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Abstract

Purpose: Morphological descriptors are practical and essential biomarkers for diagnosis and

treatment selection for intracranial aneurysm management according to the current guidelines

in use. Nevertheless, relatively little work has been dedicated to improve the three-dimensional

quantification of aneurysmal morphology, automate the analysis, and hence reduce the inherent

intra- and inter-observer variability of manual analysis. In this paper we propose a methodology

for the automated isolation and morphological quantification of saccular intracranial aneurysms

based on a 3D representation of the vascular anatomy.

Method: This methodology is based on the analysis of the vasculature skeleton’s

topology and the subsequent application of concepts from deformable cylinders. These

are expanded inside the parent vessel to identify different regions and discriminate

the aneurysm sac from the parent vessel wall. The method renders as output the surface

representation of the isolated aneurysm sac, which can then be quantified automatically. The

proposed method provides the means for identifying the aneurysm neck in a deterministic way.

The results obtained by the method were assessed in two ways: they were compared to manual

measurements obtained by three independent clinicians as normally done during diagnosis and to

automated measurements from manually isolated aneurysms by three independent operators, non-

clinicians, experts in vascular image analysis. All the measurements were obtained using in-house

tools. The results were qualitatively and quantitatively compared for a set of saccular intracranial

aneurysms (n=26).

Results: Measurements performed on a synthetic phantom showed that the automated mea-

surements obtained from manually isolated aneurysms where the most accurate. The differences

between the measurements obtained by the clinicians and the manually isolated sacs were sta-

tistically significant (neck width: p<0.001, sac height: p=0.002). When comparing clinicians’

measurements to automatically isolated sacs, only the differences for neck width were significant

(neck width: p<0.001, sac height: p=0.95). However, the correlation and agreement between

the measurements obtained from manually and automatically isolated aneurysms for neck width:

p=0.43 and sac height: p=0.95 where found..

Conclusion: The proposed method allows the automated isolation of intracranial aneurysms,

eliminating the inter-observer variability. In average, the computational cost of the automated

method (2 min. 36 sec.) was similar to the time required by a manual operator (measurement by
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clinicians: 2 min. 51 sec., manual isolation: 2 min. 21 sec.) but eliminating human interaction. The

automated measurements are irrespective of the viewing angle, eliminating any bias or difference

between observer criteria. Finally, the qualitative assessment of the results showed acceptable

agreement between manually and automatically isolated aneurysms.

Keywords: intracranial aneurysm quantification, automated isolation, deformable models, skeleton analysis,30

validation31
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I. INTRODUCTION32

Intracranial aneurysms (IA) are abnormal dilatations of the arteries at the Circle of33

Willis whose rupture can lead to catastrophic complications such as hemorrhagic stroke34

[1, 2]. The delineation of the aneurysm neck, a hypothetical curve on the vascular wall which35

separates the balloon-like structure of the aneurysm from its parent artery (see Figure 3(b)),36

is important not only for its clinical relevance with respect to the genesis and evolution of the37

disease [3] but also for its treatment planning [4, 5]. In fact, neck delineation is a challenging38

topic for medical image analysis and yet an open problem. Nowadays, simple morphological39

measurements of IA such as neck width, sac height, volume and aspect ratio (AR, defined as40

the ratio between sac height and neck width) are widely used in the clinical evaluation of IA.41

These measurements are considered for: a) treatment planning: coil and stent implantation42

are regularly performed as part of standard clinical practice; b) biomarkers for the risk of43

rupture: it is yet not standard, but there is growing evidence in literature supporting this44

hypothesis [6–8]. These measurements are manually obtained by radiologists and clinicians45

with the subsequent subjectivity and variability upon different observers. The detection46

and quantification of intracranial aneurysms by the “naked eye” is often unprecise and47

observer/view point dependant [9]. The automatization of this process should make it more48

precise by removing observer dependency.49

To the date, relatively little work has been devoted to automatize the detection, isolation50

and quantification process of IA. Arimura et al. [10] developed, and later improved [11], a51

method to aid clinicians detecting the location of potential aneurysms in Magnetic Resonance52

Angiography (MRA) images. This elegant technique is based on image processing filters for53

extracting the skeleton representation of the vasculature to detect aneurysm-like features.54

Fleming et al. [12] developed an automated method for micro aneurysm detection applied55

to retinopathy. The authors showed how contrast normalization could improve the ability56

to distinguish between micro aneurysms and other dots occurring on the retina. Uchiyama57

et al. [13] developed a methodology for automated realtime detection of aneurysms in MRA58

maximum intensity projection (MIP) images. In the work of Wong and Chung [4], the59

authors developed a method for the automated detection of vessel abnormalities and the60

approximation of post-treatment vessel diameters. Ford et al. [14] proposed a methodol-61

ogy for aneurysm removal, which reconstructed the original vessel lumen (i.e. before the62
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aneurysm exists). This method was based on tools previously developed by Piccinelli et al.63

