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Abstract
This paper describes a method for building efficient representations of large sets of brain images.
Our hypothesis is that the space spanned by a set of brain images can be captured, to a close
approximation, by a low-dimensional, nonlinear manifold. This paper presents a method to learn
such a low-dimensional manifold from a given data set. The manifold model is generative—brain
images can be constructed from a relatively small set of parameters, and new brain images can be
projected onto the manifold. This allows to quantify the geometric accuracy of the manifold
approximation in terms of projection distance. The manifold coordinates induce a Euclidean
coordinate system on the population data that can be used to perform statistical analysis of the
population. We evaluate the proposed method on the OASIS and ADNI brain databases of head
MR images in two ways. First, the geometric fit of the method is qualitatively and quantitatively
evaluated. Second, the ability of the brain manifold model to explain clinical measures is analyzed
by linear regression in the manifold coordinate space. The regression models show that the
manifold model is a statistically significant descriptor of clinical parameters.
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1. Introduction
Many neuroimaging applications require a summary or representation of a population of
brain images. The conventional approach is to build a single template, or atlas, that
represents a population [1,2,3]. Recent work introduced clustering-based approaches, which
compute multiple templates in a data driven fashion [4,5]. Each template represents a part of
the population. In a different direction, researchers proposed kernel-based regression of
brain images with respect to an underlying parameter [6,7,8]. This yields a continuous curve
in the space of brain images that estimates the conditional expectation of a brain image
given the parameter value. A natural question that arises based on these investigations is
whether the space spanned by a set of brain images can be approximated by a low-
dimensional manifold. Our hypothesis is that a low-dimensional, nonlinear model can
effectively represent variability in brain anatomy. This paper describes a method to learn a
manifold model from a given population and evaluate its geometric fit and statistical
properties.
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Recent work on statistical analysis of brain images with clinical data shows that shape is a
statistically significant predictor for various clinical parameters [9,10,11,12,13,14,15,16]. As
such, we are interested in finding a manifold representation that captures shape variability
across large sets of images. Such a manifold model is interesting in several ways. The
manifold parametrization gives rise to a coordinate system for the data that indicates its
position on the manifold. If the manifold is constructed to reflect shape differences, then
brain shape can be quantified in this new coordinate system. In this way, the manifold
coordinates can be used as a proxy for statistical analysis of brain populations. The manifold
coordinates of a particular image (e.g. patient in a clinical setting) could be used to compare
against examples in a database with similar brain shape and known clinical history and to
predict the likelihood of specific pathologies. Projections of images onto the manifold of
brain images could also be used to construct priors or atlases that would aid in automatic
processing or clinical studies.

The approach in this paper builds on existing manifold learning techniques to obtain a
manifold model from a set of brain MR images. Manifold learning is a specific approach to
nonlinear dimensionality reduction based on the assumption that data points are sampled
from a low-dimensional manifold embedded in a high-dimensional ambient space. The aim
is to uncover the low-dimensional manifold structure from the samples in the high-
dimensional ambient space. Many methods for manifold learning have been proposed in the
machine learning literature. Much of the recent work [17,18,19,20] has focused around
global or spectral methods. These methods have a closed form solution based on the spectral
decomposition of a matrix that is compiled based on local properties of the input data. The
bulk of manifold learning research has focused on low-dimensional manifolds embedded in
high-dimensional spaces with Euclidean metrics. The space of brain images, however, does
not fit directly into this setting. Research in shape analysis has shown that a Euclidean
metric is not suitable for capturing shape differences in images [21]. In computational
anatomy, researchers commonly resort to metrics based on coordinate transformations that
align the images [4,5]. Therefore, the low-dimensional manifold we aim to learn is
embedded in the space of images with a metric induced by coordinate transformations on the
image-domain, as illustrated Figure 1. Note that the structure induced by image metrics
based on transformations is often described as a manifold — in this paper we reserve this
term to refer to the manifold of brain images as described by the data.

In many neuroimaging applications, it is necessary to map from ambient space to manifold
coordinates or to construct brain images given manifold coordinates, which requires a
generative model. These are the capabilities provided for linear models by principal
component analysis (PCA), for instance, that allow one to compute loadings (manifold
coordinates), to project data on the linear subspace, and to compute the residual or
approximation error associated with these projections. Manifold learning methods thus far
are mostly concerned with finding a low-dimensional parametrization of the data, but do not
generally provide the tools to project or construct new data points. We propose to use the
manifold coordinates obtained by one of the global manifold learning approaches to
construct a generative manifold model that explicitly describes the manifold as a parametric
surface in the ambient space. The parametric surface is formulated as a kernel regression
over the manifold coordinates, that is, an estimate of the mean of the distribution of the
manifold given the manifold coordinate. The reverse, a coordinate mapping from ambient
space to manifold coordinates, is achieved in a similar manner. Weighted averaging of the
manifold coordinates of the initial data set, again by kernel regression, yields a continuous
mapping in the ambient space. The proposed methodology for the generative manifold
model is motivated by the statistical representation of scattered data using principal surfaces
[22]. In previous work [23], we describe a formulation by which generative manifold models
via kernel regression give rise to principal surfaces, a nonlinear extension to PCA, as
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formally defined by Hastie [22]. Thus, the proposed framework for brain image analysis
represents a statistically sound, higher-order representation of the space of brains.

