information is available on segmentation of the epicardial (EPI) contour 

compared to endocardial (ENDO) segmentation. Much of the early work focused on two-

Zhu et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2015 February 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dimensional (2-D) epicardial (EPI) segmentation. For example, Jacob et al. presented a 

Kalman filter-based algorithm to track two-dimensional (2-D) endocardial (ENDO) and 

epicardial (EPI) borders (Jacob et al., 2002). Malassiotis et al. used a temporal learning–

filtering approach to identify the two-dimensional (2-D) epicardial (EPI) boundary from 

ultrasound imaged (Malassiotis and Strintzis, 1999). Chalana et al. developed a multiple 

active contour based on the extension of two-dimensional (2-D) active contour model to find 

endocardial (ENDO) and epicardial (EPI) boundaries from a sequence of ultrasound images 

(Chalana et al., 1996). Setarehdan et al. developed a fuzzy edge detection method to detect 

and track two-dimensional (2-D) endocardial (ENDO) and epicardial (EPI) contours from a 

sequence of short-axis echocardiographic data (Setarehdan and Soraghan, 1999).

As three-dimensional (3-D) echocardiography becomes more available, some recent efforts 

have now been directed towards investigating techniques for three-dimensional (3-D) 

epicardial (EPI) segmentation. Song et al. treated the segmentation problem as a three-

dimensional (3-D) surface fitting problem based on the integration of both low-level image 

information and a high-level shape prior, through a pixel class prediction mechanism (Song 

et al., 2002). Yan et al. proposed a multilevel free-form deformation (FFD), driven by fuzzy 

feature information, to segment the three-dimensional (3-D) endocardial (ENDO) and 

epicardial (EPI) contours (Yan et al., 2007). Myronenko et al. combined image textual and 

gradient information to detect endocardial (ENDO) and epicardial (EPI) contours from real-

time 3-D (RT3D) echocardiography (Myronenko et al., 2007).

Most of the above methods do not explicitly use constraints due to the spatial relationship 

between the endocardial (ENDO) and epicardial (EPI) contours, and therefore are limited for 

the purpose of myocardial segmentation. However, some effort has been made in this 

direction. Lynch et al. proposed a coupled deformable model with a wall thickness 

constraint to simultaneously segment the endocardial (ENDO) and epicardial (EPI) contours 

from cardiac magnetic resonance (MR) images (Lynch et al., 2006). In this approach, the 

authors assumed that the distance between the endocardial (ENDO) and epicardial (EPI) 

surfaces were nearly constant throughout the heart cycle, and took this important constraint 

into consideration in the segmentation process.

This paper is an extended version of our two conference papers (Zhu et al., 2007a,b). It 

presents an alternative coupled deformable model for tracking and segmentation of left 

ventricular (LV) myocardial borders from real-time 3-D (RT3D) echocardiographic images. 

Rather than imposing a constraint on the myocardial wall thickness, we instead assume that 

the myocardial volume (MV) is nearly constant during a cardiac cycle. This 

incompressibility constraint is incorporated into the segmentation process in a probabilistic 

framework, which maximizes the regional inhomogeneities of a cardiac image, while 

maintaining myocardial volume (MV) during the cycle. By simultaneously evolving the 

endocardial (ENDO) and epicardial (EPI) surfaces, we are thus able to achieve an automatic 

segmentation of the full myocardium and concomitantly obtain a representation of the 

endocardial (ENDO) and epicardial (EPI) surfaces from the cardiac image.

This paper is organized as follows. In Section 2, we discuss the speckle statistics for 

ultrasound images. In Section 3, we describe the incompressibility property of the 
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myocardium. The speckle statistics discussed in Section 2 and the incompressibility 

constraint discussed in Section 3 are then incorporated in a maximum a posteriori (MAP) 

framework presented in Section 4. In Section 5, we discuss the implementation of this 

framework. Section 6 is the experimental setup and Section 7 shows qualitative and 

quantitative experimental results on both synthetic and real data. Section 8 provides a 

discussion of the proposed method, and Section 9 is the conclusion.

2. Statistical modeling of ultrasound speckle

Ultrasound imaging involves receiving acoustic pulse reflected off a scatter medium. The 

received signal is the sum of signals received from a large number of scattering points 

located within a resolution cell, giving rise to the speckle pattern. These scatters are 

randomly or coherently distributed in the tissue, so the speckle has a statistical nature.

Speckle statistics can be initially classified as pre-Rayleigh, Rayleigh, and post-Rayleigh, 

depending on the density and spatial distribution of the scatter (Shankar, 2000). The simplest 

model assumes a large number of randomly located scatters and treats the backscattered 

echo as a random walk. Under these conditions, the echo envelope has a Rayleigh 

distribution (Wagner et al., 1983), a pattern which is normally referred to as “fully 

developed” speckle. However, Rayleigh distribution is not necessarily the norm in 

ultrasound imaging. First, when the number of scatters is not large enough, the envelope 

statistics are pre-Rayleigh. Second, the scatters may not be randomly located, that is, there 

may be periodicity in the spatial distribution of scatters, giving rise to post-Rayleigh 

statistics.

To model the pre-Rayleigh condition, the K-distribution (Jakeman, 1999) has been proposed 

to account for the low effective scatter density. The K-distribution has two parameters, 

namely the effective number of scatters and the scaling parameter. These two parameters 

provide information about the density of scatters, the variation in the scattering amplitude 

within the resolution cell, and the mean scattering amplitude. To model the post-Rayleigh 

condition, the Rice distribution (Wagner et al., 1983) has been used to account for a 

coherent component due to the presence of a regular structure of scatters. Some even more 

complicated distributions were proposed to handle both pre-Rayleigh and post-Rayleigh 

distributions, such as generalized K-distribution (Jakeman, 1999) and homodyned K-

distribution (Dutt and Greenleaf, 1994).

Unfortunately, the computational complexity of these models is significant (Shankar, 2000), 

making them inappropriate for segmentation purposes. To address this issue, Shankar et al. 

proposed modeling speckles using the Nakagami distribution (Shankar, 2000). There are two 

advantages of the Nakagami distribution. First, it is a general model that can collectively 

represent the pre-Rayleigh, Rayleigh, and post-Rayleigh conditions that exist in ultrasound 

images. Second, it is a two-parameter distribution with analytical simplicity. These 

advantages make the Nakagami distribution useful in ultrasound segmentation. For example, 

Davignon et al. incorporated the Nakagami distribution in the segmentation process, and 

formulated the segmentation problem in a multi-resolution Markov random field framework 

(Davignon et al., 2005).
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In (Shankar, 2000), the probability density function (pdf) of the Nakagami distribution is 

given as:

(1)

where μ is a shape parameter conveying information about the envelope statistics, ω is a 

scaling parameter, and Γ(·) is a Gamma function. Eq. (1) models pre-Rayleigh statistics 

when μ < 1, post-Rayleigh statistics when μ > 1, and reduces to Rayleigh statistics when μ = 

1. Thus, the Nakagami distribution is inclusive of all three cases by appropriate choices of 

parameter μ.

In Shankar (2000), provides an efficient approach for estimating the shape parameter μ and 

scaling factor ω, as follows:

(2)

and

(3)

In this work, we fit the histograms of the blood pool and the myocardium with four 

distributions (Rayleigh, K, Rice, and Nakagami). Fig. 3 shows two example histograms with 

fitted distributions, which correspond to the blood pool and myocardium, respectively.

To further quantitatively compare how well the histograms fit the different distribution 

families, we performed a Pearson chi-squared goodness-of-fit test (see Appendix A). Table 

1 shows the average significance values of fit for the blood pool and the myocardium. For 

the blood pool, the scattering mainly arises from the red blood cells (Angelsen, 1980), which 

normally have the shape of biconcave disc with a diameter of 8 μm, a maximum thickness of 

2.8 μm, and an average volume of 90 μm (Shung and Thieme, 1992). The ultrasound 

wavelength at 3.5 MHz was 440 μm, which is much larger than the size of the red blood 

cells. Unlike the blood pool, which has randomly distributed scatters, the myocardium 

consists of predominantly cardiac muscle fibers, blood vessels, and bile ducts (Shung and 

Thieme, 1992). The myocardial fibers are more or less cylindrical in shape with a diameter 

between 10 μm and 20 μm, and occupy approximately 90% volume of the myocardium. As 

the Nakagami distribution can collectively model pre-Rayleigh, Rayleigh, and post-Rayleigh 

situations, it has a significance value similar to the K-distribution in the blood pool, and to 

the Rice distribution in the myocardium. In this paper, we chose the Nakagami distribution 

to model the intensity of the blood pool and the myocardium.

3. Incompressibility of the Myocardium

The heart is a remarkably efficient and durable mechanical pump composed of complex 

biological materials. The main structural elements of the myocardium are inter-connected 

networks of muscle fibers and collagen fibers, as well as matrix that embeds them. The 

Zhu et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2015 February 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



fibers are generally tangential to the endocardial (ENDO) and epicardial (EPI) surfaces, 

following a path that has a right-handed helical geometry. The interstitial fluid carries only 

hydrostatic pressure, which, in turn, is affected by the length and configuration changes of 

the fibers. These cause pressure gradients, which may result in a flow of the matrix. 

