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Abstract
Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However,
the availability of comprehensive, reliable and suitable manual segmentations for atlas construction
is limited. We therefore propose a method for joint segmentation of corresponding regions of interest
in a collection of aligned images that does not require labeled training data. Instead, a latent atlas,
initialized by at most a single manual segmentation, is inferred from the evolving segmentations of
the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential
equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets,
segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors
in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to
manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based
segmentation method. The quality of the results supports the latent atlas as a promising alternative
when existing atlases are not compatible with the images to be segmented.
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1 Introduction
Volumes acquired via medical imaging modalities, such as MRI, are frequently subject to low
signal-to-noise ratio, bias field and partial volume effects. These artifacts, together with the
naturally low contrast between image intensities of some neighboring structures, make the
automatic analysis of clinical images a challenging problem. Probabilistic atlases, typically
generated from comprehensive sets of manually labeled examples, facilitate the analysis by
providing statistical priors for tissue classification and structure segmentation (Ashburner and
Friston, 2005; Fischl et al., 2002; Pohl et al., 2006, 2007a; Van Leemput et al., 1999). Yet, the
limited availability of training examples that are compatible with the images to be segmented
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renders the atlas-based approaches impractical in many cases. While brain atlases of healthy
human adult anatomy are widespread, reliable manual segmentations of newborn brains or of
different body regions are not as common. Moreover, in the presence of pathologies where the
diversity in structure and appearance is unpredictable, incorporating priors obtained from
different subjects is error prone.

Recently, a few methods have been proposed to reduce or avoid the dependency on possibly
incompatible atlases. Bazin and Pham (2007) proposed an atlas-based segmentation method
that uses topological constraints to avoid possible bias introduced by the atlas. Yang and
Duncan (2004) employed manually labeled structures to support automatic segmentation of
neighboring structures within the same image. Tu et al. (2008) proposed a discriminative
approach for segmentation of adjacent brain structures using a set of features learned from
training examples. Lord et al. (2007) demonstrated a group-wise smoothing, segmentation and
registration method for cross-sectional MR scans. They developed a level-set framework in
which the evolving contours are spatially constrained by an image defined on a common
domain, obtained from the ensemble via diffeomorphisms. Thus, the variability of the shapes
in different images is captured by the deformation of the template. In contrast, our latent atlas
explicitly models the variability of the shapes via a spatial distribution in the atlas space. Bhatia
et al. (2007) adapted an initial atlas constructed from adult brain to newborns using combined
groupwise segmentation and registration. In this framework, non-rigid groupwise registration
is optimized by minimizing the Kullback-Leibler divergence between the average probability
map of the group and the labeling probabilities of each image. Segmentation is improved
iteratively based on the image intensity distributions. All of these methods with the exception
of Bhatia et al. (2007) were demonstrated for healthy human brains of adults such that mild
variations within the populations could be accommodated.

Segmentation becomes more challenging in the presence of pathologies where the appearance
of the unhealthy tissues differs significantly from the norm and is patient-specific. Most of the
existing methods for the detection of pathologies, rely heavily on priors such as shape,
intensities, growth and expected evolution (Cuadra et al., 2004; Kaus et al., 2001; Jaume et al.,
2001; Mohamed et al., 2006; Moon et al., 2002; Prastawa et al., 2003; Rey et al., 2002; Thirion
and Calmon, 1999; Zacharaki et al., 2008). This prior information allows, for example, the
generation of patient-specific atlases by iteratively refining the normal template model (Kaus
et al., 2001; Moon et al., 2002; Prastawa et al., 2003). Alternatively, tumors and lesions were
detected from differences between images acquired at different time points (Rey et al., 2002;
Thirion and Calmon, 1999). A different approach uses a normal control training set or an atlas
as a reference that allows detection of outliers suspected as pathological regions (Cobzas et al.,
2007; Gering et al., 2002; Görlitz et al., 2007; Ho et al., 2002; Prastawa et al., 2004; Van
Leemput et al., 2001; Wels et al., 2008). However, the variability of normal brain scans and
the effects some tumors or lesions have on their surrounding healthy tissues lead to a high false
positive detection rate. Moreover, mild anomalies can be wrongly classified as normal.

We propose and demonstrate a generative model for groupwise segmentation in which the
evolving segmentation of the entire image set supports each of the individual segmentations.
In contrast to the atlas-based approach that requires a set of training images or a probabilistic
atlas for segmentation of a single image, we use at most a single manual segmentation to
initialize segmentation of the entire image ensemble. This is made possible by iteratively
inferring a subset of the model parameters, called the spatial parameters, as part of the joint
segmentation processes. These spatial parameters are defined in the image domain and can be
viewed as a latent atlas that is used as a spatial prior on the tissue labels.