In [24] we showed that it is possible to approximate the space of brain images by a low
dimensional manifold. In this paper we present the method in greater depth. Additionally we
show that the learned manifold can be used for statistical analysis on brain image
populations. We apply the proposed approach to the OASIS and ADNI brain database, and
show that the learned manifold provides a good fit in terms of projection distance and as a
proxy for statistical analysis. Linear regression of the learned manifold coordinates with
several clinical parameters provides strong evidence that the proposed manifold
representation of brain image data sets captures important clinical trends.

2. Related Work
An important aspect of our work is the ability to measure image differences in a way that
captures shape. It is known that the L2 metric does not adequately capture shape differences
[21]. There are a variety of alternatives, most of which consider coordinate transformations
instead of—or in addition to—intensity differences. A large body of work [25,26,27,28] has
examined distances between images using high-dimensional image warps that are
constrained to be diffeomorphisms. Thus, distances between images are measured by
computing a minimal diffeomorphic map, according to an appropriate metric on the
transformation, between two images. This metric defines an infinite-dimensional manifold
consisting of all shapes that are equivalent under a diffeomorphism. In a similar fashion, we
define a metric based on elastic deformations. Our hypothesis, however, is that the space of
brains is essentially (or approximately to within some level of noise) of significantly lower
dimension. That is, not all images reachable by a diffeomorphic deformation are likely to be
brains.

An alternative metric for image differences is proposed by [29,30], specifically for the task
of manifold learning for sets of time-series data. They use a set of local features (phase maps
produced from Gabor filters), which are designed to capture the local offsets of edges and
other features of interest. Although this is a computationally efficient way to capture local
shape differences, this approach does not lend itself to kernel-based construction of images,
which is essential to the work in this paper.

Several authors [6,7,8] have proposed kernel-based regression of brain images. The main
distinction of the work described in this paper is that the underlying parametrization is
learned from the image data. Our interest is to uncover potentially interesting structures
from the image data and sets of parameters that can be compared against clinical variables.
Kernel regression is used to explicitly represent the learned manifold in the ambient space.

The very limited work on learned manifolds for medical image analysis considers only
manifolds that are generated from known variables with individual patients. For instance,
Zhang et al. [30] use manifold learning specifically to improve segmentation in cardiac MR
images. In that application the breathing and heartbeat form a 2D manifold. In this paper, we
propose to discover an unknown manifold structure from a large database of brain images in
a way that explicitly learns the structure of inter subject variability. In LEAP [31], the
Laplacian eigenmaps algorithm [18] is employed to build an information diffusion based
segmentation approach. The embedding quality is tested based on a clustering measure and
leads to highly accurate segmentation results and indicates that the manifold assumption is
valid. This work proposes a generative approach to examine the underlying manifold
hypothesis.
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3. Methodology
The approach proposed in this paper is best described as a two step process. First we learn a
parametrization that captures the manifold structure in the data. Second we build a
generative model, based on the learned parametrization, that explicitly represents the
manifold as a parametric surface in the ambient space. The model provides the tools to
construct data points on the manifold given parameters and to infer parameters given data
points in the ambient space. We refer to the parameter space of the surface as the manifold
coordinates C ⊂ ℝd where d is the intrinsic dimensionality of the manifold, the ambient
space as A and the manifold as M ⊂ A.

For the first step, we use isomap [20], a manifold learning algorithm that finds a low-
dimensional Euclidean configuration of points that approximately preserves geodesic
distances. Isomap computes a piecewise linear approximation to the geodesic distance
through the construction of a nearest neighbor graph using the metric in the ambient space.
The assumption is that the geodesic distances between nearby samples can be accurately
approximated by the distance in the ambient space. This corresponds exactly to the
definition of a manifold—the metric is locally linear. Metric multidimensional scaling [32]
on the pairwise approximate geodesic distances yields a distance preserving d-dimensional
Euclidean configuration of points. Thus, applying isomap yields a discrete mapping zi = f̃
(yi) defined only on the original input samples, the set of images Sy = {y1, … yn} ∈ A.

The second step is the construction of the generative manifold model. The brain images Sy
are samples from a random variable Y with an arbitrary density p(y) defined on A. Assume
we are given a coordinate mapping f : A → C, representing a d-dimensional parametrization
of A. Then the conditional expectation g(x) = E[Y ∣f (Y) = x] is a direct and explicative way
to model a d-dimensional surface in A. Each point on the manifold represents the average
over all brain images with the same parameter f(Y). For example, if f maps to age, g(x) is the
average brain image at each age x. This is illustrated in [7] using manifold kernel regression
as an unbiased estimate of the conditional expectation. However, the mapping f̃ from isomap
is only defined on the input data points, furthermore it is only an approximation to the
manifold coordinates. Hence we model the coordinate mapping f on the complete ambient
space as a kernel regression on the discrete zi = f̃ (yi).

In summary the methodology consists of the following steps:

1. Compute Sz = {z1, … , zn} by isomap on Sy.

2. Build the generative manifold model with

• the coordinate mapping f by kernel regression over Sz and

• the explicit manifold representation g(x) = E[Y ∣f(Y) = x] estimated by
manifold kernel regression.