However, since the permeability of the myocardium is low, the fluid flow within the tissue is 

negligible for the duration of a cardiac cycle. Consequently, the myocardium can be 

assumed to be nearly incompressible (Glass et al., 1990).

A few independent studies have quantitatively evaluated the changes in myocardial volume 

(MV) over an entire cardiac cycle. For example, Hamilton et al. performed experiments on 

frogs, turtles, and dogs (Hamilton and Rompf, 1932). They found the total myocardial 

volume (MV) to be relatively constant during a cardiac cycle. Hoffman et al. used Dynamic 

Spatial Reconstructor (DSR) to study the change of myocardial volume (MV) in dogs, and 

obtained a relatively constant volume that was consistent with Hamilton’s findings 

(Hoffman and Ritman, 1987, 1985). Bowman et al. using high-resolution magnetic 

resonance (MR) imaging found a variation of around 5% between end-diastole (ED) and 

end-systole (ES) (Bowman and Kovacs, 2003). O’Donnell also analyzed the myocardial 

volume (MV) using magnetic resonance (MR) imaging, and found a difference of about 

2.5% between end-diastole (ED) and end-systole (ES) (O’Donnell and Funka-Lea, 1998). 

The common conclusion of these studies is that the myocardial volume (MV) is nearly 

constant and its variation is less than 5% during a cardiac cycle. The incompressibility 

property of the myocardium is used as an important constraint that is taken into account in 

our approach, as will be detailed in Section 4.3.

4. Cardiac segmentation

4.1. General framework

In Section 2, we discuss the statistical modeling of ultrasound speckle. In Section 3, we 

describe the incompressibility property of the myocardium. Here, we propose a maximum a 

posteriori (MAP) framework for segmenting real-time 3-D (RT3D) echocardiographic 

images by combining image information with a incompressibility constraint.

Let I be a volumetric cardiac image, ϕin be the level set representation of the endocardial 

(ENDO) surface, and ϕout be the level set representation of the epicardial (EPI) surface. The 

maximum a posteriori (MAP) framework that realizes coupled segmentation of the 

endocardial (ENDO) and epicardial (EPI) surfaces with the incompressibility constraint can 

be expressed as:

(4)

Eq. (4) can be interpreted as a probability function that adheres to image data, modulated by 

the prior knowledge of the near incompressibility property of the myocardium. In this work, 

Zhu et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2015 February 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



we define the incompressibility constraint within a probabilistic framework, although it is 

also possible to define it in a deterministic framework (Bistoquet et al., 2008; Saddi et al., 

2007; Mansi et al., 2009).

4.2. Data adherence

In echocardiography, the strength of the signal due to the myocardial boundaries depends on 

the relative orientation of the border to transducer direction. For this reason, conventional 

intensity gradient-based methods have limited success in ultrasound image segmentation. 

Region-based methods, however, have been successfully applied to segment images with 

weak edges (Sarti et al., 2005). In this paper, we develop a region-based deformable model 

based on the speckle statistics of ultrasound images.

Suppose the entire image is partitioned by the endocardial (ENDO) and epicardial (EPI) 

surfaces into three regions: left ventricular (LV) blood pool, left ventricular (LV) 

myocardium, and background (see Fig. 4). The left ventricular (LV) blood pool and the 

myocardium are homogeneous, and therefore can be modeled with a single probability 

density function (pdf). In this paper, we use the Nakagami distribution as a probability 

density function (pdf) for speckles.

While the histograms of speckle in the blood pool and the myocardium are unimodal, the 

histogram of the background is not. It is so because the background includes more than one 

tissue type (e.g. right ventricular (RV) blood pool, right ventricular (RV) myocardium, and 

other tissues) (as shown in Fig. 4), and therefore modeling it with a single distribution would 

be insufficient because it contains a wide range of intensity. To circumvent this problem, we 

use a mixture model to fit the background histogram.

Under the mixture model, the background intensity distribution is given as

where M is the number of components, αk is the mixture proportion of component k that 

satisfies , P3,k(I; μ3,k, ω3,k) is the component Nakagami distribution, and μ3,k 

and ω3,k are its shape and scaling parameters. In this paper, we use M = 2 because there are 

two peaks in the histograms of the background (see Fig. 6c). While the first peak 

corresponds to the right ventricular (RV) blood pool, the second corresponds to the right 

ventricular (RV) myocardium and liver.
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Let Ω1 = {x∣ϕin(x) ≤ 0} be the left ventricular (LV) blood pool, Ω2 = {x∣ϕin(x) > 0 and ϕout 

(x) ≤ 0} be the left ventricular (LV) myocardium, and Ω3 = {x∣ϕout(x) > 0} be the 

background.

Thus, the data adherence term can be defined as

(5)

The maximization of Eq. (5) can be interpreted as the propagation of ϕin and ϕout that 

maximizes the piecewise homogeneities of three regions.

4.3. Incompressibility constraint

As explained in Section 3, the myocardium is nearly incompressible and the myocardial 

volume (MV) changes less than 5% during a cardiac cycle. Thus, the myocardial volume 

(MV) at a particular frame can be modeled by a Gaussian distribution N(V0, )

(6)

where V = ∫Ω2 dx is the myocardial volume (MV). By invoking the three-sigma rule,1 we 

have the following relationship

Eq. (6) defines a probability function that favors consistent myocardial volume (MV) during 

a cardiac cycle, while allowing a small variation of around 5%.

4.4. Optimization

Combining Eqs. (4)-(6), the maximization of posterior likelihood is equivalent to the 

maximization of the following equation

(7)

To deform ϕin towards the optimal solution, we define a thin-plate spline (TPS) warp L(·; 

Θin) (see Appendix B for an overview) that deforms a fixed level set template  to ϕin 

(Taron et al., 2007), i.e.

13-σ rule states that an event is considered practically impossible if it lies in the region of values of the normal distribution of a 
random variable at a distance from its mathematical expectation of more than three times the standard deviation.
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Thus, the deformation of ϕin depends on the thin-plate spline (TPS) warping, which is 

determined by the control points Θin. In other words, we define the segmentation problem as 

one that finds an optimal thin-plate spline (TPS) warping that maximizes Eq. (7). Similarly, 

we define .

By taking the gradients with respect to Θin and Θout (see C for details), we have

(8)

(9)

where ∂C12 is the interface between Ω1 and Ω2, i.e. the endocardial (ENDO) surface, while ∂ 

C23 is the interface between Ω2 and Ω3, i.e. the epicardial (EPI) surface. ∇ϕin(x′) and 

∇ϕout(x′) are the gradients evaluated at the transformed position x′ = L(x; Θ). 

is the gradient of thin-plate spline (TPS) warping with respect to Θin, and  is 

the gradient of thin-plate spline (TPS) warping with respect to Θout.

5. Implementation

In this section, we detail the implementation of the segmentation approach described in 

Section 4. Our method is a sequential segmentation approach that starts with a manual 

segmentation of the first frame, and then uses the final segmentation of the previous frame 

to initialize the current frame. We also use the segmented image from the previous frame to 

estimate the intensity distribution parameters for the current frame. The estimated 

parameters are fed into the data adherence term which, in combination with the 

incompressibility constraint, propagates the endocardial (ENDO) and epicardial (EPI) 

surfaces. The flowchart of our segmentation approach is illustrated in Fig. 5.

5.1. Intensity estimation

In Section 4.2, we model the left ventricular (LV) blood pool and myocardium with the 

Nakagami distribution, and background with a mixture of Nakagami distribution. While it is 

possible to estimate intensity-distribution parameters in parallel with surface evolution for 

each iteration, we approximate these parameters from the segmented image of the previous 

frame. By doing this, we implicitly assume that the intensity distribution from two adjacent 

frames are similar. This is valid because (1) the inter-frame motion is not significant 

(although the cumulative motion from end-diastole (ED) to end-systole (ES) is large), and 

(2) histogram is a global measure that is insensitive to small inter-frame changes.
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First, we use Eqs. (2) and (3) to estimate the parameters for the left ventricular (LV) blood 

pool (μ1 and ω1) and for the left ventricular (LV) myocardium (μ2 and ω2).

Second, we describe how to estimate the parameters for the background. In Section 4.2, we 

use a mixture model to fit the background histogram, and an Expectation–Maximization 

(EM) algorithm to estimate the parameters for the mixture model (α1, α2, μ3,1, μ3,2, ω3,1, and 

ω3,2).

Suppose we represent the voxels in the background as a vector {I1,…,IN}, where N is the 

number of voxels in the background. The Expectation–Maximization (EM) algorithm 

considers {I1,…,IN} as observations, and augments each Ii with a set of labels {zik} (1 ≤ k ≤ 

M), where M is the number of components in the mixture model. We define zik = 1 if 

observation Ii comes from the kth mixture component, and zik = 0 if Ii does not come from 

the k component.

Given an initial estimate, the Expectation–Maximization (EM) algorithm iterates an 

expectation step (E-step) and maximization step (M-step) until convergence (see Appendix 

D for derivation).