Our latent atlas formulation is based on probabilistic principles, but we solve it using partial
differential equations (PDEs) and energy minimization criteria. We describe a statistically
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driven level-set algorithm that expresses segmentation uncertainty via the logistic function of
the associated level-set values, similar to Pohl et al. (2007b). We relate the image likelihood
term to the region based constraint that relaxes the piecewise smoothness assumption of
Mumford and Shah (1989), in the spirit of (Chan and Vese, 2001; Paragios and Deriche,
2002; Zhu and Yuille, 1996). We also draw a connection between a Markov Random Field
(MRF) prior on the individual segmentations and two continuous-form energy terms: the
commonly used smoothness constraint, originally proposed in Kass et al. (1988) and the spatial
constraint, associated with the latent anatomy parameters.

We evaluate the latent atlas approach in two sets of experiments. In the first experiment we
use a dataset of 39 MR brain volumes and their corresponding manual delineations. We
segment six cortical and subcortical structures in the two hemispheres. We compare the
segmentation results to the manual segmentations using the Dice measure of the volume
overlap (Dice, 1945). We also evaluate these Dice scores by comparing them to the Dice scores
obtained by the state-of-the-art atlas-based segmentation method in the Freesurfer software
package (Freesurfer, 2009). The segmentation experiments on healthy brain images validate
the algorithm, demonstrating segmentation accuracy that approaches the accuracy obtained
with probabilistic atlases. In the second experiment we applied the algorithm to a longitudinal
multi-modal patient-specific tumor dataset. The dataset consists of brain volumes acquired via
six different modalities over several years. A sphere located around the tumor area in one of
the volumes was used to initialize the segmentations of the images acquired at the first time
point. Tumor segmentations at a given time point were then used to initialize the segmentations
at the next time point for scans of corresponding modalities. In the absence of ground truth
3D segmentations we evaluate the segmentation results both visually and against the manual
segmentation in a few tumor cross-sections. The accuracy of the results obtained for the tumor
datasets further supports the latent atlas concept as a good alternative to atlas-based approaches
when manual training labels or a probabilistic atlas are not available.

This paper extends the work previously presented in (Riklin Raviv et al., 2009b,a) by providing
detailed derivations of the underlying mathematical model and thorough experimental
validation and implementation details.

The remainder of the paper is organized as follows. Section 2 defines the problem of group-
wise segmentation. In Section 3 we derive our level-set framework for fitting probabilistic
model to image data. The alternating minimization algorithm is presented in Section 4. Section
5 provides implementation details and Section 6 reports the experimental results, followed by
a discussion in Section 7.

2 Problem definition and probabilistic model
Our objective is to segment a particular structure or region of interest in N aligned MR images.
Specifically, we consider the 2-partition problem where each voxel in image In (n = 1 … N) is
assigned to either the foreground (structure of interest) or the background.

Let {I1 … IN} be the given set of aligned images that form the observed variable in our problem
and let Γ = {Γ1 … ΓN} be the corresponding segmentations. In: Ω → ℝ+ is a gray level image
with V voxels, defined on Ω ⊂ ℝ3, and Γn: Ω → {0, 1} is the unknown segmentation of the
image In. We assume that each Γn is generated I.I.D. from a probability distribution p(Γ; θΓ)
where θΓ: Ω → [0, 1] denotes the latent spatial model parameters. We also assume that Γn
generates the observed image In, independently of all other image-segmentation pairs, with
probability p(In|Γn; θI,n) where θI,n are the intensity parameters corresponding to image In. We
assign an exclusive set of intensity parameters to each image since the acquisition conditions
might vary across scans. Specifically, in the proposed framework θI are the parameters of the
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Gaussian Mixture Model (GMM) of the intensity distributions. The graphical model for our
formulation is presented in Figure 1.

We start by presenting a probabilistic formulation of the problem. A comparison of the resulting
expressions to the commonly used Expectation Maximization (EM) (Dempster et al., 1977) is
unavoidable and is discussed in this section. However, here we replace the expectation step by
a gradient descent process using a probabilistic level-set formulation. Our approach can be
considered as an alternative way to model ‘soft’ assignments of the voxels in the segmentations.