An important observation is that for both steps we do not need an explicit representation of
the data in the ambient space. Isomap as well as the kernel regressions only rely on
distances. Thus an adaption to an image space only needs an appropriate metric on A that
captures shape differences. Furthermore both isomap and kernel regression only require
distance to be accurate between nearby samples, large distances are not directly used but
approximated using the nearest neighbors graph. We introduce a distance measure that
captures shape differences between images based on small deformations using an elastically
regularized coordinate transformation and show how to build the generative manifold model
in this setting. The proposed distance measure is an approximation to the diffeomorphic
metric for small deformations, justifying the notion of learning a submanifold of the space of
diffeomorphisms.
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3.1. Diffeomorphic Space and Approximation with Elastic Deformations
For sets of brain images, we restrict our attention to the set of square-integrable functions on
the domain Ω ⊂ ℝ3, i.e., the infinite-dimensional space L2(Ω). In shape analysis and
computational anatomy tasks [1,7,2] diffeomorphic mappings are often used to assess shape
differences. A diffeomorphic coordinate transformation between two images can be written
as ϕ(r, 1), where

(1)

and υ(r, t) is a smooth, time varying vector field. The diffeomorphic framework defines a
Riemannian metric ∥υ(r, τ)∥Q, based on a differential operator Q, on the space of
diffeomorphic transformations. The Riemannian metric leads to the geodesics

, here e is the identity transformation. This induces a
metric d between images yi and yj

(2)

with  the squared Euclidean distance of the image intensities. The metric (2) is only well
defined for images within the orbit of the diffeomorphic transformations for a given
template image. In this setting, the ambient space A is a manifold in L2(Ω) induced by the
Riemannian manifold of diffeomorphic transformations acting on a template image.

Taking advantage of the fact that the proposed method relies only on distances between
nearby samples, we propose to compute local approximations to the diffeomorphic metric.
For two images that are very similar, the diffeomorphism is close to the identity and υ is
small. Because the velocities of the geodesics are smooth in time [25], we can approximate
the integrals for the coordinate transform and geodesic distance by a single vector field

(3)

Thus we can locally approximate the diffeomorphic distances based on an elastically-
regularized deformation u

(4)

with ∥·∥Q as in the diffeomorphic setting and ε allows for noise in the images. Therefore the
proposed approach effectively learns a submanifold, estimated from the data, within the
ambient space A of diffeomorphisms.

For symmetry we define the distance as

(5)

For this work we choose . The free
parameter α ∈ [0, 1], regulates the weight of the penalty between magnitude and smoothness

Gerber et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the warp. In all our experiments we set α = 0.9. For α = 1 the magnitude is disregarded
and a simple translation would yield a zero distance. In our experiments we found that a
penalty on magnitude adds important information, such as for example the magnitude of the
change in ventricle size. Note that it is an open problem to show that (5) satisfies the triangle
inequality and hence is a metric or a semimetric.

To compute the elastic deformation distance for a pair of discrete images, we use a gradient

descent scheme. For the L2 constraint , the squared image
intensity differences we introduce a Lagrange multiplier λ

(6)

Taking the first variation of (6) with respect to u results in the partial differential equation:

(7)

and the derivative of L with respect to the Lagrange multiplier λ is

(8)

We alternate between solving the PDE in (7) with finite forward differences for a fixed λ
and update λ based on (8) until the constraint is satisfied. We use a multiresolution, coarse to
fine, optimization strategy to avoid local minima. Thus to register two images we have the
steps

1. Initialize u with the identity transform u(x) = 0

2. Set λ = 10. This initial value depends on the range of the image intensities with a
trade off between fast convergence for large λ and accuracy using a smaller λ.

3. For each scale from coarse to fine:

a. Solve the PDE in equation (7).

b. If the mean squared error between target and moving image is larger than
ε increase λ and repeat (a).

Implementation details for the numerical solution of PDE’s resulting from the minimization
of transformations based on regularized vector fields are described in detail in Modersitzki
[33].

3.2. Generative Manifold Model
The generative manifold model is based on a coordinate mapping f : A → C and formulating
the d-dimensional manifold M as the conditional expectation g(x) = E[Y ∣f(y) = x]. The
composition of the two mappings g ο f provides a projection operator onto the manifold.

We compute the conditional expectation g(x) = E[Y∣f(y) = x] of a finite set of samples using
a Nadaraya-Watson kernel regression, which converges to the expectation asymptotically.
For the coordinate mapping f, we can use the point samples from Sz = {zi, z2, … , zn}, the
output of isomap on the pairwise elastic distances, but they must be extended to A by some
suitable scattered data interpolation. In practice, we extend the data through an
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approximation that smooths out the noisy manifold coordinates obtained by isomap on the
sample data. Thus, we also formulate f using Nadaraya-Watson kernel regression.

