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Abstract
Medical image registration is a challenging problem, especially when there is large anatomical
variation in the anatomies. Geodesic registration methods have been proposed to solve the large
deformation registration problem. However, analytically defined geodesic paths may not coincide
with biologically plausible paths of registration, since the manifold of diffeomorphisms is immensely
broader than the manifold spanned by diffeomorphisms between real anatomies. In this paper, we
propose a novel framework for large deformation registration using the learned manifold of
anatomical variation in the data. In this framework, a large deformation between two images is
decomposed into a series of small deformations along the shortest path on an empirical manifold that
represents anatomical variation. Using a manifold learning technique, the major variation of the data
can be visualized by a low dimensional embedding, and the optimal group template is chosen as the
geodesic mean on the manifold. We demonstrate the advantages of the proposed framework over
direct registration with both simulated and real databases of brain images.
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1. Introduction
Problem description

Medical image registration plays an indispensable role in the analysis of functional and
structural variation of human anatomy. Due to the inevitable differences in the human anatomy
in the population under study, an accurate and reliable method is required to transform the
images into a common reference frame to perform statistical tests. A large volume of work in
the registration methods has been proposed since the 80’s. The early developments in image
registration method focused on the elastically-constrained deformations (Bajcsy et al. (1983);
Bookstein (1991)). In the basic setting, the problem of registering two images boils down to
minimizing the weighted sum of dissimilarity and smoothness of the deformation field.
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However, the problem becomes particularly challenging in the presence of a large shape
difference. Despite the fact that smoothness relieves the ill-posedness of this high-dimensional
optimization problem, a smoothness term such as Laplacian of the field alone does not
guarantee the preservation of topology, which may results in abrupt compressions, expansions,
and foldings in the warped images and the loss of one-to-one correspondence. Furthermore,
the dissimilarity term such as Mean-Squared Error (MSE) or Mutual Information (MI) is a
highly nonlinear function of the deformation field, and therefore the optimization process is
likely to be trapped in a local minimum. Simultaneous minimization of dissimilarity and
preservation of topology is hard to achieve with a single regularization function of the
deformation field. To preserve topology, one can add explicit constraints such as bounds on
the determinant of the Jacobian of the fields (Karaçali and Davatzikos (2004); Haber and
Modersitzki (2007)), or restriction of the displacements (Rueckert et al. (2006)). However, the
difficulty of registering two dissimilar images remains unabated. In this paper, we take an
alternative approach to minimize the dissimilarity and preserve the topology; we aim to find a
sequence of deformation fields that gradually warps an image to another, as illustrated in Figure
1.

Geodesic registration on the manifold of diffeomorphisms
Large deformation registration methods have been proposed (Christensen et al. (1996); Dupuis
et al. (1998); Grenander and Miller (1998)) to cope with the shortcomings of the previous
approaches. In particular, the geodesic registration methods try to preserve the topology of the
deformation by considering the time-varying velocity field ft(x) the whole path of registration
instead of only the final deformation f(x). In its general form, the final deformation is the end
point of the ow of a time-dependent velocity vector field vt: Ω → ℝD, t ∈ [0, 1], defined by
the differential equation: , where ft=0 = Id is an identity map. By taking the variational
approach, we can find the optimal velocity vector field vt in the space of smooth vector fields
as the solution to the following cost (Beg et al. (2005)):

(1)

where I1 and I2 are two real-valued images or volumes, w is the weight, ||vt||V is a smoothness
term such as ||vt||V = ||Lv||2, and L is a differential operator in the space of velocity vector fields.
When the differences between images are only the diffeomorphic change of shape, that is, if
they are contained in the single orbit of diffeomorphisms, the similarity term vanishes and the
minimum of the cost  endows the images with a true metric structure: d2(I1, I2) = minv (v).
Recent developments in the geodesic registration method built around this common framework
includes the symmetric formulation of the cost function (Avants et al. (2008)), and the unbiased
estimation of the mean template for groupwise registration (Joshi et al. (2004)) to name a few.