The joint distribution p(I1 … IN, Γ1 … ΓN; Θ) is governed by the composite set of parameters
Θ = {θΓ, θI,1 … θI,N}. Our goal is to estimate the segmentations Γ. This, however, cannot be
accomplished in a straightforward manner since the model parameters are also unknown. A
traditional way to approach this problem is to first construct a maximum likelihood (ML)
estimate of the model parameters

(1)

and then compute the maximum a posteriori (MAP) estimates of the segmentations Γ:

(2)

The ML estimation of the model parameters requires marginalizing the joint probability
distribution with respect to segmentations Γ1 … Γn:

(3)

One way to tackle the problem above is to use the EM algorithm which averages the log-
likelihood over all possible segmentations. In this work, we propose to alternate between
estimating the MAP segmentations and refining the model parameters. This could be viewed
as replacing the sum in Equation (3) with the maximal contribution to the sum.

Formally, we jointly optimize for the segmentations Γ and the parameters Θ:

(4)

(5)

(6)
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Equation (5) follows from the conditional independence of different images in the set. For a
given value of the model parameters Θ̂, Equation (6) implies that the segmentations can be
estimated by solving N separate MAP problems:

(7)

We then fix Γ ̂ and estimate the model parameters Θ = {θΓ, θI,1, … θI,N} by solving the following
ML problems:

(8)

(9)

Note that Equations (7), (8) can be solved for each image separately while Equation (9) uses
all the segmentations to infer the atlas parameters. In the following sections we present a level-
set framework that is motivated by this probabilistic model. We reformulate the estimation
problem stated in Equation (7) such that the soft segmentations p(Γn), rather than the Γn, are
estimated.

3 Probabilistic view of the level-set framework
Now we draw the connection between the probabilistic model presented above and the level-
set framework for segmentation (Osher and Sethian, 1988). Let φn: Ω → ℝ denote a level-set
function associated with image In. The zero level Cn = {x ∈ Ω|φn(x) = 0} defines the interface
between the partitions of In. We choose to represent the binary segmentation Γn by the
Heaviside function of φn:

(10)

The Heaviside function H(φn) partitions the image space Ω ∈ ℝ3 into two disjoint regions ω
and Ω\ω by assigning positive levels of φn to the structure of interest and negative levels of
φn to the background.

Since the Heaviside function as defined above is not differentiable, a regularized variant H ̃ is
used in practice. Chan and Vese (2001) propose to approximate the Heaviside function of φn

by the sigmoid . Alternatively, we can use the hyperbolic tangent to
achieve the same goal:

(11)

For ε = 1, the function H ̃ε(·) becomes the logistic function. Similar to Pohl et al. (2007b), we
define the level-set function φn using the log-odds formulation instead of the conventional
signed distance function:
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(12)

The scalar ε determines the scaling of the level-set function φn with respect to the ratio of the
probabilities of the foreground and the background respectively. Substituting this definition
into Equation (11) we obtain

(13)

which implies that the function H ̃ε(φn(x)) can be viewed as the probability that a voxel at
location x belongs to the foreground region. Specifically, the uncertainty in the labeling of the
boundary voxels {x|φ (x) = 0} naturally stems from the equality H ̃ε(φn(x)) = 1 − H ̃ε(φn(x)) =
0.5. The functions H ̃ε(φn(x)) and H(φn(x)) therefore represent soft and hard segmentations,
respectively.

Figure 2 illustrates H ̃ε and its derivative

(14)

for several values of ε. To simplify the notation we omit the subscript ε in the rest of the paper.

3.1 Cost functional for segmentation
Joint estimation of the hidden variables Γn, or φn (using the level-set notation) and the unknown
model parameters Θ (Equation (6)) can be solved as an energy minimization problem:

We now establish the correspondence between the log probability and the level-set energy
terms.

3.2 Image likelihood term
Let us first consider the image likelihood term:

(15)

where pin and pout are the probability distributions of the foreground and background image
intensities, respectively.

Let  ≜ −β log p(In|Γn, θ ̂I,n) define the energy term associated with the image likelihood term.
Using the continuous level-set formulation, Equation (10) and the following approximations:
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we obtain

(16)

By replacing the binary labels H(φn) with soft assignments H ̃ (φn), Equation (16) becomes a
continuous approximation of the expectation of the image likelihood term in Equation (15).

When pin and pout represent normal density distributions, we get the familiar minimal variance
term (Chan and Vese, 2001; Paragios and Deriche, 2002; Cremers et al., 2007). Here, we use
a Gaussian mixture to model the background, as described later in the paper.

3.3 Spatial prior and length terms
In the atlas-based segmentation framework the spatial prior parameters θΓ are known and given
in the form of a probabilistic anatomical atlas. In the problem at hand, such atlas does not exist.
Instead, we estimate the spatial parameters by constructing a dynamically evolving
probabilistic atlas. We define the prior probability p(Γn; θΓ) to be a MRF (Geman and Geman,
1984):

(17)

where Z(θΓ) is the partition function and  (v) are the closest neighbors of a voxel v.