[15] where Voronoi diagrams were used to identify the different regions of the vasculature64

and splines were used to reconstruct the missing part of the original vessel lumen. Lauric65

et al. [16] presented a method for aneurysm isolation based on geometrical characteristics66

and topology of the vasculature. Still, none of these methodologies has been compared or67

assessed against manual measurements used as ground truth.68

Automated aneurysm isolation and morphological quantification have not been proposed69

and properly assessed in the literature. To isolate and automatically quantify saccular70

intracranial aneurysms, the detection of the aneurysm neck is mandatory. After identifying71

the neck and isolating the aneurysm sac, it is possible to automatically determine the most72

relevant morphological characteristics of the aneurysm.73

In this work, a methodology for the automated isolation and quantification of saccular74

intracranial aneurysms is proposed. From the surface representation of the vascular wall pro-75

vided by a vascular segmentation, and based on the analysis of the vessel geometry, relevant76

morphological measurements are extracted. With this in mind, we propose a methodology77

based on deformable models, topological and geometrical analysis for automatically isolating78

the aneurysm sac and computing morphological measurements.79

II. METHODS80

We describe a methodology for the automated isolation and morphological quantification81

of saccular intracranial aneurysms. The analysis is focused on the vascular region of interest82

(ROI) nearby the aneurysm, which is provided as a surface. Selection of the vascular ROI83

is not considered as part of this method. This analysis is performed following three steps:84

i) skeleton processing, ii) aneurysm neck identification and iii) aneurysm quantification (see85

Figure 2). The method is generic and could be applied to images acquired from any imaging86

modality. In the current work, it was tested on 3D Rotational Angiography (3DRA) images,87

which is considered as the gold standard for imaging the intracranial vascular anatomy [17].88

We assure that saccular aneurysms present only one ostium located at the interface with89

the parent vessel. The aneurysm ostium corresponds with its neck at the vascular wall. The90

outputs of the automated quantification are quantitative indicators of aneurysm size: neck91

width, sac height, sac area and sac volume. Fusiform aneurysms were excluded from this92
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study, due to the difficulties in defining their neck.93

A. Vascular geometry extraction94

Given the original image, a geometrical representation of the vascular wall S at a ROI95

nearby the aneurysm was obtained. For this, a medical image segmentation method based on96

Geodesic Active Regions (GAR) [18] was used. GAR is based on the geometric deformable97

model within the level set framework. The internal force of the deformable model is defined98

as the local curvature of the evolving surface, while the external one combines region-based99

descriptors with gradient ones to drive the evolution of the model towards the vascular100

boundaries. An extensive validation of this method has been presented in [19].101

For the extraction of the ROI embedding the aneurysm by the user, different alternatives102

exist. The simplest one involves the definition of a cropping box that contains the aneurysm103

and then trimming the vessels that are intersected by the box. A second option is the use104

of a vessel cutting tool, which cuts the vessels through a plane perpendicular to the vessel105

centerline at a selected point in it.106

B. Skeleton processing107

In order to analyze the topology and shape of the vascular ROI, its skeleton L was108

extracted and analyzed from the triangulated surface representing the vascular wall S. The109

skeleton L is defined as the set of connected 3D curves centered in the vessel axis.110

Skeleton computation. For the extraction of L from S, a flux driven homotopic thinning111

algorithm was used [20]. An implementation of this method, in the context of the Insight112

Toolkit (ITK), was provided by Mellado et al. [5]. From the skeleton computation, a tree113

like structure was obtained where each branch is a 3D curve li ⊂ L. For each point x ∈ L,114

an estimation of the vessel diameter was computed as the distance to the closest point on115

S.116

Skeleton labeling. The terminal branches of L were identified. A branch li is said to117

be terminal if it is connected to the rest of the skeleton through only one end. The set of118

terminal branches is denoted as T (L). Then,119

T (L) ≡ {li ⊂ L : li ∩ F 6= ∅},
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where F is the set of end points in L. We refer to the “connected end” of li ⊂ T (L) as xc120

and to the “free end” of li ⊂ T (L) as xf ∈ F .121

After identifying terminal branches, the surface S was used to select branch li ⊂ T (L)122

pointing into the aneurysm (recalled as aneurysm branch). We denote as C(S) the set of123

vascular wall boundaries. The aneurysm was located approximately at the center of the124

vascular ROI, which was sufficiently large to include a portion of the aneurysm’s parent125

vessels. Each boundary φ ⊂ C(S) is a closed curve in R3, which represents a vascular ROI126