Geodesic registration on the space of learned manifold
Geodesic registration approach has provided a mathematically elegant solution to the large
deformation problem. However, the numerical computation of the velocity fields is quite time-
consuming which can outweigh its benefits. More importantly, geodesic registration calculates
the geodesics on the manifold of diffeomorphisms (Grenander (1993)), which is still a largely
unconstrained space. A geodesic path on this space can extend outside the space of “true
anatomical variation”, which the large deformation kinematics does not prevent from
happening. Ideally we want to calculate geodesics on the manifold of transformations that
represent only the biologically relevant variation. However, such manifold cannot be
represented analytically.
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In this paper, we propose a registration framework that achieves this goal. The key idea of the
paper is that we approximate analytical geodesic paths with finite sequences of small
deformations observed in the actual anatomies in data. In another point-of-view, we are
constructing empirical manifolds from data, a technique known as manifold learning (Hamm
et al. (2004)), instead of dealing with an analytical manifold of diffeomorphisms. In particular
we borrow an idea from Isomap algorithm Tenenbaum et al. (2000), which replaces the
geodesic path of the analytical manifold by the shortest path on a k-nearest-neighbor (kNN)
graph that approximates the metric structure of the empirical manifold. We refer to our
approach as a framework for Geodesic Registration on Anatomical Manifolds (GRAM).

The GRAM has the following beneficial properties:

1. Learning of anatomical manifolds: GRAM computes the geodesics path from the
observed anatomical variation of the actual data, which is the key difference to the
previous approaches to the large deformation problem. The anatomical manifold
learned from a database is reusable: to register test images from a new database to a
template image in the old database, we can compute the new registration paths by
utilizing the learned deformations.

2. Efficiency: Since in this framework the deformations are computed between two close
images, we can use simpler and faster registration algorithms such as Diffeomorphic
Demons algorithm (Vercauteren et al. (2007)), rather than more elaborate algorithms
such as Large Deformation Diffeomorphic Metric Mapping (LDDMM) (Beg et al.
(2005)). In GRAM framework, a registration algorithm is an interchangeable
component, and therefore different kinds of registration algorithms may be used in
the framework (more will be discussed in Section 4.) The only requirement is that the
component registration algorithm results in diffeomorphic deformation fields for two
similar images.

3. Visualization and Automatic template selection: From the analysis of the shortest-
paths, GRAM computes a Euclidean embedding of the data which allows us to
preview the overall structure of the data such as existence of multiple clusters or the
major mode of variation. It also finds an optimal template among the samples for
groupwise registration.

Related work
This paper builds on our previous work (Hamm et al. (2009)) and has been extended by new
experiments and in-depth analysis of the algorithm. In this framework we adopt the Isomap
algorithm (Tenenbaum et al. (2000)) to compute and visualize the Euclidean embedding of the
metric structure of the data after pairwise registration. Several authors have proposed related
algorithms to analyze metric structure of the data and visualize them. Blezek and Miller
(2006) proposed Atlas Stratification, which finds multiple modes of the images by mean-shift
and visualizes the distribution of the data by Multidimensional Scaling. Images are affinely
registered, using Mutual Information as a metric between two images, although it is not a
metric, strictly speaking. Sabuncu et al. (2008) proposed an algorithm that also finds the
multiple modes of the images by Generalized Expectation-Maximization-based clustering.
Images are registered by B-spline, and the membership probability of an image belonging to
multiple templates are calculated iteratively. The use of geodesic distances to discover the
manifold structure of data, has been proposed by Rohde et al. (2008); Gerber et al. (2009).
These two papers commonly use LDDMM and Multidimensional scaling to visualize the
manifold structure of data, and the latter further uses a kernel regression to reconstruct unseen
images from the manifold. However, the two methods directly register all image pairs, which
can be difficult and slow for image pairs that are very dissimilar. Our framework distinguishes
itself from the aforementioned methods by the following facts: we not only compute the low-
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dimensional embeddings to visualize the data, but we also compute actual large deformation
from each image to a common template for groupwise registration. Furthermore, these large
deformations are computed efficiently via sequences of small deformations on the anatomical
manifold learned from data.

The remainder of the paper is organized as follows. Section 2 describes the proposed algorithm
in detail. Section 3 demonstrates the proposed framework with several simulated and real
databases, including simulated 2D images, 3D cortical surfaces from OASIS database, and 3D
Fractional Anisotropy map of mouse brains. Section 4 discusses the limitations and extensions
of the proposed method, and Section 5 concludes the paper with discussion on the future work.