The level sets of the function f define equivalence classes of brain images that have the same
manifold coordinates. The conditional expectation g(x) = E[Y ∣f(y) = x] represents the
distribution of a given class of brains (i.e. choice of manifold parameters) by its average.
This formulation reflects the fact that brain images will generally not lie exactly on a low-
dimensional manifold. The assumption is that a collection of brain images can be captured
by a probability density that includes two components: the location on the manifold and a
noise term which is transverse to the manifold. In this way the proposed manifold resembles
a nonlinear generalization of PCA, such as the method of principal surfaces. Informally,
principal surfaces, as defined by Hastie [22], pass through the middle of a distribution and
minimize residual variance. In recent work [23], we show the formal relationships between
the generative manifold model based on kernel regression mappings and principal surfaces.
However, that work requires an optimization over the parameters Sz of f and is beyond the
scope of this paper.

Note that the ambient space A is not Euclidean and thus the independent variables of f and
the dependent variables of g are not in Euclidean space but in a space endowed with a metric
based on coordinate transformations. For the coordinate mapping f this amounts to

(9)

Recall that d here is the elastic deformation metric as defined in section 3.1. For the
mapping g we adopt the manifold kernel regression formulation in [7] based on computing a
weighted Fréchet mean. The Fréchet mean is defined as

(10)

using the kernel regression weights based on the manifold coordinates. Thus, the kernel
regression g with distances based on elastic deformations yields

(11)

The minimization in Equation 11 is computed by the iterative method described in [7]. This
is a greedy algorithm that alternates between computing transformations υi that minimize

d(y, yi) for a fixed target image y and updating the target image by .
We use an isotropic Gaussian kernel for both mappings , i.e.,  and

. The bandwidths for the kernels are selected based on the average k-th

nearest neighbors distance with k = 15, i.e.,  and

 with nnk being the k-th nearest neighbor of xi and yi respectively.
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The image in Figure 1(b) summarizes an image data set consisting of 100 images of dark
spiral segments with varying length and location. Figure 2 shows images constructed by the
generative manifold model learned from the 100 images. Thus, the images in Figure 2 depict
samples on the manifold embedded in the ambient space. Figure 1 also shows the Fréchet
mean of the data in the diffeomorphic space and the Fréchet mean on the learned manifold.
The Fréchet mean of the learned manifold suggest that it can be beneficial and necessary to
model image data sets by a low-dimensional manifold.

3.3. Discussion of the Manifold Model
The distance measure fundamentally defines which features are modeled. The metric used in
this work is a trade-off between measuring length of the vector field and smoothness. Spatial
normalization removes the effects of scale, orientation and translation prior to computing the
distance measures. If this pre-processing step is omitted the manifold estimation will
incorporate scale, orientation and translation into the resulting model and, depending on
sample size, can result in masking out more subtle changes.

Note that the proposed approach is not restricted to work within the diffeomorphic
framework. Other distance measures can readily be incorporated into the general manifold
estimation framework. This provides opportunities for adaption to different image
modalities or a more supervised approach. For example, the metric can be tailored to a
specific region of interest or information theoretic measures such as Bregman divergences
can be employed. For a supervised approach clinical information could be integrated into the
metric, leading to a manifold estimation with a trade-off between geometric, image
information based, fit and prediction of clinical information. However, this would require a
careful cross-validation strategy to avoid overfitting.

The manifold model provides additional statistical and geometrical information. For
example, a density estimation in the coordinate space, as shown in Figure 11, can be
employed to detect subjects with low probabilities. For a geometric notion of an outlier, the
projection distance can be used, as illustrated in Figure 5. The notion of projection distance
and density on manifold could be combined to build a full density estimate in the ambient
space, based on density on the manifold and variance orthogonal to the manifold.

The use of Isomap for building the coordinate mapping f ensures that increasing the
dimensionality of the manifold model will not change the lower dimensional coordinates.
However, the kernel regression representation of the manifold does not result in a perfect
reconstruction with increasing dimension for finite sample sizes.

Kernel regression converges asymptotically to the true conditional expectation with
increasing sample size and decreasing kernel bandwidth. The bandwidth in the kernel
regression plays an important role, a too small bandwidth results in an overfit of the data
while a too large bandwidth results in an overly smooth estimate of the conditional
expectation. For example, the limit case of a zero bandwidth results in direct reconstruction
of the original data points. On the other hand, for infinite bandwidth the regression results in
a point estimate, the sample mean. The selection of an optimal kernel bandwidth is only in
theory possible, based on knowledge of the underlying density. In this work we select the
kernel bandwidth based on the average distance of the k = 15 nearest neighbor. This is a
heuristic that yields an estimate such that, on average, 15 points are within the 60th
percentile of the Gaussian kernel and thus have a relatively large influence on the estimate.
Changing k to 10 or 20 does not affect the outcomes significantly. Note that both
dimensionality and kernel bandwidth affect the quality of the manifold fit. Thus it is possible
to have a decreasing fit with increasing manifold dimension depending on the kernel
bandwidth.
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Additionally the kernel regression forces the estimated manifold to lie within the convex
hull of the given data set. Thus, the projection of a brain image, with a pathology not present
in the original data set, will result in a brain image that resembles an image from the original
data set, as illustrated in Figure 5.

4. Results
The performance of the manifold model is evaluated in two ways. First, the geometric
manifold fit is examined qualitatively and quantitatively in terms of projection distances.
Second, the statistical explanatory power of the learned manifold parametrization with
respect to clinical data is explored. The statistical significance is analyzed with linear
regression of the manifold coordinates with the clinical parameters.