opening (see Figure 3(a)). Each φ ⊂ C(S) was then associated to one li ⊂ T (L). For this,127

the skeleton definition, which indicates that each skeleton point x is locally equidistant to the128

surface [21], was considered. This implies that it exists a skeleton terminal at approximately129

half the diameter of φ for any opening φ ⊂ C(S). Then, ∀ li ⊂ T (L) ⇒130

a) it exists a point in li whose distance to any point in φ is less than the vessel diameter131

at xf , for any φ ⊂ C(S), or132

b) all the points in li are at one diameter or more from φ, for any φ ⊂ C(S).133

Considering b), we define the set of all terminals li ⊂ T (L) that cannot be paired with134

one open boundary of the geometry as A(L). Skeleton branches la ⊂ A(L) were considered135

potential aneurysm branches (Figure 3(a)). The aneurysm neck identification was then136

performed based on one la ⊂ A(L). For vascular regions with more than one aneurysm, the137

identification process can be repeated for each la ⊂ A(L).138

C. Aneurysm neck identification139

Centerlines computation. To initialize the deformable model used to isolate the140

aneurysm sac, all the centerlines that intersect la ⊂ A(L) were identified. We define xc(l
a)141

as the point connecting la to the rest of the skeleton. By centerline, we mean a line over L142

connecting two branches li, lj ⊂ L at distance r over L from xc(l
a). We denote this centerline143

as ci,j = c(li, lj). Then, we define:144

R(L, la, r) ≡ {li ⊂ L : li is at distance ≤ r over L from xc(l
a)},

where r is the search distance from xc(l
a).145
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To completely isolate the aneurysm from the surrounding vasculature, the centerline has146

to start and finish at a healthy region of the vasculature. Therefore, it was required to147

identify healthy regions of the vasculature immediately upstream and downstream from the148

aneurysm to estimate r. In the case of saccular aneurysms, which are most frequently149

found in the cerebral vasculature, a criteria of 5 diameters over L starting from xc(l
a) of the150

aneurysm’s parent vessel has sufficed to reach the healthy region of the vessel for the cases151

included in this study. For bifurcation aneurysms, many different centerlines could exist152

(see Figure 3(a)). We then compute the path over L for each pair li, lj ∈ R(L, la, r).153

Simplex deformable model. To isolate the aneurysm sac from the rest of the vasculature,154

2-simplex deformable models were used. A 2-simplex is the dual representation of a triangu-155

lar mesh (Figure 1(a)). Each deformable model was initialized as a curved cylinder with its156

axis aligned to the pre-computed centerlines ci,j and with its longitudinal center at xc ∈ la.157

This cylinder was considered as a set of rings V , each one having a center of mass cV . For158

each ring V a set of points arranged in a circular fashion perpendicular to the centerline,159

was initialized. A mesh M representing the 2-simplex deformable model was created using160

a regular grid of points xi ∈ R3, which spans a cylindrical surface. This mesh connects161

the rings (5 diameters in each direction from xc(l
a) for a total length of 10 diameters) and162

sweeps around the centerline (2π). Different mesh resolutions can be selected for the simplex163

mesh. For this study, a mesh of 20 nodes on the longitudinal direction and 20 nodes on the164

circumferential direction were considered as this mesh resolution was enough to capture the165

relevant details on the vessel geometry. See Figure 1(b) for a detail on the cylindrical mesh166

construction.

simplex
mesh triangular

mesh

(a)

simplex
cell

regular
simplex

mesh

cylindrical simplex
mesh

centerline

V

(b)

FIG. 1: (a)A 2-simplex is dual to a triangulated surface. (b) Detail showing the construction of

the cylindrical mesh.
167

After initialization, each model was deformed under the effect of internal and external
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forces [22]. For describing the mesh movement, the following Partial Differential Equation

(PDE) was considered:

∂2xi(t)

∂t2
+ γ

∂xi(t)

∂t
− fint(xi(t)) = fext(xi(t)). (1)

Then, it was discretized as follows using finite differences:

xt+1
i = xt

i + (1− γ)(xt
i − xt−1

i ) + fint(x
t
i) + fext(x

t
i), (2)

where fint(x
t
i) is the internal force acting on xt

i, fext(x
t
i) is the corresponding external force at

the same point and γ represents damping [23]. The index t represents the iteration number,

which was omitted in the remainder of the text for simplicity. Internal forces were accounted

for as:

fint(xi) = fs(xi) + fexp(xi), (3)

where fs is the smoothing force, ensuring that the points are homogeneously distributed over168

the mesh and acts only on the mesh tangential direction; and fexp is the expanding force169

ensuring that the vessel wall is reached and acts on the mesh normal direction. The external170

force fext(xi) is only active for the points that reached the vessel wall S. These forces are171