1. E-step Compute the posterior probability of the ith observation coming from the kth 

mixture component:

2. M-step Update the estimate of parameters (αk, μ3,k, and ω3,k) of the mixture 

component:

where

3. If converged, then stop. Otherwise, repeat step 1. In this work, the following 

criterion is considered the indicator of convergence:
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The initial estimate of the Expectation–Maximization (EM) algorithm is chosen as follows:

•
For the first frame, we set  and . This is because the first 

component of the mixture model, which corresponds to the right ventricular (RV) 

blood pool and lung air, has similar echogenicities to the left ventricular (LV) 

blood pool. Similarly, we set  and  because the second component 

of the mixture model, which corresponds to the right ventricular (RV) myocardium 

and liver, has similar echogenicities to the left ventricular (LV) myocardium. We 

also found by experiment that  and  were appropriate for most of 

the data sets. In practice, it required about 10 iterations before convergence.

• For the subsequent frames, we initialized the Expectation–Maximization (EM) 

algorithm with the estimated parameters from the previous frame. In practice, it 

required less than 5 iterations before convergence.

In Fig. 6, we show the histograms of three regions from one example image with fitted 

intensity distribution functions.

5.2. Surface evolution

As explained in Section 4.4, the endocardial (ENDO) and epicardial (EPI) surfaces are 

propagated by updating the thin-plate spline (TPS) control points Θin and Θout. From a 

computational point of view, a small set of control points is desired to reduce the 

computational load. However, a small set of points may fail to capture some local shape 

features. In this work, we iso-sampled around 150 control points on the endocardial (ENDO) 

surface and 135 control points on the epicardial (EPI) surface, as shown in Fig. 7. We placed 

more control points on the endocardial (ENDO) surface than on the epicardial (EPI) surface 

because the endocardial (ENDO) surface was more curved (e.g. due to papillary muscles) 

than the epicardial (EPI) surface.

Starting from the final segmentation of the previous frame, we propagated the endocardial 

(ENDO) and epicardial (EPI) surfaces by iterating the following three steps.

1. Let n be the number of iterations, update  and  as in follows:

(10)

(11)

where τ is the numerical time step. In practice, we chose τ = 2.5 × 10−6. It should 

be noted that the domains of integration in Eqs. (10) and (11) are the endocardial 

(ENDO) and epicardial (EPI) surfaces, respectively. Therefore, there is no need to 

parse the entire image at every iteration.
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2.
Update the thin-plate spline (TPS) warping  and  with 

 and  obtained in step 1. As explained in Appendix B, we used a 

regularization parameter λ to control the stiffness of the transform. In practice, we 

used a stiff-to-flexible strategy to regularize the thin-plate spline (TPS) warping, as 

described in Appendix B. Specifically, we started with λinitial = 3, and gradually 

decreased it by a scaling factor γ = 2 for the endocardial (ENDO) contour and γ = 

1.2 for the epicardial (EPI) contour in each iteration until convergence. We used a 

larger λ for the epicardial (EPI) contour because the epicardial (EPI) did not have 

as many local shape features as the endocardial (ENDO) contour. Also, for 

efficiency, we only updated  within a narrow band around the zero 

level-set of , and  within a narrow band around the zero level-set 

of . In practice, we chose the width of the narrow band as 2 mm.

3. Update the endocardial (ENDO) and epicardial (EPI) level-set functions 

 and  in their 

narrow bands.

The final endocardial (ENDO) and epicardial (EPI) surfaces can be extracted from their 

corresponding level set functions, respectively. As the inter-frame motion (the motion 

between two adjacent frames) is small, we normally need 5–10 iterations before 

convergence.

6. Experimental setup

6.1. Data acquisition

We performed experiments on both synthetic and real echocardiographic data.

6.1.1. Synthetic data—The benefits of using synthetic data are the availability of ground 

truth segmentation and controllable image quality. In our experiments, we generated 

synthetic data using the Field II ultrasound system simulation program (Jensen and 

Svendsen, 1992; Jensen, 1996). This simulation program includes methods for implementing 

different array and transducer geometries with apodization, beamforming, absorption 

effects, and the ability to create synthetic phantoms made from an organized set of point 

scatters. The imaging parameters in our experiments were as follows: probe center 

frequency = 5 MHz, probe matrix dimensions = 64 × 32, element width = 0.154 mm, 

element height = 0.154 mm, focus depth = 70 mm, sampling frequency = 100 MHz, number 

of scanlines = 40 × 40. We used manual segmentation from cardiac magnetic resonance 

(MR) images to generate three-dimensional (3-D) synthetic phantoms by randomly 

distributing 2 × 106 scatters within each three-dimensional (3-D) phantom. The Field II 

program computed the radio-frequency (RF) signal for different imaging directions, and 

stored each radio-frequency (RF) line in a separate file. These files were then used to 

assemble an ultrasound image. We generated a total of five synthetic sequences, each 

consisting of 16 temporal frames. The results from the automatic method were compared to 

the ground truth segmentation that was used to generate the synthetic images.
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6.1.2. Real data—The real data were acquired using a Philips IE33 echocardiographic 

system with a 4MHz X4 xMatrix transducer. This transducer consists of 3000 miniaturized 

piezoelectric elements and offers steering in both azimuth and elevation of the beam, 

permitting real-time volumetric image acquisition and rendering (Philips, 2005). While most 

commercial systems only provide post-processed B-mode images, the statistical properties 

of which are hard to model due to incomplete knowledge of the post-processing inside the 

machine (Tao et al., 2006), the IE33 system allows direct access to the unprocessed radio-

frequency (RF) signals through a radio-frequency (RF) signal capture board connected to a 

personal computer. This computer then performs radio-frequency (RF) signal filtering and 

demodulation using a computer program, obtaining the envelope of the radio-frequency 

(RF) signal and using it as input in our approach.

In our work, we acquired in total of 11 sequences of canine real-time 3-D (RT3D) 

echocardiographic images, including five normal and six post-infarcted sequences. Each 

sequence consisted of 20–30 frames per cardiac cycle depending on the cardiac rate. 

Therefore, we ran our program with a total of 286 sets of volumetric data. Considering inter-

observer variability, we asked three experts, blind to each other, to independently outline the 

endocardial (ENDO) and epicardial (EPI) contours of all frames using the “4-D Surface 

Editor” of the Bioimage Suite software (Papademetris et al., 2006).

6.2. Comparison with other approaches

In this work, we compared the results from our approach with those from two other closely 

related algorithms. The first of these is the unconstrained version of our approach. This 

algorithm has the same data adherence term as our approach and uses the same thin-plate 

spline (TPS) level-set (i.e. the same number of landmarks and regularization parameter), but 

it lacks the incompressibility constraint. The second algorithm is an alternative coupled 

deformable model that features a wall thickness constraint (Lynch et al., 2006). This coupled 

deformable model evolved according to (1) image information (gradient and texture), (2) a 

wall thickness constraint, and (3) a shape prior obtained from a set of training samples. In 

this work, we used a “leave-one-out” approach to build the shape prior, in order to maximize 

the effective size of the training set. The wall thickness constraint included two parameters d 

and w, where parameter d specified the preferred distance between the endocardial (ENDO) 

and epicardial (EPI) surfaces, while parameter w specified the transition width. The shape 

prior was weighted by the parameter β. To find an appropriate value for parameter d, we 

computed the average wall thickness from the ground truth segmentation of five synthetic 

sequences and from manual segmentation of the 11 canine sequences. In practice, we set d = 

7.1 for synthetic data and d = 6.6 for real data. Also, we found by experiment that a large w 

would cause leakage of the epicardial (EPI) contour. We therefore chose the smallest w that 

did not have a leakage problem. In practice, we set w = 4.1 for synthetic data and w = 3.6 for 

real data. We also found by experiment that β = 1 was appropriate for most data sets. These 

settings were roughly consistent with the ones used in Lynch et al. (2006).
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6.3. Quantitative measures

To quantitatively evaluate the segmentation results, we used two distance metrics, namely 

the mean absolute distance (MAD) and the Hausdorff distance (HD), and one area metric, 

namely the Dice Similarity Coefficient (DSC).

Let A and B be two surfaces from automatic and manual segmentation, respectively. 

Suppose they are represented by point sets, i.e. A = {a1, a2,…,an} and B = {b1, b2,…,bm}, 

we define

where d(ai, B) = minj∥bj − ai∥. While mean absolute distance (MAD) is a global measure of 

the match between two surfaces, Hausdorff distance (HD) reflects their local similarities.

Let ΩA and ΩB be the regions enclosed by surfaces A and B, respectively, the Dice Similarity 

Coefficient (DSC) is defined as

7. Experimental results

7.1. Synthetic data

Fig. 8 qualitatively compares the segmentation results using the deformable models with no 

constraint, with the wall thickness constraint, and with the incompressibility constraint. For 

the endocardial (ENDO) contours, the results from all three algorithms were similar. 