The evaluations were tested on 156 images of the ADNI Database and the full OASIS cross-
sectional database.

4.1. OASIS Data Set
The OASIS brain database 1 consists of T1 weighted MRI of 416 subjects aged 18 to 96.
100 of the subjects over the age of 60 are diagnosed with mild to moderate dementia. The
images are provided skull stripped, gain field corrected and registered to the atlas space of
Talaraich and Tournoux [34] with a 12-parameter affine transform. Associated with the data
are several clinical parameters. For the statistical analysis we restrict our attention to age,
mini mental state examination (MMSE) and clinical dementia rating (CDR). Figure 3 shows
the population characteristics in terms of age, MMSE and CDR.

4.2. ADNI Data Set
We used a subset of T1 weighted MRI of 156 subjects aged 57 to 88 of the ADNI database
2. The images are provided geometry distortion corrected, intensity nonuniformity corrected
and histogram peak sharpend. We additionally processed the images with a histogram
equalization by a piecewise linear fit to the three histogram peaks of CSF, gray matter and
white matter and an affine registration to an unbiased atlas. The population contains subjects
diagnosed normal (38 subjects), with mild cognitive impairment (MCI, 84 subjects) and
early Alzheimer’s disease (AD, 34 subjects). For the statistical analysis we used age, MMSE
and the diagnosis. Figure 4 shows the population characteristics in terms of age and MMSE.
The 156 subjects were selected to represent a large portion of subjects diagnosed with MCI,
with the aim to span the development from healthy to early AD.

4.3. Manifold Fit Evaluation
We compare the manifold fit against principal component analysis in Euclidean space by
projection onto the d dominant (largest eigenvalue) eigenvectors. A nonlinear manifold
representation in Euclidean space did not improve over PCA.

For PCA, we left one image out during the computation of the principal components and
projected this image onto the principal components. This procedure was repeated to leave
each image out once. For the generative manifold model, this involved computing isomap
without the left out image yi, i.e. removing the row and column of the corresponding image
from the pairwise distance matrix, and then compute the projection distance g(f(yi)) with g
and f based on the reduced data set. Figure 5 shows three images from the ADNI data set
and reconstructions based on a 2D manifold model.

1www.oasisbrains.org
2www.loni.ucla.edu/ADNI
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OASIS Data—Figure 6 shows axial slice 80 on 2D manifold coordinates obtained by the
proposed method. A visual inspection reveals that the learned manifold detects the change in
ventricle size as the most dominant parameter (x1). It is unclear if the second dimension (x2)
captures a global trend.

Figure 7 shows projection distances for the generative manifold model (a) and PCA (b) as a
function of the dimensionality. The projection distance is measured as the mean of the
distances between the original brain images and their projection on to the learned manifold
and scaled by the average nearest neighbor distance:

(12)

with nn(yi) the nearest neighbor of yi. A reconstruction error smaller than one indicates that,
on average, the projection onto the manifold is closer than the nearest neighbor. The
projection distances for PCA are scaled by average nearest neighbor in Euclidean space.
Note that the measurements are in different metric spaces, capturing different properties, and
as such only provide a qualitative comparison in terms of behavior with increasing
dimension. PCA shows very little reduction in projection distance with increased dimension,
barely one percent in the first three dimension. While the improvements for the manifold
model are not drastic either, roughly ten percent in the first three dimensions, they are an
order of magnitude larger than for PCA. The PCA projection distances do not indicate a
linear low-dimensional subspace, rather the almost linear decrease suggests a isotropic
normal distribution of the data. The change in gradient at dimension three for the manifold
model suggests that the available data can be approximately described with a three
dimensional manifold. Note that the manifold based approach, due to the kernel regression,
will not lead to a 0 projection distance with increasing dimension. Beyond dimension 3 the
reduction in projection distances is marginal for the proposed approach. This indicates that a
3 dimensional manifold is close to achieving the minimal projection distance possible for the
given amount of data and the chosen kernel bandwidth. The projection distances for the
manifold model are smaller than the average nearest neighbor distance, an indication that the
learned manifold accurately captures the data. We do not postulate that the space of brains is
captured by a 3D manifold. The approach learns a manifold from the available data and thus
it is likely that given more samples we can learn a higher-dimensional manifold for the
space of brains.

Figure 7 (c) shows the isomap residual as a function of the number of dimensions. The
isomap residual measures the distortion required to embed the pairwise elastic deformation
distances D into a d-dimensional Euclidean space by the 1 − R2 value between D and De, the
pairwise distance of the data points in the d-dimensional Euclidean space. That is, how well
do the distorted distances De explain the original distances D. The isomap residual roughly
agree with the manifold projection distances and suggest also a two to three dimensional
manifold.