2. Methods
In this section we provide the algorithmic details of the GRAM framework. The overall training
procedure consists of three stages. First, we analyze the data structure by coarse registrations
between all image pairs. From this we find a kNN graph structure and a low-dimensional
embedding of the data. In the second stage, we choose a template automatically from the graph
structure, and identify geodesic paths1 from the template to other images on anatomical
manifolds. In the third stage, we compute the large deformation from the template to each
image by composing small deformations between adjacent images along the paths. In addition
to the training procedures, we also describe how to use the trained manifold to register a new
set of images by updating the previously found geodesic paths. Each stage is described in more
detail in the following sections.

Throughout the paper, let’s assume the dataset  consists of n images I1, …, In, and each image
is a nonnegative real function on a 2D or a 3D domain Ω.

2.1. Construction of empirical manifolds
In the first stage we construct the empirical manifold of data by investigating its metric
structure. For this purpose we represent the data as a graph whose vertices correspond to the
image samples. Below is the summary of the required steps.

1. Perform coarse registrations between all pair of images. The edge eij is assigned a
weight equal to the distance dij between two images after registration. The definition
of distance dij is dependent on the specific algorithm used for registration, and we use
a weighted sum of a similarity term and a smoothness term.

2. Construct a connected kNN or ε-NN graph based on the edge lengths.

3. Find the geodesics (=shortest paths on the graph) between all pairs of vertices, e.g.,
by Dijkstra’s or Floyd-Warshall algorithm. The length gij of a geodesic is the sum of
its edge lengths dkl along the path.

4. (Optional) Visualize the Euclidean embedding of the data by solving eigenvalue
problems (refer to Tenenbaum et al. (2000) for details).

The distance dij is asymmetric in general, that is dij ≠ dji. To make it symmetric we can use the
average 0.5(dij + dji), or we can compute dij for i < j, i, j = 1, 2, …, n and assign dji = dij to
reduce the computation to a half. The latter is possible since dij and dji are usually highly
correlated. By enforcing symmetry the shortest path length gij becomes a valid metric, since
triangle inequality is fulfilled by the definition of shortest paths.

1From now on, a “geodesic path” refers to the shortest-path on the anatomical manifold which will be clear from the context.
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The size of the neighborhood k in kNN is a parameter the user should select. For a small value
of k, the graph is not connected and has multiple disjoint subgraphs. For a too large value of
k, the graph becomes completely connected and the shortest path is the same as the the direct
path. A convenient heuristic is to choose the smallest value that makes the kNN graph
connected. More will be discussed in Section 4. An alternative to kNN selection is ε-neighbor
selection, in which two images Ii and Ij are considered neighbors of each other if dij < ε for
some ε > 0. The advantage of this method is that we can strictly set an upperbound to the
distance of the edges that will be used for registration. However, finding the smallest ε that
makes the whole graph connected still requires searching through all values of ε.

The most time-consuming part in practice is the pairwise registration between all images which
requires O(n2) number of registrations. To reduce the overhead we can perform the registration
on coarse-resolution images of the original data and also use fewer number of iterations than
the final registration in the later stage. Although such approximation is not ideal, it may be
necessary to keep the computation time practical for databases with a large number of images.
To further speed up the pairwise registration, we can distribute the registration tasks over
multiple CPUs, since the registration of one pair is independent of the other pairs.

2.2. Automatic template selection
An unbiased template of the given data can be defined as the geodesic mean of the data (Joshi
et al. (2004); Avants and Gee (2004)). From the graph derived in the previous section, we can
choose a template from the population that is closest to the geodesic mean:

where g is the shortest path length. Since the shortest path length is only an approximation, the
chosen template is different from those of Joshi et al. (2004); Avants and Gee (2004). However,
the advantage of this approach is that, the template is chosen with little additional computation.
Since we have already computed the geodesic lengths gij, the template can be chosen by looking
up the values.

Two other variants to the mean are the center

and the median

The three templates look similar in our experiments, but we choose the median as the template
due to its resilience to outlying samples in the data.

2.3. Computation of large deformations
We compute the large deformation from the template IT to any node Ij by a recursive
composition of the small deformations from its edges along the geodesic path. Let fi,j: Ωi →
Ωj denote the deformation field computed from the registration of Ij to Ii. Given the two fields
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fi,j and fj,k, we can easily compute the composition field fi,k = fj,k · fi,j: Ωi → Ωk by resampling
and interpolating the two fields. The final deformation f̂T,j is the refinement on the composed
field fT,j by a few additional iterations of registration. Below is the summary of the procedure.