However, the epicardial (EPI) contour from the unconstrained deformable model leaked into 

the background due to the low contrast between the left ventricular (LV) myocardium and 

the background. The deformable model with the wall thickness constraint outperformed the 

unconstrained one by preventing the epicardial (EPI) contour from leaking into the 

background. However, the epicardial (EPI) contour was less accurate in the regions with 

non-uniform wall thickness, e.g. the regions where the papillary muscles were present, as 

shown in Fig. 8b. This was more evident in ultrasound images than in magnetic resonance 

(MR) images because the epicardial (EPI) boundary is fuzzier in ultrasound images and does 

not provide sufficient image information to pull the endocardial (ENDO) contour to its 

proper position. When the incompressibility constraint was applied, however, the epicardial 

(EPI) contour converged to its correct position because the incompressibility constraint 

imposed a restriction on the myocardial volume (MV) while allowing variations in the 

myocardial wall thickness.

Figs. 9 and 10 illustrate the segmentation errors (using mean absolute distance (MAD), 

Hausdorff distance (HD), and Dice Similarity Coefficient (DSC)) as a function of the 

cardiac cycle. When the incompressibility constraint was applied, the segmentation accuracy 
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did not change substantially throughout the cycle, although the segmentation errors at the 

end of the cycle (for endocardial (ENDO) contours, mean absolute distance (MAD) = 1.11 

mm, Hausdorff distance (HD) = 2.13, and Dice Similarity Coefficient (DSC) = 96.8%; for 

epicardial (EPI) contours, mean absolute distance (MAD) = 1.47 mm, Hausdorff distance 

(HD) = 2.42 mm, and Dice Similarity Coefficient (DSC) = 95.2%) were slightly larger than 

those at the beginning of the cycle (for endocardial (ENDO) contours, mean absolute 

distance (MAD) = 0.97 mm, Hausdorff distance (HD) = 1.78 mm, and Dice Similarity 

Coefficient (DSC) = 97.6%; for epicardial (EPI) contours, mean absolute distance (MAD) = 

1.38 mm, Hausdorff distance (HD) = 2.15 mm, Dice Similarity Coefficient (DSC) = 97.1%). 

This was because we used the final segmentation from the previous frame to estimate the 

intensity-distribution parameters for the current frame.

Fig. 9 also shows that the segmentation results for the endocardial (ENDO) contours were 

similar for all three methods (i.e. with no constraint, with the wall thickness constraint, and 

with the incompressibility constraint). However, the segmentation results for the epicardial 

(EPI) contours differed substantially, as shown in Fig. 10. When no constraint was applied, 

the epicardial (EPI) contours leaked into the background, leading to a global segmentation 

error. When the wall thickness constraint was applied, the coupling between the endocardial 

(ENDO) and epicardial (EPI) contours prevented the epicardial (EPI) contour from leaking 

into the background. The mean absolute distance (MAD) decreased, on average, by 3.66 mm 

over the cycle, the Hausdorff distance (HD) decreased by 2.56 mm, and the Dice Similarity 

Coefficient (DSC) increased by 21.46%. The mean absolute distance (MAD) and Dice 

Similarity Coefficient (DSC) obtained with the incompressibility constraint (mean absolute 

distance (MAD) = 1.44 mm and Dice Similarity Coefficient (DSC) = 96.34%, on average, 

over the cycle) were similar to those obtained with the wall thickness constraint (mean 

absolute distance (MAD) = 2.01 mm and Dice Similarity Coefficient (DSC) = 92.54%, on 

average, over the cycle), although the results obtained with the incompressibility constraint 

were slightly better. This implies that the results obtained with the wall thickness constraint 

were globally correct. However, the Hausdorff distance (HD) obtained with the 

incompressibility constraint was 1.77 mm smaller than that using the wall thickness 

constraint, implying that the results obtained with the wall thickness constraint were locally 

inaccurate.

To further explore the distribution of local segmentation errors, we used a 17-segment 

model (Cerqueira et al., 2002) dividing the left ventricular (LV) into equal thirds 

perpendicular to the long-axis of the heart, generating basal, mid-cavity, and apical slices. 

Then the basal and mid-cavity slices are further divided into six segments of 60° each. 

Similarly, the apical slices are partitioned into four sectors, i.e. the septal sector and three 

equal subsectors for the lateral sector. A diagram of the 17-segment model is shown in Fig. 

11.

Table 2 shows the regional mean absolute distance (MAD)s computed on the different 

sectors of the endocardial (ENDO) surface according to the 17-segment model. No 

significant differences were observed in the segmentation results obtained with either no 

constraint, with the wall thickness constraint, or with the incompressibility constraint. This 
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is because the endocardial (ENDO) boundaries are relatively clearer than the epicardial 

(EPI) boundaries.

Table 3 shows the regional mean absolute distance (MAD)s computed on the different 

sectors of the epicardial (EPI) surface according to the 17-segment model. The deformable 

model with the wall thickness constraint outperformed the unconstrained model by having 

globally correct segmentation. However, the segmentation results obtained with the wall 

thickness constraint were less accurate, in comparison with the incompressibility constraint, 

at the mid-ventricular anterolateral and inferior sectors (mean absolute distance (MAD) = 

3.15 mm for the mid-ventricular anter-olateral sector and 3.07 mm for the mid-ventricular 

inferior sector). This is because the presence of the papillary muscles causes the 

inhomogeneity of the wall thickness at these sectors. In contrast, when the incompressibility 

constraint was applied, the mean absolute distance (MAD) decreased by 1.65 mm for the 

mid-ventricular anterolateral sector and by 1.58 for the mid-ventricular inferior sector.

7.2. Real data

Fig. 12 shows the long-axis view of automatically segmented endocardial (ENDO) and 

epicardial (EPI) contours at frames 2, 5, 8, 11 during ventricular systole. Fig. 13 shows the 

corresponding three-dimensional (3-D) endocardial (ENDO) and epicardial (EPI) surfaces.

Fig. 14 compares the segmentation results obtained with and without the incompressibility 

constraint. While the endocardial (ENDO) border was correctly detected even without the 

incompressibility constraint, the epicardial (EPI) contour leaked into other tissues (such as 

liver) that were similar in appearance to the myocardium. This is because the left ventricular 

(LV) myocardium/background contrast is lower than the left ventricular (LV) blood pool/

myocardium contrast. This low contrast obscures the exact location of the epicardial (EPI) 

boundary, making epicardial (EPI) segmentation more challenging than endocardial 

(ENDO) segmentation. When the incompressibility constraint was applied, however, the 

coupling of the endocardial (ENDO) and epicardial (EPI) contours prevented leaking of the 

epicardial (EPI) contour.

As explained in Section 1, another challenge in the segmentation of the epicardial (EPI) 

boundary is the presence of the left ventricular (LV)/right ventricular (RV) myocardium 

junctures. The intensity similarity between the left ventricular (LV) and right ventricular 

(RV) myocardium makes the epicardial (EPI) boundary ambiguous at these junctures. When 

no constraint was applied, the epicardial (EPI) contour evolved out to segment the right 

ventricular (RV) myocardium. In contrast, when the incompressibility constraint was 

applied, the left ventricular (LV) myocardium was successfully separated from the right 

ventricular (RV) myocardium at the junctures, as shown in Fig. 14.

To quantify the segmentation errors, we used manual segmentation as ground truth and 

compared the automatic contour with the manual contour. As mentioned in Section 6.1, we 

asked three experts, blind to each other, to trace out the endocardial (ENDO) and epicardial 

(EPI) contours independently. To take into account inter-observer differences, we computed 

the mean absolute distance (MAD), Hausdorff distance (HD), and Dice Similarity 

Coefficient (DSC) for every two manual contours (manual–manual mean absolute distance 
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(MAD), Hausdorff distance (HD), and Dice Similarity Coefficient (DSC)). For the 

endocardial (ENDO) contour, the manual–manual mean absolute distance (MAD) = 1.31 ± 

0.27 mm, manual–manual Hausdorff distance (HD) = 2.12 ± 0.50 mm, and manual–manual 

Dice Similarity Coefficient (DSC) = 96.23 ± 1.75%. For the epicardial (EPI) contour, the 

manual–manual mean absolute distance (MAD) = 2.34 ± 0.89 mm, manual–manual 

Hausdorff distance (HD) = 3.20 ± 0.99, and manual–manual Dice Similarity Coefficient 

(DSC) = 95.89 ± 2.16%.

We then computed the mean absolute distance (MAD), Hausdorff distance (HD), and Dice 

Similarity Coefficient (DSC) between the automatic contour and each manual contour 

(automatic–manual mean absolute distance (MAD), Hausdorff distance (HD), and Dice 

Similarity Coefficient (DSC)), as shown in Figs. 15 and 16. Fig. 15 shows that for the 

endocardial (ENDO) boundaries, the automatic algorithm produced results with comparable 

accuracy to a manual segmentation, even when the incompressibility constraint was not 

applied. This is because the endocardial (ENDO) boundaries are relatively clear compared to 

the epicardial (EPI) boundaries. However, as shown in Fig. 16, for epicardial (EPI) 

boundaries, when no constraint was applied, the automatic–manual mean absolute distance 

(MAD) was, on average, 2.78 mm larger than the manual–manual mean absolute distance 

(MAD) over the cycle, the automatic–manual Hausdorff distance (HD) was, on average, 

3.82 mm larger than the manual–manual Hausdorff distance (HD), and the automatic–

manual Dice Similarity Coefficient (DSC) was, on average, 25.53% lower than the manual–

manual Dice Similarity Coefficient (DSC). This is because of the leakage problem of the 

epicardial (EPI) boundaries when the incompressibility constraint was not applied. When the 

wall thickness constraint was applied, however, the automatic–manual mean absolute 

distance (MAD) decreased by 2.57 mm, on average, over the cycle, the automatic–manual 

Hausdorff distance (HD) decreased by 2.95 mm, and the automatic–manual Dice Similarity 

Coefficient (DSC) increased by 18.94%. When the incompressibility constraint was applied, 

the automatic–manual mean absolute distance (MAD) further decreased by 0.81 mm, on 

average, over a cycle, the automatic–manual Hausdorff distance (HD) decreased by 1.16 

mm, and the automatic–manual Dice Similarity Coefficient (DSC) increased by 2.82%. Figs. 