Figure 8 shows axial slices of brain images generated with the proposed method by applying
the mapping g to regularly sampled grid locations on the 2D manifold coordinates shown in
Figure 6, i.e. a sampling of the learned brain manifold. The first dimension (x1) shows the
change in ventricle size. The second dimension (x2) is less obvious. A slight general trend
observable from the axial slices is less gray and white matter as well as a change in frontal
horn ventricle shape from elongated to more circular.
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ADNI Data—The results from the ADNI data show similar behavior as the results from the
OASIS data set, although less pronounced. Figure 9 shows the projection distances as a
function of the number of dimensions for the manifold model and PCA in Euclidean space
as well as the isomap residuals. Again, PCA does not show any indication of a low-
dimensional linear subspace. The projection distance for the manifold model are less telling
than for OASIS data set. This might be explained by the differences in the two populations.
Compared to the OASIS data set the ADNI data set spans a much smaller age range with
stronger pathologies. It might be expected that the ADNI data set has larger variations in
different directions due to the differences in anatomy caused by disease progressions. This is
in contrast to the OASIS data set where a large portion of the variation is likely based on
age. This explanation is supported by the statistical findings for the OASIS and ADNI data
set in Section 4.4, where a description of MMSE or diagnosis in the ADNI data set requires
additional dimensions beyond those that best describe age. In contrast, MMSE and CDR are
contained within the dimensions that best describe age for the OASIS database.

Figure 10 shows the parametrization along the first and second dimension and along the first
and sixth dimension. The first and sixth dimension are the dimensions that best explain
diagnosis. Again ventricle size is the most significant change observable in both cases along
dimension one. In Figure 13 slices of reconstructed images along dimension one and 6 are
shown, indicating some additional differences in ventricle shape.

4.4. Statistical Analysis
The coordinate space of the estimated manifold can be analyzed with traditional statistical
approaches. Figure 11 shows a kernel density estimate of the distribution of brain images in
the coordinate space of the 2D manifold estimated from the OASIS database.

To evaluate the statistical predictive power of the manifold coordinates, we fit multiple
linear regression models of clinical data versus manifold coordinates. This includes
regression of age, MMSE and CDR for the OASIS data set and age, MMSE and diagnosis
for the ADNI data set. We compare the regression models on manifold coordinates to
regression models on PCA coordinates. As for the geometric fit, regression models on a
nonlinear manifold model (i.e., isomap) in Euclidean space did not improve over PCA. For
further comparison we also regressed CDR (OASIS data set), diagnosis (ADNI data set),
and MMSE with age.

The regression of PCA and manifold coordinates involves a model selection process to
select the independent variables that best describe the clinical parameters. We use the
Schwarz’s Bayesian information criterion (BIC) [35] with an exhaustive search to select the
optimal model in each case. The BIC is −2 ln L(M)+k ln(n) with n the number of samples, k
the number of free parameters of model M and L(M) the maximum likelihood of model M.
The BIC is derived based on the asymptotics of a Bayes solution to the model selection
problem. The BIC penalizes models with a large number of parameters k, an application of
the principal of Occam’s razor. More precisely, the maximum likelihood of a model with a
parameters needs to improve over a model with b parameters, with a ≥ b, n(a−b) times to
achieve a smaller or equal BIC. In addition to the coordinates, we included age as an
independent variable in the models involving MMSE and CDR/diagnosis in the model
selection process. This essentially controls for age; independent variables (PCA or manifold
coordinates) that do not improve the models over using age as an independent variable are
ignored. In all cases ages did not show up in the best fitting models for PCA and the
manifold coordinates. Thus, adding age information does not lead to an improved fit under
the BIC criterion.
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We denote the manifold coordinates with x = (x1, … , xm) and the PCA coordinates with l =
(l1, … , lm). Thus the notation

(13)

describes a multiple linear regression model of age on the first three manifold coordinates.

OASIS data—Table 1 shows the optimal linear regression results for the OASIS data set.
In this data set only 235 out of the 416 subjects have MMSE scores. The regression for
MMSE is thus only performed on this subset of the population. For MMSE and CDR the
manifold model is the statistically most significant (largest F), and it has the largest R2

statistic with the smallest residual but the differences between the PCA and manifold model
are very small. For age, the best model is achieved with a 5D PCA, while the manifold
representation achieves the best fit with the first three coordinates. This nicely supports the
3D manifold suggested by the reconstruction errors in Figure 7. Note that the manifold
model achieves similar power with three parameters as does the PCA model with five
parameters.

The residual for MMSE and CDR is fairly large and it is not clear if the statistical
significance is due to the relatively large sample size and large amount of healthy young
subjects. Table 2 shows optimal linear models, as before, selected based on BIC and
exhaustive search, for subjects aged 60 to 80. The results from this subset are comparable to
the results on the full data. This suggests that the manifold is not only capturing the variation
induced by the large differences in age among the subjects but also important clinical trends.

ADNI Data—Table 3 shows the optimal linear regression results for the ADNI data set. For
MMSE and diagnosis the manifold model is the statistically most significant with the
smallest residual. For age the best model is achieved with three dimensions of the PCA
coordinates, while the manifold representation achieves the best fit with the first two
coordinates. Note that the three PCA coordinates that best explain age are not the first three
(dominant) principal components which capture the most variation.

For explanation of diagnosis note that the manifold model has a significantly lower p-value
than either age or the PCA coordinates. Of further interest is the inclusion of the sixth
dimension of the manifold model for explanation of diagnosis, which supports the claims
made in Section 4.3.