described below.172

• Smoothing forces (fs): The smoothing force [24]

fs(xi) = (x∗i − xi), (4)

is tangent to the mesh, where x∗i corresponds to the position of xi ensuring a smooth173

distribution of the mesh points. Further details on the smoothing forces can be found174

in the work of Montagnat and Delingette [22].175

• Expanding force (fexp): To expand the tubular mesh to reach the vessel wall, a spring

model acting along the radial direction of each ring V of the mesh was used. The

vessel radius at that position was used as the initial radius of V . We denote the spring

rest radius as r0, which was set to 1.5 times the maximum radius of the vessel covered

by the mesh. The magnitude of the expanding force, with a direction normal to the

mesh (ni), can be expressed using the Hooke’s law:

‖fexp(xi)‖ = k(r0 − ‖xi − cV ‖), (5)
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where k is the stiffness of the spring and was defined as follows:

k = E/r0, (6)

being E the Young’s elasticity modulus of the spring (E ∼ 0.5N/m2 was considered).176

All the points on the same ring V are maintained at similar distance from the corre-

sponding center of mass cV ensuring that the deforming mesh is kept approximately

cylindrical. Hence, the mean radius of section rV is given by

rV =
1

nV

nV∑
k=1

‖xk − cV ‖, (7)

where nV is the number of points in each ring V and is constant for all rings within

the mesh. Then, ηi enforces this constraint as follows:

ηi =

 ‖xk − cV ‖ ≤ p rV , 1;

‖xk − cV ‖ > p rV , 0.

The value p is the threshold limit for ηi and is a parameter of the model. To determine177

the value of p, a series of 20 cross sections of arteries for 5 patients (2 internal carotid178

artery and 2 middle cerebral artery measurements for each patient) were considered.179

After measuring their maximum and minimum diameters, a 30% difference on aver-180

age was found between both measurements (min. = 0,2%, max. = 62%, median =181

29%). Then, p = 1.3 was considered. All parameters have been fixed previous to the182

validation. No feed-back was used from it to improve the results.183

Therefore, fexp can be written as:

fexp(xi) = niηik(r0 − ‖xi − cV ‖). (8)

• External forces (fext): The mesh expansion was stopped when the deformable model

reached the vessel wall. For this, the point to surface distance was computed from

each node xi to the closest location on S. This force was modeled as being equal

in magnitude and in the opposite direction to fexp(xi) for points xi over S. Points

crossing S were projected back to it, ensuring that the simplex mesh remains inside

the vessel at all times. Then, all the points xi ∈M are assigned the label M(xi) as:

M(xi) =

 0, if xi reached S;

1, otherwise.
(9)
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The initialization and deformation process was repeated for the different centerlines.184

For each mesh, when internal and external forces were balanced, the mesh movement was185

negligible, impeding new points from reaching the surface. Then, the deformation process186

was stopped when, in n = 20 consecutive iterations, no new points reached the vessel surface.187

D. Aneurysm quantification188

Aneurysm sac detachment: For each point x ∈ S, the closest point xi ∈M was identified189

and the label M(xi) was mapped on x. Regions in S where M(x) = 1 were candidates to190

correspond to the aneurysm sac. The single continuous region presenting M(x) = 1 and191

closest to the point xc ∈ la was identified as the aneurysm sac. For the aneurysm neck,192

the boundary between the sac and the rest of the vascular wall was considered, which is a193

non-planar surface. Its average normal, denoted nn, was also computed. This normal and194

the neck centroid xc define the ostium mean plane.195

Morphological quantification: For the automated morphological quantification of the196

aneurysm from the surface representation of the sac, we define the neck width, the sac197

height, the area and the volume as follows (see Figure 3(b)):198

• Neck width wneck: was defined as the maximum distance between two points on the199

aneurysm neck.200

• Sac height hsac: the point x on the sac with the largest projection to the plane defined201

by nn and xc was found. Then, hsac was computed as the distance between such point202

and xc (see Figure 3(b)).203

• Sac area asac: area of the sac, which can be accurately computed if the surface repre-204

sentation is available.205

• Sac volume vsac: volume of the sac, which can be accurately computed if the surface206

representation is available.207

These measurements are typically used by clinicians to select the treatment to follow and,208

additionally, they have been linked to aneurysm risk of rupture [3, 7]. The values of asac209

and vsac cannot be manually computed from the image in an accurate manner. Thus, these210
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Aneurysm sac
detachment

Vascular geometry extraction
(GAR + IIS)

Skeleton
computation

S

L

Skeleton
labeling

Skeleton processing

Centerlines
computation

c
i,j

Simplex deformable
model

Aneurysm neck identification

M(x)

Aneurysm quantification

Geometrical
descriptors

Morphological
quantification

T(L), A(L)