15 and 16 also show that when the incompressibility constraint was applied, the 

segmentation errors at the end of the cycle (for the endocardial (ENDO) contour, mean 

absolute distance (MAD) = 1.50 mm, Hausdorff distance (HD) = 2.43 mm, and Dice 

Similarity Coefficient (DSC) = 96.0%; for the epicardial (EPI) contour, mean absolute 

distance (MAD) = 1.81 mm, Hausdorff distance (HD) = 3.01, and Dice Similarity 

Coefficient (DSC) = 94.1%) were not significantly different from those in the beginning of 

the cycle (for the endocardial (ENDO) contour, mean absolute distance (MAD) = 1.34 mm, 

Hausdorff distance (HD) = 2.33 mm, and Dice Similarity Coefficient (DSC) = 96.7%; for 

the epicardial (EPI) contour, mean absolute distance (MAD) = 1.71 mm, Hausdorff distance 

(HD) = 2.72 mm, and Dice Similarity Coefficient (DSC) = 94.9%).

To further investigate the local segmentation errors, we used the 17-segment model, as 

described in Section 7.1, to compute the regional mean absolute distance (MAD)s on 

different sectors of the endocardial (ENDO) and epicardial (EPI) surfaces, as shown in 

Tables 4 and 5, respectively. We observed that the incompressibility constraint did not 
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significantly improve the segmentation results for the endocardial (ENDO) surface. Also, we 

noticed that the mid-cavity mean absolute distance (MAD) was 1.36 mm, while the mean 

absolute distance (MAD)s for the basal and apical slices were 1.48 mm and 1.54 mm, 

respectively. This implies that the mid-cavity slices were relatively easier to segment than 

the basal and apical slices. This is probably due to the relatively higher intensity contrast in 

the mid-cavity slices compared to that in the basal and apical slices.

Table 5 presents regional mean absolute distance (MAD)s for the epicardial (EPI) surfaces. 

When no constraint was applied, the regional mean absolute distance (MAD)s for the 

anterior, lateral, and inferior sectors were much larger than the regional mean absolute 

distance (MAD)s for the septal sector. It is so because the myocardium and its neighborhood 

tissues (such as liver) have similar intensities, making the free wall portion of the epicardial 

(EPI) contour ambiguous. The regional mean absolute distance (MAD)s at the inferolateral 

and anteroseptal sectors were relatively smaller due to the higher contrast between the left 

ventricular (LV) myocardium and the right ventricular (RV) blood pool. However, the 

epicardial (EPI) contour at the inferoseptal and anteroseptal sectors might leak due to the 

presence of the left ventricular (LV)/right ventricular (RV) junctures. This explains why the 

mean absolute distance (MAD)s of the epicardial (EPI) contour at the inferoseptal and 

anteroseptal sectors were still larger than the mean absolute distance (MAD)s of the 

corresponding endocardial (ENDO) contour.

When the wall thickness constraint was applied, the regional mean absolute distance 

(MAD)s for the anterior, anterolateral, inferolateral, and inferior sectors decreased by 1.65–

4.06 mm, while the regional mean absolute distance (MAD)s for the inferoseptal and 

anteroseptal sectors decreased by 0.4–1.76 mm. However, the regional mean absolute 

distance (MAD)s for the mid-ventricular anterolateral and inferior sectors were still larger 

than those for other sectors (mean absolute distance (MAD) = 3.37 for the mid-ventricular 

anterolateral sector and 3.23 mm for the mid-ventricular inferior sector). This was due to the 

presence of the papillary muscles, which created the inhomogeneities in the wall thickness 

in these sectors. When the incompressibility constraint was applied, the mean absolute 

distance (MAD) decreased by 1.56 mm for the mid-ventricular anterolateral sector and by 

1.45 mm for the mid-ventricular inferior sector.

As explained in Section 6.1, the real data included both normal and post-infarcted 

sequences. As shown in Tables 6 and 7, the wall thickness constraint produced endocardial 

(ENDO) contour results with similar accuracy for both the normal and the post-infarcted 

data, although the results from the normal data were slightly better. In contrast, for 

epicardial (EPI) contours, the mean absolute distance (MAD) and Hausdorff distance (HD) 

from post-infarcted data (mean absolute distance (MAD) = 2.86 mm and Hausdorff distance 

(HD) = 4.63 mm) were larger than those from the normal data (mean absolute distance 

(MAD) = 2.25 mm and Hausdorff distance (HD) = 3.41 mm), as shown in Tables 8 and 9. 

This is because the infarcted myocardial wall is usually thinner than the normal myocardial 

wall. When the incompressibility constraint was applied, however, the mean absolute 

distance (MAD), Hausdorff distance (HD), and Dice Similarity Coefficient (DSC) from the 

normal data (mean absolute distance (MAD) = 1.77 mm, Hausdorff distance (HD) = 2.97 

mm, and Dice Similarity Coefficient (DSC) = 93.78%) were close to those from the post-
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infarcted data (mean absolute distance (MAD) = 1.71 mm, Hausdorff distance (HD) = 2.85 

mm, and Dice Similarity Coefficient (DSC) = 94.02%). This implies that the deformable 

model with the incompressibility constraint can segment both normal and infarcted hearts 

with a similar accuracy, because it imposes a constraint on the myocardial volume (MV) 

while still allowing variations in the wall thickness.

In addition, we performed Bland–Altman analysis (Bland and Altman, 1986) to assess the 

agreement of myocardial volume (MV) measurements from manual segmentation and 

automatic segmentation. As shown in Fig. 17, the Bland–Altman plot revealed a large bias 

(bias = 18%) and 95% confidence interval2(95% confidence interval = [−10.4%,46.5%]) 

when no constraint was applied. The bias decreased (bias = 7.7%, −7.1%, and −5.8% for 

three observers) when the wall thickness constraint was applied. The bias further decreased 

(bias = 1.1%, 0.5%, and −0.8% for three observers) when the incompressibility constraint 

was applied. The 95% confidence interval with the incompressibility constraint (95% 

confidence interval = [−5.3%,7.6%], [−7.8%,8.9%], and [−8.2%,6.7%] for three observers, 

respectively) were also smaller compared to those obtained using the wall thickness 

constraint (95% confidence interval = [−21.7%,6.2%], [−22.3%,8.1%], and [−20.6%,8.9%] 

for three observers, respectively). This implies that the myocardial volume (MV)s obtained 

using the wall thickness constraint varied during a cardiac cycle, while the myocardial 

volume (MV)s obtained using the incompressibility constraint were nearly constant during 

the cycle.

8. Discussion

8.1. Sensitivity analysis

8.1.1. thin-plate spline (TPS) Control Points—To investigate the effects of the 

number of thin-plate spline (TPS) control points on the segmentation results, we randomly 

selected two real cardiac sequences, one from the normal data and the other from the post-

infarcted data. Fig. 18 compares the segmentation performance with difference number of 

control points. The segmentation accuracy increased with number of control points, because 

more control points could better capture local shape features. The downside of using more 

control points, however, is that it makes the algorithm more expensive. Fig. 18a and c show 

that the mean absolute distance (MAD) curve for the endocardial (ENDO) surface became 

nearly flat when over 100 control points were used for the first sequence or when over 75 

control points were used for the second sequence. The Hausdorff distance (HD) curve for 

the endocardial (ENDO) surface became nearly flat when over 125 control points were used 

for the first sequence or when over 100 control points were used for the second sequence. 

This implies that Hausdorff distance (HD) is more sensitive to control points as it reflects 

the local segmentation accuracy. Fig. 18b and d show that the mean absolute distance 

(MAD) curve for the epicardial (EPI) surface became nearly flat when over 100 control 

points were used for the first sequence or when over 75 control points were used for the 

second sequence. The Hausdorff distance (HD) curve for the epicardial (EPI) surface 

became nearly flat when over 100 control points were used for the first sequence or when 

295% confidence interval = [a %, b%] means that 95% of the computer measurements are expected to differ from expert 
measurements by less than a% below and b% above the mean.
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over 100 control points were used for the second sequence. This implies that the epicardial 

(EPI) surface is less sensitive to the number of control points because it is less curved than 

the endocardial (ENDO) surface. As a tradeoff between speed and accuracy, we placed 

around 150 control points on the endocardial (ENDO) surface and 135 control points on the 

epicardial (EPI) surface.