1. Identify n geodesic paths from IT to the rest Ij, ∀j ∈ 1, …, n.

2. Enumerate all edges  used in any of the shortest paths. Perform accurate registration
between (Ii, Ij), ∀eij ∈ .

3. For each j ∈ 1, …, n,

a. Let s = (s1 = T, …, sm = j) be the geodesic path from IT to Ij.

b. If fT,j is already computed then exit.

c. Otherwise, recursively compute fs1,sm = fsm − 1,sm · fs1,sm − 1.

d. Fine-tune fs1,sm by additional iterations of registration.

Note that we needed only coarse registration results in the previous stages, and this stage is
where we actually perform accurate registrations. Step 2 may seem to be a huge computational
burden at first since the number of all the edges in a graph can be as large as n2. In fact, we
only need to update the registration for n − 1 edges, that is, no more than the number of direct
registration for a conventional approach. This is due to property of the graph that the shortest
paths from the template to the rest forms a spanning tree. Furthermore, the registration
converges faster since the two adjacent images are similar by construction. The condition that
each deformation field of the edge being diffeomorphic is sufficient for the composed field to
be diffeomorphic as well.

The fine-tuning is a crucial part of the procedure. It is required since the transitivity
(Christensen and Johnson (2003)) is not guaranteed for registration algorithms in general, that
is, the composed field fj,k · fi,j of the two registration results is not the same as the field fi,k
computed directly from the registration between Ii and Ik. In summary, the composed field
serves as the initial field to start the registration which helps to avoid the local minimum of
direct registration path, and the fine-tuning serves as the minimization of the transitive error.

2.4. Registration of new data
The learned manifold of training images can be used to facilitate the registration of new test
images not included in the training database. When the new images are introduced, the manifold
can be reused without recomputing the geodesic paths from the beginning. The geodesic
deformation for the test image can be computed by registering the new image to the closest
image in the training data and then composing the field with the known learned deformation
field of the closest image to the template. Below is the summary of the procedure.

1. Register the new test image to the training images to compute the distances d̃i and the
deformation f̃i, where i = 1, …, n is the index of the training images.

2. Update the distance from the template to the test image by adding d̃i and dT,i, where
dT,i is the known distance from the template to Ii.

3. Choose the shortest path from above.

4. Compose the fields f̃i and fT,i, where fT,i is the known field from the template to Ii.

5. Fine-tune the field by additional iterations of registration.

For this approach to work, the new dataset must not be too heterogeneous to the training dataset.
Otherwise, the new data will be equally distant from all training images and gain no benefit
from the learned deformations of the training data.
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3. Experiments
In this section we test the proposed framework with several simulated and real databases,
including simulated 2D images, 3D cortical surfaces from OASIS database, and 3D Fractional
Anisotropy volume of mouse brains. To demonstrate its advantages, we compare the proposed
method with the direct registration method which does not use the geodesic path. Since we do
not have ground truth for the ‘best’ registration for these databases, we measure the quality of
the registration results in terms of MSE, Harmonic Energy (HE) 2 and Maximum Jacobian
Determinant (MJD) where maximum is computed over all voxels. 3

3.1. Validation with simulated data
We first test the proposed framework on a dataset of simulated 2D cortical patches. The aim
of this section is to demonstrate the properties of the proposed method and to check the validity
of the algorithm under varying parameters. The data consist of 60 binary 2D images of size
140 × 140 which simulate a patch of a cortex varying in the thickness and the number of folds.
We use an ITK (Ibanez et al. (2005)) version of the Diffeomorphic Demons by Vercauteren et
al. (2007) for registration due to its fast speed. The images are registered with three levels of
resolution for coarse pairwise registration, and with the original resolution for fine-tuning, with
a smoothness parameter of σ = 1.5. The whole procedure takes about an hour on our cluster
server (Sun Grid Engine), which has 22 multi-core nodes and 4–8 GB. Since the server is a
shared resource, the exact time can vary. The computing time of the first stage, which is the
dominant stage, can be estimated more accurately from the equation 0.5n(n − 1)T, where n is
the number of images and the T is the average time to register a single image to a template
under a given computing resource.