The corresponding energy functional (Γn; θΓ) ≜ −α log p(Γn|θΓ) takes the form:

(18)

We first consider the pairwise interaction term in Equation (18). The function

, is the penalty term for different assignments of neighboring voxels.

The sum  can be configured to act as a finite difference operator
approximating the square of the gradient of Γn, i.e., . Specifically,
if we let h be the grid resolution, then wv,v′ are set to either κ/h2 or 0, where κ is the relative
weight of the pairwise term. Based on this connection, we approximate the pairwise clique
potential term in Equation (18) with a continuous term

(19)
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where γ = ακ. This smoothness term is related to the commonly used length regularizer in the
level-set literature (Chan and Vese, 2001):

(20)

In practice, we used both terms, interchangeably, to constrain boundary smoothness, without
any significant change in the overall quality of the results.

The mechanism of length-driven PDE evolutions on log odds representations of label
probabilities was used in an atlas-based segmentation context by Pohl et al. (2007c). In that
work, the derivation used a different strategy: a likelihood model was combined with a prior
on segmentations that was in turn based on curve lengths; the resulting estimation problem
was solved via the variational mean field method.

If we omit the pairwise term in Equation (18), the prior on segmentations p(Γn; θΓ) reduces to
a Bernoulli distribution, where the parameters θΓ represent the probability map for the structure
of interest. The introduction of the pairwise clique potentials complicates the model but
encourages homogeneous labeling configurations.

We define the spatial energy term  based on the singleton term in Equation (17). Using the
continuous level-set formulation with soft segmentation, we obtain:

(21)

The spatial term in Equation (21) and the image likelihood term in Equation (16) have similar
structures. The image likelihood term, the length term and the spatial prior term are derived
directly from the generative probabilistic model. However, while the level-set formulations of
the length and the likelihood terms are commonly used, the formulation of the spatial prior
term, as defined in Equation (21) is novel.

Ignoring the partition function in the equations that follow Equation (18) has no effect on the
estimation of Equation (7), but it changes Equation (9) to be maximum pseudo likelihood as
in Besag (1975), rather than maximum likelihood.

3.4 Unified cost functional
We construct the cost functional for φ1 … φN and the parameters Θ by combing Equation (16),
Equation (20) and Equation (21):

(22)

The weights are adaptively tuned such that the contributions of the energy terms ELEN, EI and
ES to the overall cost are balanced. Subsection 5.3 describes the weight tuning heuristic we
used in the experiments.

4 Gradient descent and parameter estimation
We optimize Equation (22) by a set of alternating steps. For fixed model parameters Θ, the
evolution of each level-set function φn is determined by the following gradient descent
equation:

Riklin-Raviv et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(23)

where  is obtained from the first variation of (φn, Θ). Using the Euler-Lagrange equations
we get:

(24)

where δ(φn) is the derivative of H(φn) with respect to φn as defined in Equation (14). For fixed
segmentations φn, the model parameters are recovered by differentiating the cost functional in
Equation (22) with respect to each parameter.

4.1 Intensity parameters
We assume that the intensities of the structure of interest are drawn from a normal distribution,
i.e., . Optimizing Equation (22) with respect to the distribution mean
and variance of the foreground region of In, we obtain the following update rules:

(25)

The intensities of the background tissues are modeled as a K-Gaussian mixture:

where  is the mixing proportion of the kth component in the mixture. When the images are
brain scans and the ROIs are brain structures, K = 3 Gaussians are used to model the intensity
distributions of the white and gray matters and the CSF. The Gaussian mixture model
parameters are estimated using the EM method. In different applications, when there is less
prior knowledge on the expected distribution, kernel density estimators over mixtures of
Gaussians might be preferable (Cremers and Rousson, 2007).

4.2 Spatial parameters
We estimate the spatial function θΓ(x), constructing a dynamically evolving latent atlas, by
optimizing the sum of the energy terms that depend on θΓ:

yielding,
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(26)

5 Implementation details
5.1 Prior Registration of the Image Ensemble

Accurate alignment of the image ensemble is crucial to the success of the latent atlas method
since the spatial constraint relies on voxel correspondences. In our experience, affine
registration may not be sufficient to obtain the required correspondences. Instead we applied
a non-rigid registration (Sabuncu et al., 2009b; Toussaint et al., 2007; Postelnicu et al.,
2009). However, since the non-rigid registration procedure is applied to the entire images,
sometimes small ROIs in some of the images are misaligned. To avoid those cases, we further
aligned the ROIs using translation by integer pixel units. Since the images are cropped to
accelerate the segmentation process, in practice, we used an exhaustive search to maximize
the pairwise image intensity correlation between the cropped template image that includes the
ROI (based on the known segmentation) and each of the other images in the ensemble.