M(x)

labeled
skeleton

centerlines

deformable
model

labeled
vessels

isolated
aneurysm
sac

segmentation

initialization

quantified
aneurysm

FIG. 2: Automated aneurysm morphological analysis and quantification steps. The proposed

method goes from the vascular anatomy provided as a surface to the morphological analysis

and quantification. The steps involved are skeleton processing, aneurysm neck identification and

aneurysm quantification.

two measurements were only computed for the surface representations extracted from the211

segmentation.212
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L

T(L)

A(L)

skeleton
extraction

terminal
branches

identification

aneurysm
branch

identification

centerlines
computation

skeleton computation skeleton labeling
centerlines
computation

skeleton processing
aneurysm neck
identification

φ

(a)

hsac

w
neck

(b)

FIG. 3: Detail of the skeleton labeling and centerline computation, which is part of the skeleton

processing and aneurysm neck identification steps. (a) During the analysis of the skeleton L, the

terminal branches T (L) (connected on one end to the rest of L) are identified. By analyzing the

proximity of these branches to the geometry boundaries (φ ⊂ C(S)), possible aneurysm branches

are detected. In the last step are presented the centerlines ci,j computed from L. (b) Measurements

obtained from the automatic aneurysm quantification: neck width wneck (magenta) and sac height

hsac (in yellow).

III. EXPERIMENTS AND RESULTS213

The proposed methodology allows automatically isolating the aneurysm sac from a seg-214

mentation of the vascular ROI and quantifying their morphology by extracting anatomical215

measurements. This method’s performance and accuracy was assessed by comparing its216

results with their equivalent manually extracted measurements.217

A set of twenty-six (n=26) saccular intracranial aneurysm geometries collected during218

the European project @neurIST [25] have been used for the assessment of the proposed219

methodology. These have been obtained from diagnostic 3D rotational angiographic (3DRA)220

images, which have been acquired using either an IntegrisTM Allura System (Philips Health-221

care, Best, The Netherlands) or an AXIOM Artis (Siemens Medical Solutions, Erlangen,222

Germany). Voxel pitch in the reconstructed 3D images ranged from 0.208 mm to 0.378223

mm and the image sizes were 2563 or 5123 voxels with 16 bits of depth per voxel. The224

aneurysm sac morphology was measured and compared for all the cases using the three225
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methods described below:226

Manual Measurements by Clinicians (MMC): three independent clinical observers (neu-227

roradiologists, with more than 10 years of experience) have measured the two variables di-228

rectly on the image as they normally do in their daily clinical practice. The images were229

visualized using volume rendering and the measurements were obtained using a three di-230

mensional measuring tool. The software AngioLab [26] was used for this purpose.231

Automated measurements after Manual Sac Isolation (MSI): First, to generate the sur-232

face representation of the vascular wall, the method GAR described in Section II A was233

used. The neck was manually delineated for each aneurysm and the sac was isolated from234

the vascular wall surface representation by three independent observers experts in vascular235

image analysis, using the software AngioLab [26]. For this task, a series of points delimiting236

the neck of the aneurysm were selected over the generated surface. The criteria followed by237

the observers to isolate each aneurysm were238

• the aneurysm separates from the parent vessel at its neck and239

• the aneurysm has only one opening.240

Measurements obtained using this method were considered the gold standard as they were241

computed in 3D (i.e., independently from the view point) and were isolated by experts in242

vascular image analysis. The average between the three observations was considered as the243

true value for each measurement.244

Automated measurements after Automated Sac Isolation (ASI): Once the vascular ge-245

ometry was extracted with GAR method (Section II A) and a surface representation of the246

vascular wall was obtained, the methodology proposed in this paper was used to isolate and247

quantify the aneurysm sac.248

Additionally, asac and vsac were automatically computed for MSI and ASI. All sacs were249

quantified following the same procedure described in Section II D.250

A. Accuracy experiments on synthetic phantom251

To assess which of the three methods, namely MMC, MSI or ASI, is the most accurate,252

one experiment was performed where a digital phantom of known shape and size was inserted253

in a 3DRA image. This digital phantom, which has a resolution of 0.02mm (ten times more254
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(a) (b) (c) (d) (e)

FIG. 4: Synthetic phantom embedded into a real 3DRA image. Intensities inside the phantom

and its transition to the background were matched to those observed between the vessel and the

background. (a) Original Image, (b) inserted phantom, (c) resulting image, (d) segmented mesh

and (e) comparison between the original phantom and the segmented mesh.

than the image), was embedded it the image by registering in over the Internal Carotid255

Artery (Figure 4). The intensities inside the phantom are the same as the intensities inside256

the vessel and the transition between the interior of the phantom and the background was257

set to be the same (in intensity and length) as the transition between the vessel and the258

background. The resulting image was segmented using GAR. The aneurysm was quantified259

using the three methods (MMC on the image, MSI and ASI on the segmentation output).260