From the coarse pairwise registration we define the distance in Section 2.1 as the weighted
sum of 1) MSE between the fixed and the warped images and 2) HE of the deformation field:

(2)

The smoothness parameter affects the registration results significantly. A too small value of
σ reduces the final MSE, but also increases HE and MJD significantly (over-registration). A
too large value of σ can make the final MSE many times larger than it is with a small σ although
it reduces HE and MJD (under-registration). Since the parameter selection is the choice
associated with the component algorithm and not with our framework, we do not perform
repeated experiments for a full range of σ. Instead, we have chosen an appropriate σ by checking
that the deformation field has no negative Jacobian, that is, the field is diffeomorphic. However,
the parameter w and k remains to be decided.

We first show the results with a fixed value of w = 0.75 and k = 16. 4 Figure 2 shows the two-
dimensional Euclidean embedding of the simulated data. The embedding conveniently
summarizes the major shape variation of the population which have three prototypical shapes
(which resemble the letter U, V, and W.)

To measure improvements in registration due to the geodesic approach, we calculate the
relative change of MSE

2Harmonic Energy is the mean Frobenius norm of the Jacobian of the deformation field
3We report the 99 percentile of the Jacobian Determinant instead of the maximum since the maximum is prone to noise.
4The w here is not an absolute value but a relative weight between the similarity term and the smoothness term. We normalize the two
term to have a unit l2 norm summed over all images.
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and similarly for HE and MJD.

We perform the groupwise registration using the automatically chosen template with the
proposed method and the direct method. The registration results are shown in Figure 3 which
shows the paths and the final warped images of the five samples which has the largest decrease
in MSE. The image warped by the proposed method is noticeably better than those of the the
direct method which present severe distortions. These samples have 43.4%, 40.1%, 38.1%,
37.6%, and 37.2% decrease in MSE respectively. The average decrease of MSE over all
samples is 11%, and the number of samples that shows decrease is 79%. Table 1 summarizes
the relative changes in MSE, HE and MJD. Although the decrease in MSE is of our main
concern, HE also decreases significantly. This shows us that our framework can achieve more
accurate and smoother registration simultaneously on average. Also note that in the worst case,
geodesic method results in higher errors than direct method. The explanation for this is as
follows. The registration errors from geodesic method have two opposing factors. One is the
desirable decrement due to the avoidance of the local minimum of direct registration, and the
other is the undesirable increment from the transitive error of the composition of deformation
fields. Our experiment shows that the summed effect of the two factors is beneficial on average,
but it can be negative for a fraction of the whole samples. In practice, we can always register
images using both direct and geodesic methods and choose the better of the two methods for
each sample, since direct registration using Demons is computationally inexpensive.

To check the robustness of the framework to the change of parameters, we repeat the
experiments with three values of w (0.25, 0.5, 0.75). As we mentioned in Section 2.1, a heuristic
of choosing k is to find the smallest value c that makes the kNN graph connected. We also
repeat the experiments with k = c, c + 2, c + 4. The w and k change the topology of kNN graph
and subsequently the paths and the template. Figure 4 shows two-dimensional Euclidean
embeddings with these parameters. The overall shape of the embedding and the chosen
templates seems to be affected by the parameters. However, the groupwise registration results
of Table 2 shows that the improvements in MSE, HE and MJD vary within a small range. Note
that MSE and HE decrease consistently whereas the average MJD increases sometimes, which
may be due to the fact that HE and MJD measure different aspects of ‘smoothness.’ From these
experiments we conclude tentatively that a small difference in the parameters does not
adversely affect the final outcome.

3.2. Registration of new data
We demonstrate the capability of our method described in Section 2.4: the learned manifold
of the training samples can be used to facilitate the registration of new test images not included
in the training database. For this purpose we generate additional simulated images that are
similar to but different from the training images.

To visualize the test images along with the training images, we need to compute the coordinates
of the new test points in the embedding of the training images. To do this, we first register the
test images to the training images and compute the distances from (2). Using these new
distances, and the known embedding and pairwise distances of the training images, we compute
the coordinates from the algorithm described in de Silva and Tenenbaum (2002). Figure 5
shows the two-dimensional Euclidean embedding of four test images superimposed on the
embedding of the trained simulated data. The embedding provides information on the
homogeneity(or heterogeneity) of the test data to the training data. One of the test images is
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slightly apart from the training population due to its relatively distinctive shape, whereas the
remaining test images blend well into the population.

We register the test images to the template determined from the training data, using the method
in Section 2.4. The registration results are shown in Figure 6 which shows the paths and the
final warped images of the test images. Compared with the MSE obtained by registering the
test images to the template directly, the MSE obtained from the proposed method has a decrease
of 3.4%, 34.6%, 3.2%, and 38.8%, for the four test images, respectively.