5.2 Initialization and the stopping criterion
In the presence of at least a single manual segmentation of an image from the ensemble I1 …
IN, we initialize the unknown segmentations φ1 … φN and the latent atlas as follows. We set
φn,t=0 = φ0 (n = 1 … N), where φ0 is the signed distance function of the known segmentation.
We also set θΓ,t=0 = θΓ0 where θΓ0 = H ̃ (φ0 ★ Gσ) is the Heaviside function of φ0 smoothed
with a Gaussian kernel of width σ (σ = .35 in our experiments). In cases where a manual
segmentation is not available, the user provides an input that allows to initialize the level-set
functions and the latent atlas. The user selects one of the volumes and identifies a single sagittal,
axial or coronal slice where the region of interest is clearly seen. The user then marks (with a
few mouse clicks) the approximate location of the ROI center and one of its boundary points.
This input defines a sphere that is used to initialize the segmentations of all the volumes. In a
longitudinal study, only the segmentations of the data acquired at the first time point are
manually initialized. The segmentations of volumes acquired in consecutive time points are
initialized from the final segmentations of the corresponding volumes acquired at the previous
time points.

We run the segmentation algorithm for each image In until the changes in the segmentations
are below a user-specified threshold:

Once this convergence criterion is met for a segmentation of an image In, the corresponding
level-set function φn(t) is fixed, however φn(t) is used for the re-estimation of θΓ until the
segmentations of the entire ensemble converges.

5.3 Parameter tuning
The optimal weights obtained in a leave-one-out analysis for a particular dataset may not be
suitable for another dataset. We therefore do not optimize the weights prior to segmentation.
Instead, in each iteration, we tune the weights such that the weighted magnitude of the
contribution of each term in Equation (24) is normalized to one (Riklin-Raviv et al., 2008).
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We set ε = 0.3 and Δt = 1. Both parameters should depend on the image size and resolution as
well as the magnitude and shape of φ (we follow the classical definition of Osher and Sethian
(1988) and represent φ by a signed distance function, such that |∇φ| = 1). The parameter ε
determines the width of δε(φ) (Equation (14)). It controls the width of the band around the zero
level of φ that is updated in every iteration (Equation (24). The parameter Δt, (Equation (23))
scales the contribution  to the narrow band of φ. The product of δε and Δt, obtained by
substituting Equation (24) into Equation (23) controls the evolution of the segmentation
process. Therefore, tuning ε should be done with respect to Δt (or vice versa). Automatic
estimation of these parameters and their influence on the convergence properties of the
suggested algorithm are subject of future work.

5.4 Topological changes of the boundaries
The current framework does not control topological changes although it can be extended to
include topology preservation (Han et al., 2003). In practice, the spatial constraint encourages
preservation of the topology if the region of interest (ROI) is homogeneous and contiguous. In
the brain tumor case, when the initial spatial constrain is weaker (sphere) one may expect
topological changes to allow the segmentation of adjacent, yet not connected, regions with
similar intensities.

5.5 Algorithm outline
Here we summarize the proposed latent atlas segmentation algorithm. The input consist of
N aligned volumes {In}.

1. Initialize {φn} and θΓ (Section 5.2).

2. Repeat until convergence:

a. Calculate the background and foreground intensity parameters θI,n based on
the current estimates of their corresponding level-set functions φn (Section
4.1).

b. Calculate the latent atlas parameters φΓ based on the current estimates of the
level-set functions φn (Equation (26)).

c. Use Equation (24) (gradient descent) to evolve the level-set functions φn
based on the current estimates of the respective intensity parameters θI,n and
the spatial parameters θΓ.

5.6 Quantitative evaluation
We use the Dice measure (Dice, 1945) to quantify the overlap between the manual
segmentations and the automatic segmentations. Let L ̂: Ω → {0, 1} be a given manual labeling
function (segmentation) and let L: Ω → {0, 1} be the corresponding automatic label map. The
Dice score measures the volume overlap between the two segmentations:

where |·| is the size (cardinality) of the set, and ∩ denotes intersection of two sets.

5.7 Multi-label segmentation
The current framework considers binary segmentation in which the image is partitioned into
a (semantically) single ROI and background. We ran the latent algorithm separately for each
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ROI with a single level-set function corresponding to each image. While partitioning images
into multiple ROIs may not increase the computational efficiency, it allows handling of
neighboring structures. The proposed method can be extended by using a region competition
paradigm in which the contours between adjacent regions evolve to maximize the posterior
probabilities (Zhu and Yuille, 1996; Tu and Zhu, 2002). A straightforward extension to multi-
structure segmentation could be obtained by replacing the logit function for the binary case
(Equation (12)) by the multi-label log-odds formulation as in Pohl et al. (2007b). In this
implementation, multiple level-set functions compete for the ‘ownership’ of boundary voxels.
The final partition is determined by the highest voxel assignment probabilities.