8.1.2. The thin-plate spline (TPS) regularization parameter—As mentioned in 

Section 5.2, we used a regularization parameter λ to control the stiffness of thin-plate spline 

(TPS) warping. In practice, we used a stiff-to-flexible strategy, in which λ starts with an 

initial value λinitial and then gradually decreases by a scaling factor γ until convergence. To 

investigate the effects of the initial value λinitial and the scaling factor γ on the segmentation 

results, we randomly selected two real sequences, one from the normal data and the other 

from the post-infarcted data, and compared the segmentation accuracies with different 

λinitial’s and γ’s. Fig. 19a and b show that the mean absolute distance (MAD) increased 

significantly when λinitial < 1.5 for the first sequence or λinitial < 3 for the second sequence. 

This is because a small λ produces too flexible a transform which is sensitive to image noise. 

Fig. 19c and d show that the mean absolute distance (MAD) increases when γ = 1 (i.e. 

constant λ). This is because the transform with a constant large λ produces a nearly pure 

affine transform which fails to capture local shape features. In addition, the mean absolute 

distance (MAD) increased significantly for the endocardial (ENDO) contour when γ > 2.5 

for the first sequence or γ > 2 for the second sequence. For the epicardial (EPI) contour, the 

mean absolute distance (MAD) increased when γ > 2 for the first sequence or γ > 1.5 for the 

second sequence. This implies that the epicardial (EPI) contour needs a larger λ because the 

epicardial (EPI) contour is less curved than the endocardial (ENDO) contour. In practice, we 

set λinitial = 3 and γ = 2 for the endocardial (ENDO) contour, and γ = 1.2 for the epicardial 

(EPI) contour.

8.2. Clinical data

In this work, we validated our approach on canine real-time 3-D (RT3D) echocardiographic 

images. While the experimental results show that our model outperformed the deformable 

models with no constraint and with the wall thickness constraint, possible challenges might 

exist on how to analyze “low-quality” clinical data with low contrast and ambiguous 

myocardial boundaries.

These challenges are threefold. First, it becomes harder for observers to manually outline the 

endocardial (ENDO) and epicardial (EPI) contours of the first frame, from which our 

algorithm starts. One potential solution is to build a statistical model for the first frame (i.e. 

the end-diastole (ED) frame) from high quality magnetic resonance (MR) images. We can 

first rigidly transform (which is more robust) the model to fit the ultrasound image, and then 

automatically/manually adjust the weights associated with different modes of shape 

variations (which are obtained from the shape model) to match (partial) local features.

Second, the performance of the automatic algorithm might degrade with image quality. For 

example, local shape features (e.g. papillary muscles) might be compromised by poor image 

quality, leading to an over-smoothed segmentation of the endocardial (ENDO) boundaries. 
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As well, the endocardial (ENDO) and epicardial (EPI) boundaries might be partially 

missing, due to signal dropout caused by the orientation dependence of image acquisition 

(Qian et al., 2006). Several potential solutions to this problem exist. The first solution is to 

increase the regularization parameter λ to make the thin-plate spline (TPS) warping more 

rigid and robust to noise. However, with a large λ, the segmented contours might fail to 

capture local shape features. The second solution is to add a shape prior to the segmentation 

process (Paragios, 2003). The third solution is to introduce a dropout prior that would bridge 

and detect signal dropout (Qian et al., 2006). Qian et al. have successfully applied a dropout 

prior to segment two-dimensional (2-D) echocardiographic images with signal dropout 

(Qian et al., 2006). Further extension to three-dimensional (3-D) images is still underway. 

We expect that the combination of the incompressibility constraint with a dropout prior will 

further improve the robustness of our algorithm.

Third, validation of “low-quality” data might be challenging. In this paper, we validated our 

approach against the manual segmentation from three observers. While this is sufficient for 

our data sets, it might not be adequate for low-quality images, from which manual 

segmentation is difficult. Further research on validation on low-quality data sets is a 

direction of future work.

8.3. Field of view

The proposed method assumes that the entire myocardium is captured in the field of view 

(FOV) for the entire cycle. However, it is possible that part of the epicardial (EPI) boundary 

will fall out of the field of view (FOV) in some phases of the cycle. Two potential solutions 

can be proposed to overcome this difficulty. First, the Philips IE33 system provides a “Live 

three-dimensional (3-D)” model, which offers real-time three-dimensional (3-D) rendering 

of a full volumetric view of the heart. This allows the operator to see, slice-by-slice, whether 

the entire epicardial (EPI) boundary falls into the field of view (FOV), prior image 

acquisition. If part of the boundary falls out of the field of view (FOV), one can adjust the 

position/angle of the probe to obtain the optimal acoustic window that captures the entire 

myocardium. Second, we can acquire volumetric images from different angles and fuse 

them to extend the field of view (FOV) (Rajpoot et al., 2009). We can then apply our 

algorithm to segment the fused volumetric data.

9. Conclusion

In this paper, we have presented a coupled deformable model for segmentation of the full 

myocardial volume from real-time 3-D (RT3D) echocardiographic images. The main 

contribution is the use of an incompressibility constraint for epicardial (EPI) border 

detection, which is more challenging than endocardial (ENDO) segmentation.

The incorporation of this incompressibility property into the segmentation process was 

formulated in a maximum a posteriori (MAP) framework, which consisted of a data 

adherence term and an incompressibility constraint. When defining the data adherence term, 

we took advantage of ultrasound physics and modeled the speckle statistics using the 

Nakagami distribution. In the incompressibility constraint term, we modeled the myocardial 
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volume (MV) with a Gaussian distribution by noticing that the myocardial volume (MV) 

varies less than 5% during a cardiac cycle.

To validate this algorithm, we employed three independent observers and qualitatively and 

quantitatively compared the results from automatic segmentation with those from manual 

segmentation. While the endocardial (ENDO) contours could be detected with sufficient 

accuracy, even without the incompressibility constraint, the epicardial (EPI) contour leaked 

into the background. When the incompressibility constraint was applied, however, the 

automatic segmentation produced results with comparable accuracy to a manual 

segmentation. To further explore the distribution of local segmentation errors, we computed 

the regional mean absolute distance (MAD)s from each sector of the myocardium defined by 

a 17-segment model.

In addition, we compared the segmentation results obtained with a wall thickness constraint 

and an incompressibility constraint. The segmentation results obtained with the wall 

thickness constraint were more accurate than those obtained with no constraint, because the 

epicardial (EPI) boundary did not leak into the background. Nevertheless, the epicardial 

(EPI) contours using a wall thickness constraint were less accurate in the regions with 

inhomogeneous wall thickness. When the incompressibility constraint was applied, 

however, the epicardial (EPI) contours were correctly segmented in the regions with 

inhomogeneous wall thickness.

Future work includes the integration of segmentation and motion analysis into a unified 

system. While segmentation results can help to determine the deformation of the endocardial 

(ENDO) and epicardial (EPI) surfaces, the deformation of the endocardial (ENDO) and 

epicardial (EPI) surfaces can in turn be used for segmentation.
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Appendix A. Pearson chi-squared goodness-of-fit test

Pearson chi-squared goodness-of-fit test is a commonly used statistical procedure that 

assesses whether an observed frequency distribution comes from a particular theoretical 

distribution.

Suppose we are given n independent observations x1,x2,…,xn to form a histogram of M bins, 

and we want to test whether these n observations follow a theoretical distribution p(x∣θ), 

where θ is the vector of distribution’s parameters. Let mi be the number of observed points 

falling into bin i. Then

is the probability of x falling into bin i. The statistics:
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is therefore a measure of deviation of samples from expectations. Pearson proved that the 

limiting distribution  has a chi-squared distribution with a degree of freedom of M-L-1, 

where L is the number of parameters estimated. Hence, the corresponding significance 

values of each fitting can be identified by finding the tail of χ2(M-L-1), i.e.

Appendix B. Thin-plate spline warping

The thin-plate spline (TPS) warping is a composition of an affine transform and a non-rigid 

warping. Consider K control points  located on the surface of the source shape, 

the thinplate spline (TPS) warping is defined as

(B.1)

where A ∈ ℝ3×3 and T ∈ ℝ3×1 represent the affine part of the thinplate spline (TPS) 

warping, and W ∈ ℝ3×k is the weight matrix of non-rigid warping. U(r) = −|r| is the radial 

basis of the three-dimensional (3-D) spline.

Constraints on the square integrability of the second derivatives of the spline-based 

interpolation functions give the following additional relationship

(B.2)

where 1 ∈ ℝK×1 and 0 ∈ ℝ3×4. Combining Eqs. B.1 and B.2, one could write

where Zij = U(∥Pi − Pj∥) and 0 is a zero matrix∈ ℝ4×4. The warping model in Eq. (B.1) can 

therefore be parameterized only in terms of Θ, via a linear mapping
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The linear relation makes efficient the computation of Jacobian of the warp . To 

regularize the thin-plate spline (TPS) warping, we use a stiff-to-flexible approach, as 

suggested in (Lim and Yang, 2005), consisting of replacing the matrix Z with Z + λI, where 

I is the identity matrix. We start with some large λ to force the warp to be rigid, and then 

repeat with smaller λ’s to capture local non-rigid deformations until we have a good 

estimate.