3.3. 3D Cortical surfaces of human brains
We test the algorithm on a database of real brain images. The Open Access Series of Imaging
Studies (OASIS) databases is a publicly available collection of MRIs (Marcus et al. (2007).)
This data set consists of a cross-sectional collection of 416 subjects covering the adult life span
aged 18 to 96 including individuals with neurodegeneration. The subjects are all right-handed
and include both men and women. One hundred of the included subjects over the age of 60
have been clinically diagnosed with very mild to moderate Alzheimer’s disease. In this study
we focus on the variation of cortical patterns in a small volume of interest (VOI). The VOI is
cropped in the region that contains right superior-frontal cortex. We use the segmentation
provided with the data to extract surfaces between the gray matter and the cerebrospinal uid.
The size of each volume is resized to 68 × 56 × 72 and affinely aligned.

Out of 416 images we discard 23 outlier images that are not connected to the rest of the data
with 24-NN graph. The images are registered with three levels of resolution for the coarse
pairwise registration, and with two levels of resolution for fine-tuning, with a smoothness
parameter of σ = 1.0. The whole procedure takes about 24 hours on our cluster server.

Figure 7 shows the two-dimensional embedding of the OASIS data. The cortical surfaces of
the VOI are rendered to aid visualization of the results, using the curvature information
computed from the smoothed surface. At a glance, the OASIS data contain complex variation
of cortical patterns in contrast to the simulated data. Note that in the first axis (from left to
right) the embedding shows change in the depth of sulcus/gyrus which may be ascribed to the
atrophy of the subjects with age and the Alzheimer’s Disease. The biological plausibility of
the geodesic paths are demonstrated in Figure 8 with the four samples that have the largest
decrease in MSE. Since the samples 54,52,188, and 221 are quite different from the fixed image
108, the registration is still not perfect. However the circled areas in the figure shows that
proposed method can avoid unnatural collapsing of the gyri in the direct registration method
and produces more realistic patterns. The advantage is also evidenced by the improvement of
MSE in the four samples (17%, 16%, 14% and 14% respectively.)

We now look at the overall statistics of the data. The distribution of length of the paths (=the
number of vertices along the path) is as follows. The numbers of the paths of length 2, 3, 4, 5,
and 6 are: 24 (6%), 196 (50%), 139 (35%), 30 (7%), and 3 (1%), respectively. The average
decrease in MSE for these paths are 0%, 2.8%, 2.3%, 1.9% and −0.8%. The paths of length 2
have no change obviously since there is no intermediate sample in the path. The number of
paths of length 6 are only three and shows no improvement in MSE.

Table 3 summarizes the improvements by geodesic paths. This also shows that we achieve
improvements in both MSE and the smoothness measures HE and MJD, although the average
amount of improvement is less significant than the simulated data. In this experiment we also
use Demons algorithm with the segmented volumes. To study the cortical patterns better, we
plan to use a surface-based registration such as Spherical Demons (Yeo et al. (2009)).
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3.4. Fractional Anisotropy map of mouse brains
Finally, we show that the proposed method can be applied to image database that has large
variation in both shape and appearance. Data of mouse brains are collected in our lab with the
aim of creating a normative atlas of a developing mouse brain. The data consist of 69 Fractional
Anisotropy maps of the brains sampled at 2, 3, 4, 7, 10, 15, 20, 30, 45, and 80 days of age.
Each volume is resized to 150 × 150 × 100 and affinely aligned. The images are registered
with three levels of resolution for coarse pairwise registration, and with the original resolution
for fine-tuning, with a smoothness parameter of σ = 1.5. The whole procedure takes about six
hours on our cluster server. The images in this dataset not only have a larger number of voxels
than the other experiments but they are more challenging for registration due to their large
shape and appearance variation from different ages and the degrees of maturation of tracts.

The two-dimensional embedding of the data in Figure 9 provides a glimpse of its manifold
structure. From the figure we can observe that the major variability of the data comes from
age. The importance of the age factor is also observed in Figure 10: a path that connects two
brain images of different ages passes through brains of intermediate ages in a monotonic
fashion. These findings are consistent with our prior knowledge of the data that the
developmental stage is the major factor of the variation in the data. Figure 10 also shows that
the proposed method produces better registration results than those from the direct method.
The decrease of MSE is 13.0%, 8.3%, 7.8%, 7.6%, and 6.8% for the five examples respectively.