6 Experimental results
In this section, we present two sets of experiments. In the first experiment, we apply the
proposed segmentation method to segment brain structures across a population. Our goal is to
validate the method by comparing the automatic segmentations to expert delineations in a well
studied problem. We also compared the resulting Dice scores to the Dice scores obtained by
the state-of-the-art Freesurfer segmentation package (Freesurfer, 2009). In the second
experiment, we demonstrate the algorithm by segmenting a brain tumor in application to a
single-subject multi-modal longitudinal study. This application illustrates the benefits of our
method in the case where no atlas is available to provide spatial priors for segmentation.

6.1 Brain structures segmentation
We test the proposed approach on 39 MR brain scans. Some of the subjects in this set were
diagnosed with mild Alzheimer’s disease. The MR images (T1, 256 × 256 × 256 volume,
1mm3 isotropic voxel size) were acquired on a 1.5-T General Electric Scanner. All the pre-
processing steps (gain-field correction and skull-stripping) were performed using the
FreeSurfer tools (Freesurfer, 2009). In addition to the MR volumes, manual segmentations of
hippocampus (HPC), thalamus (THL), caudate (CAD), putamen (PUT), pallidum (PAD), and
amygdala (AMY) were available for these subjects. The images and the labels were aligned to
a common template by applying the asymmetric image-template registration method (Sabuncu
et al., 2009b). Based on the given manual segmentation of one of the images, the images were
cropped such that for each image the entire region of interest resides within the cropped image.
Due to significant misalignments of some of the small ROIs in some of the registered images,
the initial registrations were adjusted by pixel-wise translation through the cropping procedure
as described in Section 5.1.

We excluded the image associated with the given manual segmentation from the ensemble. In
practice, we ran the latent atlas algorithm several times with 5 different randomly chosen
manual initializations. The algorithm was implemented in Matlab. Execution time, and in
particular the initial estimate of the background intensity distributions, depends on the size of
the cropped images. Average CPU time for the segmentation of 38 corresponding structures
ranged from approximately 10 mins (Amygdala, cropped image size: 38 × 40 × 38) to
approximately 80 mins (Caudate, cropped image size: 42 × 36 × 100). Processing time includes
the initial estimate of the GMM parameters and their update in consecutive iterations.
Segmentation process converged in fewer than 10 iterations.

Figure 3 shows sagittal, axial and coronal cross-sections of the 3D segmentations of six
structures in the right hemisphere in representative individual brains. We observe that the
manual segmentations in Figure 3, and in particular the sagittal and axial slices, exhibit obvious
jaggedness of the boundaries. This is due to the fact that the rater manually segments the
structures slice-by-slice. Manual segmentation in one plane typically results in jagging
boundaries in other planes (Yushkevich et al., 2006). In contrast, the automatic segmentation,
estimated from the entire 3D structure is much smoother. Figure 4 presents 3D views of the
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automatic and the manual segmentations of the brain structures in one subject from the study.
The structures are shown together for display purpose, yet each structure has been segmented
independently. Cross-sections of the resulting 3D latent atlases and of the probabilistic atlases
generated by averaging the manual expert segmentations are shown in Figure 5.

We used the Dice measure to quantitatively evaluate the segmentations as described in Section
5.6. We compared the Dice scores obtained by our Latent Atlas method (first row in Table 1)
to the Dice scores obtained by the following baseline procedures:

1. Initial (Last row in Table 1): The Dice scores calculated prior to segmentation. These
initial Dice scores quantify the overlap between the initial segmentation (the known
single segmentation of one of the subjects) and the true segmentation of the
corresponding subject. These scores practically measure the quality of the alignments
across scans. As expected, all of the noted segmentation methods obtain consistently
better Dice scores than the initial Dice scores.

2. FreeSurfer (second row in Table 1): The Dice scores obtained by the Freesurfer tool
for the same dataset (Sabuncu et al., 2009a). The Freesurfer is a widely used atlas-
based segmentation approach and is considered state-of-the-art.

3. Prob. (third row in Table 1): The Dice scores obtained using an atlas-based approach
implemented by using the described level-set framework where the dynamically
estimated latent atlas is replaced by a fixed probabilistic atlas, in a leave-one-out
manner.