Figure 12 shows residuals from the linear models based on manifold coordinates plotted
against the residuals from the PCA regression. The regression residuals show roughly the
same behavior, i.e large residuals in PCA correspond to large residuals in the manifold
model of the same sign. However for the regression on diagnosis the residuals for the
manifold model show a larger variation for subjects where PCA predicts the diagnosis fairly
accurately. The manifold regression model yields a model with a more significant slope and
thus some of the subject diagnosed with MCI tend more towards normal or AD, while the
PCA model is closer to a constant model and is more likely to predict MCI.

Figure 13 shows axial slices of constructed images on a grid sampled along dimension one
and six of the manifold coordinates to illustrate the differences occurring in these
dimensions. The shading represent the slope of the linear model of row 8 in Table 3.
Dimension one captures the differences in ventricle size, while dimension six indicates an
increase in the left lateral ventricle from top to bottom.
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4.5. Computational Considerations
The distance computation between two images requires an elastic registration which takes
with our multiresolution implementation about 1 minute on a 128 × 128 × 80 volume. The
cost for learning the manifold from the 416 images of the OASIS database is high and
requires about a week using a cluster of 50 2 GHz processors.

The implementation of the elastic registration, as well as an Isomap implementation, is
available at http://www.cs.utah.edu/~sgerber/software.

5. Conclusions
This paper presents a novel approach to represent the space of brain images by a manifold
model. The linear regression results show that the generative manifold model is able to
uncover, using the raw image data only, statistically significant important relations to
clinical data.

An open question is whether the manifolds shown here represent the inherent amount of
information about shape variability in the data or whether they reflect particular choices in
the proposed approach. In particular, implementation specific enhancements on image
metric, reconstruction, and manifold kernel regression could lead to refined results.

There are various directions for improvements on the proposed method. The diffeomorphic
metric is restricted to images that are within the orbit of a given template under the
transformation. Recent work on metamorphosis [36] provides a elegant framework that
yields a metric over the complete image space. The generative manifold model is directly
applicable to an image space endowed with a metric based on metamorphosis. Another area
of future work is to extend the approach to other image modalities. A metric that captures
different properties or works with different image modalities can easily be integrated into
the system.

An interesting question is whether the learned submanifold is truly nonlinear or if an
approach such as principal geodesic analysis (PGA) [37], a generalization of PCA to
Riemannian manifolds, leads to similar results. Furthermore, PGA could be used to do
analysis on the learned manifold.
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Figure 1.
(a) Illustration of image data on a low-dimensional manifold embedded in a diffeomorphic
space. (b) A set of images consists of random length/position segments from a spiral. (c) The
Fréchet mean in the space induced by a metric based on coordinate transformations is not
like any example from the set. (d) Fréchet mean on data-driven manifold reflects the image
with average parameter values.

Gerber et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Sampling along the first dimension of the manifold learned from images of spiral segments.
The images shown are constructed, as discussed in section 3, from the learned manifold
parametrization.
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Figure 3.
Histograms of age, MMSE and CDR for the OASIS data set.
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Figure 4.
Histograms of age, MMSE and diagnosis for the ADNI data set.
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Figure 5.
Reconstructions (bottom row) of three left out images (top row) with small, medium and
large ventricle sizes. The corresponding projection distances are 1.07, 0.81 and 1.23
respectively. Note that the manifold model does not have enough data to represent the
subject on the right, which shows a, for this data set atypical, separation between the anterior
and posterior horn.
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Figure 6.
2D parametrization of OASIS brain MRI database obtained by the proposed approach. For
each brain image axial slice number 80 is visualized at the corresponding location on the 2D
manifold. The insets show the mean (green), median (blue) and mode (red) of the learned
manifold and the corresponding reconstructed images.
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Figure 7.
Projection distances, scaled by average nearest neighbor distance (12), for the OASIS data
set against dimensionality for (a) the proposed method and (b) PCA. The isomap residual (c)
shows the distortion required to embed the manifold in Euclidean space.
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Figure 8.
Reconstructions using the proposed method on equally spaced grid locations on the 2D
representation shown in Figure 6.
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Figure 9.
Projection distances on ADNI data set, scaled by average nearest neighbor distance, against
dimensionality for (a) the proposed method and (b) PCA. (c) Isomap embedding distortion
plotted as a function of dimensionality.
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Figure 10.
Parametrization along dimensions (a) 1, 2 and (b) 1, 6 of the manifold coordinates of the
ADNI data set. For each brain image axial slice number 80 is visualized at the
corresponding location on the 2D manifold. The parametrization in (b) shows the two
statistical significant manifold coordinate dimensions to explain diagnosis.
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Figure 11.
Kernel density estimate of subjects from the OASIS database projected onto a 2D manifold
representation.
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Figure 12.
Residuals from the manifold regression model against the PCA regression model for (a)
MMSE and (b) diagnosis. The bottom row shows three selected images with large residuals.
The first image has a very low MMSE score that is not well represented in the image set.
The second image shows a subject with large ventricle scores but a perfect MMSE scores.
Both approaches relate ventricle size to lower MMSE scores and thus predict a lower
MMSE score. The third subject shows the inverse, a subject with small ventricles but a
relatively low MMSE score.
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Figure 13.
Slice number 80 of the reconstructed images along the statistically significant manifold
coordinates (first and sixth dimension) for explaining the diagnosis. The shading indicates
the gradient of the corresponding linear model on diagnosis (row 8 in Table 3).