Appendix C. Derivation of Eqs. (8) and (9)

Let H(·) denote the Heaviside function, and δ(·) denote the Dirac function (Chan and Vese, 

2001), i.e.

First, we use the Heaviside function to rewrite the integral inside the blood pool (i.e. Ω1) as 

an integral over the entire image domain (i.e. )

(C.1)

Similarly, we have

(C.2)

(C.3)

For simple notation, we denote . By plugging 

 into Eqs. (C.1) and (C.2), and taking the gradient of E1 with respect 

to Θin using the chain rule, we have

(C.4)

Since the Dirac function δ(·) prunes out everything in the image domain Ω, except on the 

zero level set boundary, i.e. , we can reduce the volume 

integral in Eq. (C.4) to a surface integral as follows:

(C.5)

where δC12 is the interface between Ω1 and Ω2, i.e. the endocardial (ENDO) surface.
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Similarly, we have

(C.6)

where ∂C23 is the interface between Ω2 and Ω3, i.e. the epicardial (EPI) surface.

Second, we denote  (where C is a constant). 

By using the Heaviside function, we can rewrite it as

Similarly to E1, we take derivative of E2 with respect to Θin and Θout, and arrive at

(C.7)

(C.8)

Third, we combine Eqs. (C.5)-(C.7), (and) (C.8), and use gradient descent method, leading 

to the following evolution equations

where τ is the time step.

Appendix D. Parameter estimation for the mixture model

Suppose that data x1,…, xN comes from the mixture model

(D.1)

where M is the number of components, αk is the mixture proportion of component k, Pk(x; 

μk, ωk) is the kth component Nakagami distribution parameterized by μk and ωk. We want to 
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use the Expectation–Maximization (EM) algorithm to estimate the parameter vector Φ = (αk, 

μk,ωk ∣k = 1,…,M) of the mixture model.

We augment the data x1,…,xN by an unobservable matrix zik,i = 1,…,N;k = 1,…,M. The 

values of zik are indicators, defined as

(D.2)

The unobservable matrix zik tells us where the ith observation xi comes from. With the 

augmented data, the complete likelihood takes a quite simple form

(D.3)

The complete log-likelihood is

(D.4)

The Expectation–Maximization (EM) algorithm is applied to this problem by treating zik as 

missing data. It proceeds iteratively in two steps, the expectation step (E-step) and the 

maximization step (M-step). The expectation step (E-step) requires the calculation of the 

current conditional expectation of logLc(Φ) given x, using Φ(n) for Φ, which can be written 

as

(D.5)

As the complete log-likelihood, logLc(Φ), is linear in the unobservable data zik, the 

expectation step (E-step) simply requires the calculation of the current conditional 

expectation of zik, given the observed data x.

(D.6)

where  is the posterior probability of the ith observation coming from the kth mixture 

component in the iteration step n.

(D.7)

Thus, we have
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(D.8)

The maximization step (M-step) requires the global minimization of Q(Φ∣Φ(n)) with respect 

to Φ to give an updated estimate Φ(n+1). If the zik is observable, the complete data maximum 

likelihood estimation of αk would be simply given by

(D.9)

By replacing each zik with , we have

(D.10)

To find the optimal ωk, we take the derivative of Q(Φ∣Φ(n)) with respect to ωk

(D.11)

The optimal ωk at the (n + 1)th iteration is .

To find the optimal μk, we take the derivative of Q(Φ∣Φ(n)) with respect to μk

(D.12)

By using the approximation log , we obtain the optimal 

μk at the (n + 1)th iteration as follows:

(D.13)

where .
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Fig. 1. 
Left ventricular (LV) myocardium has more speckles than the blood pool.
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Fig. 2. 
(a) The low myocardium/background contrast makes epicardial (EPI) contour ambiguous, 

while the endocardial (ENDO) contour is still clear. (b) It is hard to separate left ventricular 

(LV) myocardium from right ventricular (RV) myocardium at their junctures.
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Fig. 3. 
The example histograms with fitted distributions. (a) Blood pool, (b) myocardium. Green: 

Rayleigh, blue: K, red: Rician, black: Nakagami. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
The entire image is partitioned by the endocardial (ENDO) (yellow solid line) and epicardial 

(EPI) (red dashed line) contours into left ventricular (LV) blood pool, left ventricular (LV) 

myocardium, and background (outside the dashed red line). While left ventricular (LV) 

blood pool and myocardium are homogeneous, the background is inhomogeneous because it 

includes right ventricular (RV) blood pool, right ventricular (RV) myocardium, and other 

tissues. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 5. 
Flowchart of our segmentation method.
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Fig. 6. 
The histograms of left ventricular (LV) blood pool, left ventricular (LV) myocardium, and 

background from one example cardiac image with estimated intensity distributions 

superimposed on them. (a) μ1 = 0.71 and ω1 = 1.24 × 105; (b) μ2 = 1.47 and ω2 = 1.32 × 106; 

(c) α1 = 0.42, α2 = 0.58, μ3,1 = 0.75, μ3,2 = 1.43, ω3,1 = 1.11 × 105, and ω3,2 = 1.29 × 106.
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Fig. 7. 
Distribution of control points. (a) Short-axis, (b) long-axis.
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Fig. 8. 
Comparison of results using unconstrained deformable model, the one with the wall 

thickness constraint, and the one with the incompressibility constraint. (a) without any 

constraint, (b) with the wall thickness constraint, (c) with the incompressibility constraint. 

Red line: automatic endocardial (ENDO) contour. Yellow line: ground truth endocardial 

(ENDO) contour. Green line: automatic epicardial (EPI) contour. Blue line: ground truth 

epicardial (EPI) contour. Yellow arrow: leakage of the epicardial (EPI) contour. White 

arrow: d1 > d2 in (c) while the wall thickness constraint forced d′1 to be close to d′2 in (b). 

(For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.)
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Fig. 9. 
Segmentation errors of the endocardial (ENDO) contours for synthetic images as functions 

of time over the cardiac cycle. (a) Mean absolute distance (MAD), (b) Hausdorff distance 

(HD), (c) Dice Similarity Coefficient (DSC).
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Fig. 10. 
Segmentation errors of the epicardial (EPI) contours for synthetic images as functions of 

time over the cardiac cycle. (a) Mean absolute distance (MAD), Hausdorff distance (HD), 

(c) Dice Similarity Coefficient (DSC).
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Fig. 11. 
The diagram of 17-segment model (Cerqueira et al., 2002).
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Fig. 12. 
Long axis view of segmented endocardial (ENDO) and epicardial (EPI) contours at frames 

2, 5, 8, and 11 during cardiac systole. (a) frame 2, (b) frame 5, (c) frame 8, (d) frame 11.

Zhu et al. Page 42

Med Image Anal. Author manuscript; available in PMC 2015 February 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 13. 
Three-dimensional (3-D) rendering of segmented endocardial (ENDO) and epicardial (EPI) 

surfaces at frames 2, 5, 8, and 11 during cardiac systole. Upper: endocardial (ENDO), 

Lower: epicardial (EPI).
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Fig. 14. 
Comparison of epicardial (EPI) segmentation with and without the incompressibility 

constraint. (a) with the incompressibility constraint; (b) without the incompressibility 

constraint. Arrow: myocardium juncture.
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Fig. 15. 
Segmentation errors of the endocardial (ENDO) contours for real images as functions of 

time over the cardiac cycle. (a) Mean absolute distance (MAD), (b) Hausdorff distance 

(HD), (c) Dice Similarity Coefficient (DSC).
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Fig. 16. 
Segmentation errors of the epicardial (EPI) contours for real images as functions of time 

over the cardiac cycle. (a) Mean absolute distance (MAD), (b) Hausdorff distance (HD), (c) 

Dice Similarity Coefficient (DSC).
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Fig. 17. 
Bland–Altman analysis showing the agreement between the myocardial volume (MV) 

measurements from manual segmentation and automatic segmentation. (a) without the 

incompressibility constraint: automatic–manual 1, (b) with the wall thickness constraint: 

automatic–manual 1, (c) with the wall thickness constraint: automatic–manual 2, (d) with 

the wall thickness constraint: automatic–manual 3, (e) with the incompressibility constraint: 

automatic–manual 1, (f) with the incompressibility constraint: automatic–manual 2, (g) with 

the incompressibility constraint: automatic–manual 3.
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Fig. 18. 
Sensitivity to the number of thin-plate spline (TPS) control points. (a,b) First sequence, (c,d) 

second sequence. (a,c) Fixed 135 control points on the epicardial (EPI) surface. (b,d) Fixed 

150 control points on the endocardial (ENDO) surface.
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Fig. 19. 
Sensitivity to the thin-plate spline (TPS) regularization parameter. (a) First sequence with γ 

= 2 for the endocardial (ENDO) contour and γ = 1.2 for the epicardial (EPI) contour, (b) 

Second sequence with γ = 2 for the endocardial (ENDO) contour and γ = 1.2 for the 

epicardial (EPI) contour, (c) First sequence with λinitial = 3, (d) Second sequence with λinitial 

= 3.
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Table 1

The significance values of model fits for blood pool and myocardium.