4. Single (fourth row in Table 1): The Dice scores obtained by a level-set atlas-based
approach similar to the one mentioned above, replacing the probabilistic atlas by a
single known segmentation blurred by a Gaussian kernel. This single-label atlas
remains fixed throughout the segmentation.

The Dice scores comparisons are summarized in Table 1 and in Figure 6. The Dice scores
obtained by our method approach the atlas based segmentation results. Note also that the Dice
scores obtained by our atlas-based implementation approach the Dice scores obtained by the
FreeSurfer package. To exemplify the effectiveness of the latent atlas generated concurrently
with the segmentation, we also show a comparison to the segmentation results obtained by
using an atlas constructed from a single manual segmentation smoothed by a Gaussian kernel,
without the update procedure. This method simulates the approach commonly used when only
a single manual segmentation is available. The comparison supports the latent atlas approach
as a preferred alternative when only a single segmentation is available.

We conducted two additional experiments to test how the segmentation accuracy depends on
the size of the image ensemble and on the number of manual segmentations used to initialize
the latent atlas. We ran the latent atlas algorithm for 8 – 12 randomly chosen image subsets of
5, 10, 15, 20, 25 and 30 images for the six structures in both hemispheres. The results of both
experiments are shown in Figure 7. While there is no clear dependency of the mean Dice scores
on the ensemble size, the latent atlas scores approach the atlas-based results for a relatively
small number of manual segmentations (5, 10) that are used for initialization.

6.2 Tumor segmentation
We also illustrate the proposed method on a set of 44 image volumes of a patient with
histologically confirmed low-grade glioma. The volumes were acquired at 10 different time
points at the German Cancer Research Center (Heidelberg, Germany) using 1.5T Siemens
Magnetom and 3T Siemens TRIO MR scanners. Up to six imaging protocols: T1, T2, FLAIR,
DTI, and contrast-enhanced T1 sequences (T1gd) were used, as shown in Figure 8. We aligned
the images using the MedINRIA registration software (Toussaint et al., 2007). We calculated
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fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps from the diffusion
tensor images (DTI) using the same software. In this experiment we applied the latent atlas
method to every set of images acquired at a particular timepoint separately. In contrast to the
multivariate approach (Van Leemput et al., 2001) that produces a single segmentation for a set
of images, we obtained different segmentations corresponding to the different input images
acquired by the different modalities. This output brings forth specific physical characteristics
of the tumor that may be only seen in some (or one) of the modalities. Examples include
differences in tissue water (T2, Flair-MRI), enhancement of contrast agents (post-Gadolinium
T1-MRI), diffusion (DTI, DCE-MRI), or relative concentrations of selected metabolites
(MRSI).

The individual delineation of the tumor areas can therefore facilitate quantitative analysis of
tumor shape and evolution.

To enable quantitative evaluation, three manual segmentations of three orthogonal slices that
pass through the center of the tumor were provided for each volume.

Figure 8 shows axial slices of the available image volumes together with the boundaries of the
automatic 3D segmentation. Figure 9 shows the manual segmentations for three lateral slices
through the tumor, together with the automatic segmentation. We observe that the segmentation
error in the T2 image, due to the similarity in the intensities of the scanned tumor and the nearby
healthy tissue, does not significantly affect the averaged level-set function (right panel of Figure
9), which corresponds to the latent atlas.

Table 2 provides quantitative evaluation of the overlap between the automatic and the manual
segmentations as measured by the Dice coefficients. We compared the automatic
segmentations with each manual segmentation in the corresponding triplets of manually
segmented slices. The first number in each cell in Table 2 reports the mean and the standard
deviation of these nine Dice scores. The second number in each cell in Table 2 reports the mean
and the standard deviation of the Dice scores obtained by comparing one of the manual
segmentations with the other two in the three slices. The overall average Dice score for the
automatic segmentation is above 0.85 while the average Dice scores across the manual
segmentations is 0.91. The top plot in Figure 10 reports the average Dice score over all
modalities at a given time point obtained by our method and the Dice scores of the multivariate
tissue classification according to Van Leemput et al. (2001). The plot shows that the Dices
scores obtained via the latent anatomy method are consistently higher. The bottom plot in
Figure 10 compares the overlap among the manual segmentations for each individual modality
(‘intra-modal’) with the overlap among the manual segmentations for all the modalities
together (‘inter-modal’). We define overlap as the mean Dice score among the three manual
segmentations, as described above. This plot suggests that even the manual segmentations vary
significantly across modalities for the same time point, justifying our approach of generating
separate tumor segmentation for each volume.