Gerber et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gerber et al. Page 29

Ta
bl

e 
1

O
pt

im
al

 li
ne

ar
 re

gr
es

si
on

 m
od

el
s f

ro
m

 th
e 

O
A

SI
S 

da
ta

 se
t. 

Th
e 

PC
A

 c
oo

rd
in

at
es

 a
re

 d
en

ot
ed

 w
ith

 l i
 a

nd
 th

e 
m

an
ifo

ld
 c

oo
rd

in
at

es
 w

ith
 x

i. 
A

 <
 ε 

en
try

de
no

te
s s

m
al

le
r t

ha
n 

m
ac

hi
ne

 p
re

ci
si

on
.

M
od

el
t

R
es

id
ua

l
R2

F
p-

va
lu

e

41
.5

 / 
-1

2.
5 

/ 4
.2

 / 
-7

.1
 / 

-8
.7

10
.5

0.
82

40
4.

9
< 
ε

-3
9.

3 
/ 1

0.
0 

/ -
13

.0
10

.8
7

0.
82

63
9.

5
< 
ε

M
M

SE
 =

 a
0 +

 a
1a

ge
-4

.0
3.

59
0.

06
15

.8
2

9.
3e

-0
5

M
M

SE
 =

 a
0 +

 a
1l 1

-6
.6

3.
40

0.
16

43
.1

3
3.

3e
-1

0

M
M

SE
 =

 a
0 +

 a
1x

1
6.

8
3.

36
0.

18
50

.3
1.

6e
-1

1

C
D

R
 =

 a
0 +

 a
1a

ge
12

.0
0.

27
0.

25
14

4.
5

< 
ε

C
D

R
 =

 a
0 +

 a
1l 1

14
.9

0.
26

0.
34

22
3.

9
< 
ε

C
D

R
 =

 a
0 +

 a
1x

1
-1

5.
8

0.
25

0.
36

24
8.

5
< 
ε

Med Image Anal. Author manuscript; available in PMC 2011 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gerber et al. Page 30

Ta
bl

e 
2

O
pt

im
al

 L
in

ea
r r

eg
re

ss
io

n 
m

od
el

s o
f t

he
 O

A
SI

S 
da

ta
 se

t r
es

tri
ct

ed
 to

 su
bj

ec
ts

 a
ge

d 
60

 to
 8

0.

M
od

el
t

R
es

id
ua

l
R2

F
p-

va
lu

e

5.
1 

/ -
2.

0
4.

3
0.

18
13

.3
6.

1e
-6

-4
.4

 / 
2.

0
4.

4
0.

14
9.

9
1.

0e
-4

M
M

SE
 =

 a
0 +

 a
1a

ge
-1

.0
4.

09
0.

00
8

1.
0

0.
3

M
M

SE
 =

 a
0 +

 a
1l 1

-4
.0

3.
86

0.
12

15
.9

1.
2e

-4

M
M

SE
 =

 a
0 +

 a
1x

1
4.

6
3.

8
0.

15
20

.9
1.

2e
-5

C
D

R
 =

 a
0 +

 a
1a

ge
3.

5
0.

37
0.

09
11

.2
1.

1e
-3

C
D

R
 =

 a
0 +

 a
1l 1

4.
9

0.
36

0.
16

24
.1

3.
0e

-6

C
D

R
 =

 a
0 +

 a
1x

1
-5

.5
0.

35
0.

20
30

.0
2.

4e
-7

Med Image Anal. Author manuscript; available in PMC 2011 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gerber et al. Page 31

Ta
bl

e 
3

O
pt

im
al

 li
ne

ar
 re

gr
es

si
on

 m
od

el
s f

ro
m

 th
e 

A
D

N
I d

at
a 

se
t.

M
od

el
t

R
es

id
ua

l
R2

F
p-

va
lu

e

5.
41

 / 
-2

.2
4 

/ -
2.

50
 /

5.
5

0.
21

13
.5

7.
3e

-8

4.
83

 / 
2.

34
5.

7
0.

16
14

.3
9

1.
8e

-6

M
M

SE
 =

 a
0 +

 a
1a

ge
0.

65
2.

43
0.

00
3

0.
43

0.
52

M
M

SE
 =

 a
0 +

 a
1l 1

-2
.5

3
2.

39
0.

04
6.

38
0.

01

M
M

SE
 =

 a
0 +

 a
1x

1
-2

.8
3

2.
37

0.
05

8.
03

0.
00

5

di
ag

no
si

s =
 a

0 +
 a

1a
ge

-0
.7

4
0.

68
0.

00
3

0.
54

0.
46

di
ag

no
si

s =
 a

0 +
 a

1l 1
2.

54
0.

67
0.

04
6.

43
0.

01
2

di
ag

no
si

s =
 a

0 +
 a

1x
1 +

 a
6x

6
3.

55
 / 

-3
.3

0
0.

64
0.

13
11

.7
4

1.
8e

-5

Med Image Anal. Author manuscript; available in PMC 2011 October 1.