The ground truth measurements (wneck and hsac) were performed on the manually isolated261

dome from the original phantom high resolution surface and averaged through 3 manual262

isolations.263

From these results presented in Table I, we observe that MSI method presents the lower264

error with respect to the ground truth (MMC = 6.06%, MSI = 4.07% and ASI = 7.67% for265

wneck and MMC = 5.63%, MSI = 3.53% and ASI = 5.49% for hsac). Also, the inter-observer266

variability appears to be larger for MMC method (above 4.5% for MMC, compared to 2%267

for MSI and 0% for ASI).268

B. Results on real data269

Figure 5 illustrates the results obtained with the three methods for ten aneurysms. Mea-270

surements corresponding to the observer with the largest difference with respect to the ASI,271

are shown.272

Table II summarizes the measurements obtained by the three methods on the population273
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TABLE I: Assessment of the three quantification methods. Measurements are presented in mm in

the first row (inter observer variability in parenthesis) and the error with respect to ground truth

measurements as percentage (eGT ) is presented in the second row.

Ground truth MMC MSI ASI

wneck 3.52 (1.28%) 3.31 (5.1%) 3.66 (2.02%) 3.79 (0%)

eGT 0% 6.06% 4.07% 7.67%

hsac 3.58 (0.97%) 3.68 (4.5%) 3.71 (1.70%) 3.78 (0%)

eGT 0% 5.63% 3.53% 5.49%

TABLE II: Mean and standard deviation for the measurements obtained from the three methods

indicated as µ (σ)

wneck (mm) hsac (mm) asac (mm2) vsac (cm3)

MMC 3.36 (1.06) 5.53 (2.07) - -

MSI 4.31 (1.16) 5.81 (2.48) 101.8 (74.1) 0.111 (0.109)

ASI 4.29 (1.42) 5.51 (2.56) 95.79 (71.1) 0.104(0.102)

considered. For MMC and MSI, the measurements by the three observers were averaged and274

the mean (µ) and standard deviation (σ) were computed. For ASI, a unique measurement275

exists for each dimension of the aneurysm. We observe that mean values and standard276

deviations are more similar between MSI and ASI than with respect to MMC.277

1. Repeatability278

In Table III we report the standard deviation (σ) between observers for MMC and MSI279

methods. This coefficient indicates the maximum difference that is likely to occur between280

two measurements by the same method. We observe that the inter-observer variability of281

MMC is larger than that of MSI in all the measurements. For ASI, there is no inter-observer282

variability.283
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TABLE III: Inter-observer repeatability. Standard deviation

wneck (mm) hsac (mm) asac (mm2) vsac (cm3)

MMC 0.47 0.75 - -

MSI 0.17 0.12 2.44 0.00357

TABLE IV: Results for paired two sample t-test for equal means (two tailed p-vales) between the

different methods. The p-values for each variable are reported.

Two sample paired t-test for means (two tailed p-values)

wneck/hsac

MMC vs. MSI MMC vs. ASI MSI vs. ASI

p <0.001/p =0.002 p <0.001/p =0.95 p =0.43/p =0.95

2. Agreement284

Assuming that the aneurysm measurements present a normal distribution, a paired two285

sample t-test, with the null hypothesis that differences between the two measurement meth-286

ods is zero, was performed pair-wise between the observations for the three methods. Each287

method was compared to the other two for each variable (results are summarized in Table288

IV). It was found statistical significance to believe that the difference between MMC and289

MSI is not zero for both measurements, thus rejecting the null hypothesis. For the com-290

parison between MMC and ASI, the measurements corresponding to neck width, the null291

hypothesis was also rejected. On the contrary, the differences between the sac measurements292

were not significant (p=0.95). The comparison between MSI and ASI, revealed no evidence293

for them to be different, thus requiring further analysis. From the results presented in section294

III A, we state that MSI method is more arateTo the best of our knowledge, this happened295

because the MMC method is fully manual and performed on the image, thus depending on296

the observer’s point of view and visual criteria for performing each measurement. On the297

other hand, MSI and ASI are based on the quantification of a surface (either manually or298

automatically isolated), making the criteria identical in all cases.299

Bland-Altman analysis [27] was used to assess the agreement between MSI and ASI300

further. As the surface representation of the aneurysm sac was available, other two mor-301

phological measurements, namely aneurysm sac area (asac) and volume (vsac) were included.302
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TABLE V: Agreement between MSI and ASI