Table 4 summarizes the overall improvements by geodesic paths. MSE and HE decrease
significantly (especially HE), and MJD remains unchanged. For mouse data we use histogram
normalized intensity difference to compute MSE and geodesic distances. However, the large
appearance variation in addition to the shape variation may require different model of the data
manifold and revised definitions of the metric (Trouvé and Younes (2005)), which is out of
the scope of this paper.

4. Discussion
In this section we discuss several aspects of the proposed framework and their practical
implications for registration.

Number of samples
The proposed registration method is motivated by Isomap algorithm, which is based on the
premise that the true geodesic on a convex set can be approximated well by the shortest path
on the kNN graph connecting the data samples. Therefore the framework also inherits the
limitations of Isomap. The number of samples necessary increases exponentially with the
intrinsic dimensionality of the data, which cannot be determined a priori. For the shortest paths
to be faithful approximations we need a large database whose size is proportional to the degree
of freedom of variation in the data. However, the number of available images in a study is
typically limited to a few hundreds at most. Considering that a brain image lies in a huge-
dimension Euclidean space of O(106) voxels, a few hundred is still a relatively small number.
Nevertheless, the small amount of data in our experiments have been shown to provide
improved registration results compared to direct registration, despite the approximate nature
of our geodesic paths.

Multiple clusters
Our model assumes that the whole data lie on a single manifold of deformation variation. This
assumption can be restrictive when the data are clustered around a few distant cluster centers
rather than evenly distributed on a low-dimensional manifold. In that case the size k of the kNN
to make the graph connected can grow very large (> 100), which undermines the advantages
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of our method. However, even in the extreme case that every image is a neighbor of the other
images, the method simply reverts to the coarse pairwise registration and no worse. Such cases
may be handled by imposing connectivity of the graph via a minimum spanning tree, or by
computing a few large deformation paths that connect the clusters via a numerical geodesic
registration method. However, if the data are known to have disjoint clusters a priori,
approaches based on the cluster assumption will be more appropriate to analyze the data
(Blezek and Miller (2006); Sabuncu et al. (2008).)

Component registration algorithms
As we stated in the introduction, the component registration algorithm of the framework is
interchangeable as long as the field it produces is diffeomorphic between two nearby images.
There are many alternatives to Demons algorithm we used in this paper, including B-spline
free-form deformation (Rueckert et al. (1999)), elastically deformable model (Davatzikos
(1997)), and feature-based algorithms such as HAMMER (Shen and Davatzikos (2002)) and
DRAMMS (Ou and Davatzikos (2009)). Furthermore, the framework can be adopted for
registering different representations of imagery, such as point set (of landmarks), curves, or
surfaces. Depending on the component algorithm and the data types, the definition of distance
between two images has to change accordingly. Note that such distance need not strictly be a
true metric or a Riemannian distance since the shortest-path on the graph impart the metric
properties to the geodesic distance. The question of which algorithm and representation is
optimal for the given data, is left to empirical studies.

5. Conclusion
In this paper, we propose a novel framework for Geodesic Registration on Anatomical
Manifold (GRAM). The most distinguishing feature of the method is that it computes the
geodesics on the manifold of the anatomical variation learned from the data, instead of
computing the analytic geodesics of all diffeomorphisms. This warrants that any deformation
field, as well as geodesic path, calculated in our framework represents real brain morphology,
and is not merely a diffeomorphic transformation of a template, which can represent an
unrealistically distorted morphologies. The learned manifold also provides a visualization of
the data structure and allows us to choose an optimal template among the samples for groupwise
registration. The experiments on simulated images, human cortical surfaces, and mouse FA
maps show that the proposed method can achieve smaller MSEs with smoother deformation
fields than those computed without using the geodesic paths. This attests to the hypothesized
benefits of utilizing anatomical variation of the actual data. It is left as our future work to
perform cross-database tests using the framework and to compare the results with numerical
geodesic registration methods.