7 Discussion and future directions
We presented a novel level-set framework for the segmentation of MR image ensembles that
is motivated by a generative probabilistic model. Unlike most previous methods, spatial priors
in the form of a probabilistic atlas are not employed. Instead, spatial parameters which form a
dynamic atlas are inferred from the dataset through an alternating minimization procedure. The
practical value of this work, as demonstrated by the experimental results, is to offer an
alternative to standard segmentation methods when a suitable atlas is not available or when its
reliability is questionable. The foremost advantage of the proposed method is therefore the
potential saving of precious human hours that would be otherwise used to manually segment
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a large set of images for the generation of an atlas that fits a novel data of a non-standard
population.

The essence of the theoretical contribution is the link between a statistical segmentation model
and a variational active contour approach. We interpret the MAP estimation problem in
statistical segmentation in terms of a level-set functional constructed for groupwise
segmentation. The gradient descent procedure used to update the level-set functions, which
can be viewed as soft segmentations of the ensemble, is alternated with the estimation of the
model parameters. For fixed segmentations these unknown parameters are estimated by
optimizing their likelihood, similar to the maximization step in EM procedure (Dempster et
al., 1977). A comparison of the complete variational process to the EM approach is therefore
interesting. Since not the labels themselves, but their probabilities are updated, each gradient
descent iteration can be considered as one step toward the computation of the expectation step.
With the existing variants of the standard EM approach (Neal and Hinton, 1998), the analogy
between the two methods seems to be nearly complete. Nevertheless, the need to account for
the regularization term derived from the pairwise interactions between neighboring voxels
leads to a non-trivial problem, left for future work.

The probabilistic approach and the level-set framework are both commonly used
methodologies. The connection between them adds a novel perspective to problems which
could be solved with either of the two methods. While the gradient descent procedure,
commonly used in level-set methods is a convenient way for optimization, it guarantees
globally optimal convergence only for convex functionals (Cremers et al., 2008). The EM
algorithm has attractive properties; it requires no ‘step size’ parameter, and will not oscillate
around the optimum. However, there is no guarantee of global solutions. The proposed level-
set functional is not necessarily convex, but it has the benefit of incorporating the image-
likelihood, spatial and smoothness constraints in one coherent framework. In practice, the
proposed level-set algorithm converges to the desired solutions in all the experiments.
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Fig. 1.
Graphical representation of the proposed generative segmentation model. The model
parameters (θI,n, θΓ) are represented with squares, the random variables (Γn, In) are represented
with circles. The shaded circle indicates the observed variable In. A subset of the variables
(Γn, In and θI,n) is replicated N times, as indicated by the bounding box.
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Fig. 2.
(a) Smooth approximation of the Heaviside function H ̃ε (Equation (11)) and (b) its derivative
δ̃ε (Equation (14)) for different values of ε.
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Fig. 3.
Three cross-sections of 3D segmentations of six brain structures in the right hemisphere.
Automatic segmentation is shown in red. Manual segmentation is shown in blue.
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Fig. 4.
3D views of the manual and the automatic brain structure segmentation in one subject.
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Fig. 5.
Cross-sections of 3D atlases of six brain structures in the right hemispheres. Top row: Latent
atlases generated as part of the proposed segmentation algorithm. Bottom row: probabilistic
atlases. Each atlas is generated by averaging 39 corresponding manual labels of the input
images.

Riklin-Raviv et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
The mean and standard deviation of the Dice scores calculated for all images in the ensemble
for six brain structures in the left and the right hemisphere. The latent atlas segmentation (red)
is compared to the atlas-based segmentation (blue).
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Fig. 7.
(a) The mean Dice scores calculated for six brain structures in both hemispheres as a function
of the number of images in the ensemble. (b) The mean Dice scores for six brain structures in
both hemispheres as a function of the number of manual segmentations that initialize the latent
atlas.
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Fig. 8.
Axial slice of the tumor volumes and the automatic 3D segmentations (red outlines) across 6
modalities and 10 time points. Not all the modalities were acquired at each time point.
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Fig. 9.
Manual segmentations (red, green, blue) and automatic segmentation (black) for lateral T1, T2
and DTI-FA images acquired at the same time point. The fourth image shows the corresponding
section of the average of the associated 3D level-set functions. The zero level of the level-set
functions average is shown in magenta. Tumor boundaries of all the modalities available for
that time point are shown in black.
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Fig. 10.
Left: comparison of the overlap in the manual segmentations for each individual modality (red)
with the overlap in the manual segmentations for all the modalities together (green). Overlap
is defined as the mean Dice score between the three manual segmentations. See text for details.
Right: A comparison of the average Dice scores of the proposed latent anatomy method (red)
and the Dice scores of the multivariate EM for lesion segmentation of Van Leemput et al.
(2001) (green). The segmentation results obtained by the proposed latent anatomy method are
consistently better.
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