Bias (SE) and upper and lower LoA between MSI and ASI

wneck hsac asac (mm2) vsac (cm3)

bias (SE) -0.11 (0.12) -0.16 (0.09) -6.05 (1.32) -0.0068 (0.002)

upper/lower LoA 1.26/-1.48 0.83/-1.16 8.17/-20.27 0.022/-0.036

These measurements could not be accurately computed directly on the image (e.g., using303

MMC). Results are summarized in Table V. We presented the bias and the standard er-304

ror (SE) of the sample mean. Also, the upper and lower 95% Limits of Agreement (LoA305

= µ+ 2σ/µ−2σ) are shown. Figure 6 presents the Bland-Altman plots comparing MSI and306

ASI and presenting all the individual measurements together. The results for wneck (Figure307

6(a)), hsac (Figure 6(b)), asac (Figure 6(c)) and vsac (Figure 6(d)), are presented. A black308

solid line represents the bias and two dashed gray lines show the upper and lower LoA. We309

observe acceptable agreement between both methods, and the LoA were between 1 and 1.5310

mm.311

3. Efficiency312

All the experiments were performed in an Intel Centrino 2 (2Gb of memory) with a NVidia313

GeForce 9300GS (512 Mb of memory) graphics card used for the acceleration of the volume314

rendering visualization. For the MMC, the medical images were automatically loaded by315

the software and presented to the clinician to perform the measurements. On average, 2min316

51sec were required to perform the three measurements for each case. For MSI and ASI,317

the segmentation and the skeleton of the vascular anatomy were pre-computed. The GAR318

execution time depends on the size of the image and the size of the evolving surface, i.e., the319

amount of vasculature being segmented. On average, for a 2563 voxels ROI, the execution320

time was 17±4 min (mean ± standard deviation) on a standard personal computer with321

an Intel quad-core 2.4GHz processor and 4GB of memory. The execution time is approx-322

imately linear on the size of the image, leading to execution times of less than a minute323

after the selection of a ROI around the aneurysm. The extraction of the skeleton took 20324

seconds on average. These algorithms are not optimized and a more efficient implementation325

would certainly provide better execution times. The MSI sac extraction was done directly326
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on the segmentation output, which was manually loaded by the user. Considering the pre-327

processing (segmentation and skeletonization), manual isolation of one case took on average328

2min 21 sec. The time needed for the automated isolation, including segmentation and skele-329

tonization, was 2min 38sec on average. Finally, ASI method is suitable for parallelization,330

which would considerably reduce its computational time consumption, no parallelization or331

optimization were introduced in the implementation described in this work.332

IV. DISCUSSION333

In this paper, we presented a method for the automated isolation of intracranial aneurysm334

sac and its quantification. This method is based on the analysis of the vascular geometry335

skeleton, for the classification of vascular branches; and on deformable models, for the336

isolation of the aneurysm sac. Typical morphological measurements, such as aneurysm neck337

width, sac height, surface and volume, are automatically computed for the automatically338

isolated aneurysm.339

Measurements obtained with the proposed methodology have been compared to measure-340

ments obtained by two manual methods. The first, MMC, consisted in the direct measure-341

ment on the images by experienced clinicians. The second, MSI, consisted in the manual342

neck delineation and isolation of the sac from the vascular surface representation by three343

experts in vascular image quantification. Automatically computed morphological measure-344

ments were obtained from the resulting sacs. To assess which of the three methods (i.e.,345

MMC, MSI and ASI) is more accurate against the ground truth, a synthetic phantom pre-346

senting the features of a real image was generated. From this experiment, we observe that347

MSI method is performing the best in terms of accuracy. To the best of our knowledge,348

although this method does not completely remove inter-observer variability, it provides the349

most accurate measurement.350

In accordance to this, measurements manually performed on the image by clinicians were351

found to be different from those performed automatically. We observed that the measure-352

ments performed on the images by the clinicians were different (p <0.005) to the equivalent353

measurements on the surface. We attribute these differences to the fact that the image354

might bias one or more observers to use a particular viewing angle that is sub-optimal for355

that measurement. From our interpretation of the results, although the clinicians’ measure-356
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ments were performed in three dimensions, in many situations the measurement is affected357

by the viewing angle (due to the shape of the aneurysm, its location or the presence of other358

vessels/image artifacts near the selected location, etc.) leading to inaccurate measurements.359

Furthermore, the MMC method, which is performed directly on the volume rendering, de-360

pends on the selection of the cut-off threshold used for rendering the image. In the authors361

opinion, the limitation of measuring directly on the images (MMC) that is eliminated when362

combining a robust segmentation and a manual or automatic (respectively for MSI and ASI)363

neck delineation tool and explains the larger variability of MMC. Only when comparing the364

sac height measured by MMC and ASI, no statistical significance was observed to conclude365

that these were different. Owing to the high statistical evidence indicating that clinicians’366

measurements and the automated ones are different, only MSI and ASI measurements were367

compared to each other.368

We also noticed that the inter-observer variability for the MMC measurements was larger369

than that for MSI. For the MSI method a low variability was observed (σ=0.17mm and370