Finally, GRAM is intended to be a metaregistration framework to efficiently compute large
deformations, which allows a large class of registration algorithms to be used as its component.
The code for GRAM framework will be made available on the web to encourage evaluation
from the community.
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Figure 1.
The figure illustrates the difficulty of registration between two dissimilar shapes. The V-shaped
image on the right is the moving image and the W-shaped image on the left is the fixed image.
When the smoothing factor is too small, the direct path of minimization (blue curve) using a
demons-like algorithm deviates from the space of diffeomorphisms and incurs unnatural
distortion such as the tear in the warped image. Increasing the smoothness term, on the other
hand, results in a under-registration where the residual MSE remains large. We aim to find the
registration path that is both diffeomorphic and biologically relevant (red curve).
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Figure 2.
Two-dimensional embeddings of the manifold of simulated shapes. Only a subset of the
samples is shown to avoid clutter. The template determined to be the median of the graph is
marked by a green box, and the red lines denote the nearest-neighbor relationship. The
embedding reveals that there are three major variants (which resemble the letters U, V, and W)
and the rest of the images lie in-between the three prototypical shapes. The template marked
by the green box is chosen from the median of the geodesic distances.
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Figure 3.
Left: Geodesic paths of simulated shapes. The images are sample paths from the leftmost image
(moving) to the rightmost image (fixed). The number on top of each image is the sample index.
Note the gradual change of shape along each path. Right: Comparison of the final warped
images from the geodesic versus the direct registration using the same registration method and
parameters. Warping the W-shaped images (55,41,57) to the fixed image (53) requires a large
deformation near the middle fold in the image. The proposed method finds such path that
gradually attens the middle fold, whereas the direct registration aggressive fit the image by
squeezing the middle fold towards the right side of the image, resulting in artificial fissures in
the image.
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Figure 4.
Embeddings and templates under varying parameters. These nine figures looks different but
they all show the gradual variation of the shapes between the three prototypical shapes (U,V,
and W.)
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Figure 5.
Two-dimensional embedding of four test images (marked by blue boxes) superimposed on the
embedding of the training data. The template is marked by a green box. The nearest-neighbors
of the training data are connected by red lines, and the nearest-neighbors of the test data within
the training data are connected blue lines. Note that the similarity of the test images and their
neighboring images in the training data, except for one test image on the upper right that is
relatively distinctive from the other images.
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Figure 6.
Left: Four randomly generated test images. Middle: Geodesic paths on the training data
corresponding to the test images. The leftmost image is the closest training image to the test
image. Right: Comparison of the final warped images from the geodesic versus the direct
registration using the same registration method and parameters.
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Figure 7.
Two-dimensional embedding of the manifold of OASIS. The cortical surfaces of the VOI are
superimposed on the embedding. Only a subset of the samples is shown to avoid clutter. The
template determined to be the median of the graph is marked by a green box, and the red lines
denote the nearest-neighbor relationship. Although the variation of the sulcul and gyral patterns
in the embedding is too complex to describe concisely, there is tendency of atrophy left to right
(compare the leftmost surfaces with rightmost surfaces.)
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Figure 8.
Left: Geodesic paths of OASIS data. The images are sample paths from the leftmost surface
(moving) to the rightmost surface (template). Note the relatively gradual change of cortical
patterns through the paths. Right: Comparison of the final warped surface from the geodesic
versus the direct registration using the same registration method and parameters. The results
of former method present more smooth and realistic warping of the cortices when compared
to the unnatural warping from the latter method. Representative regions in which the geodesic
registration is markedly better are shown by cyan-colored circles.
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Figure 9.
Two-dimensional embedding of the manifold of mouse FA map. A mid-axial slice is shown
for each mouse brain volume. Only a subset of the samples is shown to avoid clutter. The
template determined to be the median of the graph is marked by a green box, and the red lines
denote the nearest-neighbor relationship. The number on top of each image indicates the age
of the brain. The embedding reveals that the major variation of the data is the age factor which
increases gradually from left to right.
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Figure 10.
Left: Geodesic paths of mouse FA map. The images are sample paths from the leftmost image
(moving) to the rightmost image (fixed). Each path reects the changes in both the shapes and
the appearances of developing brains. The numbers on top is the age of the brain which can be
the same for two different images. Note that the age either increases or decreases monotonically
through the paths. Right: Comparison of the final warped images from the geodesic versus the
direct registration using the same registration method and parameters. Brains in different
developmental stages are quite different, and therefore it is hard to impose strict one-to-one
correspondences. However, the warped images from the geodesic method are more similar to
the fixed image than those of the the direct method. Note the asymmetry of the the latter images
in the first and the third examples.
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