Rayleigh K Rice Nakagami

Blood pool 0.12 0.59 0.13 0.60

Myocardium 0.15 0.20 0.45 0.57
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Table 2

Comparison of regional endocardial (ENDO) mean absolute distance (MAD)s on synthetic data (in mm).

No constraint Wall thickness constraint Incompressibility constraint

BA A 1.08 ± 0.20 1.13 ± 0.21 1.00 ± 0.18

AL 1.10 ± 0.21 1.19 ± 0.24 1.06 ± 0.23

IL 1.09 ± 0.23 1.14 ± 0.21 0.99 ± 0.22

I 1.11 ± 0.24 1.18 ± 0.23 1.09 ± 0.23

IS 1.07 ± 0.19 1.12 ± 0.19 0.97 ± 0.17

AS 1.08 ± 0.19 1.13 ± 0.20 0.96 ± 0.18

MC A 1.09 ± 0.20 1.15 ± 0.24 0.98 ± 0.20

AL 1.12 ± 0.23 1.25 ± 0.27 1.07 ± 0.22

IL 1.12 ± 0.21 1.20 ± 0.26 1.03 ± 0.20

I 1.13 ± 0.22 1.26 ± 0.28 1.04 ± 0.22

IS 1.07 ± 0.20 1.19 ± 0.23 0.99 ± 0.19

AS 1.12 ± 0.21 1.15 ± 0.22 1.01 ± 0.20

AP A 1.11 ± 0.21 1.12 ± 0.21 1.02 ± 0.21

L 1.12 ± 0.22 1.13 ± 0.22 1.06 ± 0.23

I 1.10 ± 0.21 1.13 ± 0.23 1.05 ± 0.22

S 1.12 ± 0.19 1.14 ± 0.23 1.08 ± 0.24

BA: basal, MC: mid-cavity, AP: apical, A: anterior, AL: anterolateral, IL: inferolateral, I: inferior, IS: inferoseptal, AS: anteroseptal, L: lateral, S: 
septal.
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Table 3

Comparison of regional epicardial (EPI) mean absolute distance (MAD)s on synthetic data (in mm).

No constraint Wall thickness constraint Inconipressibility constraint

BA A 5.62 ± 2.34 1.79 ± 0.57 1.39 ± 0.41

AL 5.72 ± 2.39 1.92 ± 0.62 1.49 ± 0.46

IL 5.70 ± 2.37 1.77 ± 0.57 1.40 ± 0.42

I 5.69 ± 2.35 1.93 ± 0.62 1.47 ± 0.44

IS 5.70 ± 2.38 1.84 ± 0.61 1.45 ± 0.46

AS 5.65 ± 2.36 1.85 ± 0.60 1.42 ± 0.43

MC A 5.64 ± 2.38 1.80 ± 0.58 1.38 ± 0.40

AL 5.71 ± 2.40 3.15 ± 1.02 1.50 ± 0.48

IL 5.69 ± 2.37 1.90 ± 0.61 1.46 ± 0.45

I 5.68 ± 2.38 3.07 ± 1.01 1.49 ± 0.47

IS 5.69 ± 2.39 1.88 ± 0.60 1.40 ± 0.43

AS 5.66 ± 2.40 1.79 ± 0.56 1.39 ± 0.41

AP A 5.64 ± 2.37 1.85 ± 0.60 1.43 ± 0.43

L 5.69 ± 2.40 1.84 ± 0.57 1.45 ± 0.42

I 5.71 ± 2.40 1.85 ± 0.56 1.44 ± 0.45

S 5.68 ± 2.39 1.92 ± 0.60 1.43 ± 0.44

APX APX 5.74 ± 2.36 1.94 ± 0.52 1.46 ± 0.44

BA: basal, MC: mid-cavity, AP: apical, APX: apex A: anterior, AL: anterolateral, IL: inferolateral, I: inferior, IS: inferoseptal, AS: anteroseptal, L: 
lateral, S: septal.
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Table 4

Comparison of regional endocardial (ENDO) mean absolute distance (MAD)s on real data (in mm).

No constraint Wall thickness constraint IncompressibiLity constraint

BA A 1.48 ± 0.28 1.46 ± 0.31 1.41 ± 0.28

AL 1.52 ± 0.29 1.51 ± 0.29 1.43 ± 0.29

IL 1.50 ± 0.33 1.49 ± 0.27 1.46 ± 0.31

I 1.53 ± 0.31 1.51 ± 0.29 1.44 ± 0.31

IS 1.47 ± 0.29 1.49 ± 0.30 1.40 ± 0.28

AS 1.38 ± 0.26 1.47 ± 0.27 1.39 ± 0.28

MC A 1.34 ± 0.20 1.51 ± 0.29 1.31 ± 0.21

AL 1.45 ± 0.25 1.62 ± 0.31 1.45 ± 0.25

IL 1.41 ± 0.28 1.57 ± 0.26 1.34 ± 0.24

I 1.52 ± 0.30 1.64 ± 0.31 1.45 ± 0.29

IS 1.41 ± 0.30 1.52 ± 0.27 1.35 ± 0.30

AS 1.41 ± 0.29 1.51 ± 0.25 1.31 ± 0.26

AP A 1.65 ± 0.35 1.61 ± 0.34 1.58 ± 0.34

L 1.64 ± 0.31 1.58 ± 0.34 1.50 ± 0.32

I 1.62 ± 0.27 1.56 ± 0.28 1.52 ± 0.31

S 1.59 ± 0.33 1.58 ± 0.31 1.57 ± 0.31

BA: basal, MC: mid-cavity, AP: apical, A: anterior, AL: anterolateral, IL: inferolateral, I: inferior, IS: inferoseptal, AS: anteroseptal, L: lateral, S: 
septal.
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Table 5

Comparison of regional epicardial (EPI) mean absolute distance (MAD)s on real data (in mm).

No constraint Wall thickness constraint Inconipressibility constraint

BA A 6.13 ± 2.22 2.07 ± 0.58 1.79 ± 0.55

AL 6.01 ± 2.01 2.11 ± 0.60 1.81 ± 0.69

IL 5.91 ± 2.32 2.22 ± 0.67 1.80 ± 0.57

I 5.61 ± 2.31 2.08 ± 0.84 1.78 ± 0.55

IS 3.13 ± 1.25 2.04 ± 0.64 1.62 ± 0.43

AS 3.75 ± 1.07 2.10 ± 0.67 1.61 ± 0.41

MC A 5.32 ± 2.15 2.79 ± 1.05 1.78 ± 0.50

AL 5.12 ± 2.42 3.37 ± 1.12 1.81 ± 0.53

IL 5.01 ± 2.15 2.56 ± 0.97 1.75 ± 0.45

I 4.99 ± 1.12 3.23 ± 0.98 1.78 ± 0.49

IS 3.01 ± 0.99 2.61 ± 0.88 1.54 ± 0.41

AS 3.12 ± 1.01 2.57 ± 0.64 1.55 ± 0.43

AP A 6.12 ± 1.52 2.99 ± 1.32 1.85 ± 0.52

L 6.11 ± 1.64 2.92 ± 1.12 1.89 ± 0.61

I 6.18 ± 1.54 2.89 ± 1.24 1.81 ± 0.51

S 6.22 ± 1.54 2.71 ± 1.28 1.80 ± 0.50

APX APX 6.27 ± 1.55 2.92 ± 1.31 1.90 ± 0.54

BA: basal, MC: mid-cavity, AP: apical, APX: apex, A: anterior, AL: anterolateral, IL: inferolateral, I: inferior, IS: inferoseptal, AS: anteroseptal, L: 
lateral, S: septal.
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Table 6

Comparison of endocardial (ENDO) segmentation results on normal and post-infarcted hearts with 

incompressibility constraint.

Normal Post-infarcted

MAD (mm) 1.40 ± 0.28 1.45 ± 0.31

HD (mm) 2.52 ± 0.49 2.35 ± 0.47

DSC (%) 96.56 ± 1.60 95.98 ± 1.65
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Table 7

Comparison of endocardial (ENDO) segmentation results on normal and post-infarcted hearts with wall 

thickness constraint.

Normal Post-infarcted

MAD (mm) 1.49 ± 0.24 1.59 ± 0.32

HD (mm) 2.51 ± 0.52 2.73 ± 0.61

DSC (%) 95.29 ± 1.79 93.69 ± 2.00
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Table 8

Comparison of epicardial (EPI) segmentation results on normal and post-infarcted hearts with 

incompressibility constraint.

Normal Post-infarcted

MAD (mm) 1.77 ± 0.52 1.71 ± 0.40

HD (mm) 2.97 ± 0.78 2.85 ± 0.82

DSC (%) 93.78 ± 1.26 94.02 ± 1.37
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Table 9

Comparison of epicardial (EPI) segmentation results on normal and post-infarcted hearts with wall thickness 

constraint.

Normal Post-infarcted

MAD (mm) 2.25 ± 0.69 2.86 ± 0.79

HD (mm) 3.41 ± 0.92 4.63 ± 1.22

DSC (%) 92.41 ± 2.31 90.17 ± 2.62
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