σ=0.12mm for neck width and sac height, respectively). We attribute this to the fact that371

MSI is more robust due to the simple criteria required for the isolation for the aneurysm.372

This, and the fact that the measurements are computed automatically on the surface, not373

requiring the selection of one particular view angle, makes these measurements more robust.374

For the ASI method, repeatability is guaranteed as it is automated.375

Based on the agreement comparison results, we interpret that the proposed method is a376

good alternative for automated aneurysm sac isolation and quantification. For the neck377

width and the sac height, the bias (SE) of ASI with respect to MSI was found to be378

−0.11mm (0.12mm) and −0.16mm (0.09mm), which is approximately the image resolu-379

tion. The slightly larger errors observed are on the wneck because it is directly related to the380

neck definition than the hsac, which is related to it but indirectly. Furthermore, near the381

neck the aneurysm shape is more irregular. These irregularities cause that small changes in382

the location of the neck (up or down) might have a larger impact on the wneck than on the383

hsac. Also, acceptable agreement was observed between both methods for asac and vsac as384

can be clearly observed in the corresponding Bland-Altman plots.385

The three methods required similar time to obtain the measurements. A more efficient386

implementation (e.g. using parallelization) would result in a considerable gain in the com-387

putational time of ASI providing a fast way to quantify an aneurysm without the need of388
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interaction by a human operator.389

This method is a first approach towards the automated isolation of the aneurysm sac that390

was assessed using manually obtained measurements. Perhaps the most relevant advantage391

of this method is that it eliminates inter-observer variability.392

The work previously developed by Ford et al. [14] proposed a method for393

aneurysm removal. In their work the authors identified the non-planar boundary394

(a 3D curve) separating the vessel and the aneurysm sac. Additionally, in the395

present work a method for determining a neck plane, which is essential for396

different morphological features of interest to the clinician, is proposed.397

Looking from a broader point of view, this method could have a larger impact on the398

clinical practice by providing a unified criteria for treatment selection (coil, stent, etc.)399

based on simple aneurysm dimensions [3]. Nowadays, these practices are based on shared400

knowledge and experience, which is passed from clinician to clinician. Also, on the field of401

computational hemodynamics that is devoted to the study of intracranial aneurysms, this402

method could provide an observer independent way to determine the aneurysm neck [28, 29].403

As a limitation, we could mention the performance of the methods in more complex404

aneurysm geometries. In principle, the method was designed for saccular aneurysms and405

not for multilobular or fusiform ones. For this kind of aneurysms there is no definition of406

the sac and the delineation of the original vessel is often subjective and questionable even407

for an expert.408

V. CONCLUSIONS409

In this paper, is proposed a methodology for automatically isolating the sac of intracra-410

nial aneurysms and computing morphological measurements. This methodology is based411

on skeleton topology analysis, for the classification of vessels in the vascular region of in-412

terest; and deformable models, for the detection of aneurysm ostium and isolation of the413

aneurysm sac. After this, the aneurysm morphological measurements (wneck and hsac) were414

calculated automatically. This method was evaluated on twenty-six intracranial aneurysm415

geometries. The results were compared with manual measurements performed by clinicians416

and automated measurements performed on manually isolated aneurysms by three inde-417

pendent observers. The quantitative assessment showed poor agreement between clinicians’418
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measurements and automated measurements. This limitation is due to the selection of sub-419

optimal view angle for the particular measurement. On the other hand, the automated420

measurement from isolated aneurysm are independent of the viewing angle as they are mea-421

sured by a computer algorithm directly on the surface representation of the aneurysm sac,422

eliminating any bias or difference in criteria. The visual assessment of the automated iso-423

lation showed a good match between manual and automated isolations. Furthermore, the424

qualitative assessment of the results showed acceptable agreement between both methods.425
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(a) (b) (c) (d) (e) (f) (g)

FIG. 5: Intermediate steps and results for 10 vessel geometries with aneurysms obtained from

3DRA images. From left to right, the different columns present (a) volume rendering of the 3DRA

image, (b) measurements performed by the clinician, (c) segmented models and their skeleton, (d)

automatically computed measurements and (e) corresponding automatically isolated sac (green),

(f) automatically computed measurements and (g) corresponding manually isolated sac (red).
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(a) (b)

(c) (d)

FIG. 6: Bland-Altman plots comparing the results for MDI and ADI. ADI was compared to the

mean of the three observations by MDI. The plots compare the neck width (a), sac height (b), area

(c) and volume (d). The black solid line represents the bias and the dashed gray lines the upper

and lower 95% LoA.
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