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Abstract
Segmentation of the prostate boundary on clinical images is useful in a large number of
applications including calculation of prostate volume pre- and post-treatment, to detect extra-
capsular spread, and for creating patient-specific anatomical models. Manual segmentation of the
prostate boundary is, however, time consuming and subject to inter- and intra-reader variability.
T2-weighted (T2-w) magnetic resonance (MR) structural imaging (MRI) and MR spectroscopy
(MRS) have recently emerged as promising modalities for detection of prostate cancer in vivo.
MRS data consists of spectral signals measuring relative metabolic concentrations, and the
metavoxels near the prostate have distinct spectral signals from metavoxels outside the prostate.
Active Shape Models (ASM's) have become very popular segmentation methods for biomedical
imagery. However, ASMs require careful initialization and are extremely sensitive to model
initialization. The primary contribution of this paper is a scheme to automatically initialize an
ASM for prostate segmentation on endorectal in vivo multi-protocol MRI via automated
identification of MR spectra that lie within the prostate. A replicated clustering scheme is
employed to distinguish prostatic from extra-prostatic MR spectra in the midgland. The spatial
locations of the prostate spectra so identified are used as the initial ROI for a 2D ASM. The
midgland initializations are used to define a ROI that is then scaled in 3D to cover the base and
apex of the prostate. A multi-feature ASM employing statistical texture features is then used to
drive the edge detection instead of just image intensity information alone. Quantitative comparison
with another recent ASM initialization method by Cosio showed that our scheme resulted in a
superior average segmentation performance on a total of 388 2D MRI sections obtained from 32
3D endorectal in vivo patient studies. Initialization of a 2D ASM via our MRS-based clustering
scheme resulted in an average overlap accuracy (true positive ratio) of 0.60, while the scheme of
Cosio yielded a corresponding average accuracy of 0.56 over 388 2D MR image sections. During
an ASM segmentation, using no initialization resulted in an overlap of 0.53, using the Cosio based
methodology resulted in an overlap of 0.60, and using the MRS-based methodology resulted in an
overlap of 0.67, with a paired Student's t-test indicating statistical significance to a high degree for
all results. We also show that the final ASM segmentation result is highly correlated (as high as
0.90) to the initialization scheme.
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1. Introduction
Prostatic adenocarcinoma (CaP) is the second leading cause of cancer related deaths among
men in the United States, with an estimated 186,000 new cases in 2008 (Source: American
Cancer Society). The current standard for detection of CaP is transrectal ultrasound (TRUS)
guided symmetrical needle biopsy, which has a high false negative rate associated with it
(Catalona, 1991). Recently, multi-modal Magnetic Resonance (MR) Imaging (MRI)
comprising both structural T2-weighted (T2-w) MRI (Madabhushi et al., 2005; Zhu et al.,
2003) and MR Spectroscopy (MRS) (Kurhanewicz et al., 1996, 2002; Kumar et al., 2008;
Vilanova and Barcelo, 2007; Hom et al., 2006; Tiwari et al., 2009; Zaider et al., 2000; Kim
et al., 2003; Coakley et al., 2003) have emerged as promising modalities for early detection
of CaP (Kumar et al., 2008; Vilanova and Barcelo, 2007). MRS measures the relative
concentrations of different biochemicals and metabolites in the prostate, and changes in
relative concentrations of choline, creatine, and citrate are highly indicative of the presence
of CaP. It is important to note that MRS acquisition has a lower resolution than MRI
acquisition, and thus each MRS metavoxel (containing a spectral signal) is approximately 13
times the size of an MRI voxel (containing a single intensity value).

An example of a MR spectra signature associated with a T2-w MRI image is show in Fig. 1.
The spectra corresponding to three metavoxels within the prostate are shown in red, and
three spectra corresponding to metavoxels outside the prostate are shown in cyan. The
average spectra of the extra-prostatic metavoxels is shown in Fig. 1h as a blue line, and the
average spectra of the prostatic metavoxels is shown as a red line. It can be seen that the
prostatic MRS spectra are greatly different from the extra-prostatic MRS spectra. Finally, in
Fig. 1i a scatter plot of the MRS spectra for a given slice is shown, in which the prostatic
spectra are indicated by red dots and the extra-prostatic spectra are indicated by blue dots.
To visualize the 256-dimensional spectra in three dimensions, principal component analysis
was used. This scatter plot shows an example of how the prostatic and extra-prostatic spectra
are distinct.

As of 2009, there are approximately 16 ongoing clinical trials in the US aiming to
demonstrate the role of MR in a diagnostic, clinical setting.1 Recent literature suggests that
the integration of MRI and MRS could potentially improve sensitivity and specificity for
CaP detection (Hom et al., 2006). In fact, when combined with MRI, using MRS data could
yield prostate cancer detection specificity and sensitivity values as high as 90% and 88%
respectively (Testa et al., 2007). Recently, computer-aided diagnosis (CAD) schemes have
emerged for automated CaP detection from prostate T2-w MRI (Madabhushi et al., 2005;
Chan et al., 2003) and MRS (Tiwari et al., 2007, 2008, 2009). In Tiwari et al. (2009), we
showed that spectral clustering of the MRS data could be used to distinguish between
prostatic and extra-prostatic voxels with accuracies as high as 98%. This paper improves
upon the methodology presented in Tiwari et al. (2009) to drive a segmentation scheme for
the prostate capsule on T2-w MRI.

With the recent advancements of prostate MR imaging, several prostate segmentation
schemes have been developed (Zhu et al., 2003; Chiu et al., 2004; Costa et al., 2007; Ladak

1Source: www.clinicaltrials.gov.
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et al., 2000; Hu et al., 2003; Pathak et al., 2000; Gong et al., 2004; Cosio, 2008; Gao et al.,
2010). Segmentation of the prostate is useful for a number of tasks, including calculating the
prostate volume pre- and post-treatment (Hoffelt et al., 2003; Kaminski et al., 2002), for
creating patient specific anatomical models (Nathan et al., 1996), and for planning surgeries
by helping to determine just how far outside the capsule they might need to go in order to
capture any possible extra-capsular spread of the tumor. Additionally, identifying the
prostate capsule is clinically significant for determining whether extra-capsular spread of
CaP has occurred. Manual segmentation of the prostate, however, is not only laborious, but
is also subject to a high degree of inter-, and intra-observer variability (Warfield et al., 2002,
2004). The aim of this work is to automatically identify the spectra within the prostate in
order to initialize a multi-feature active shape model (ASM) for precise segmentation of the
prostate capsule.

2. Previous work and motivation
Previous work on automatic or semi-automatic prostate segmentation has been primarily for
transrectal ultrasound (TRUS) images (Chiu et al., 2004; Ladak et al., 2000; Hu et al., 2003;
Pathak et al., 2000; Gong et al., 2004; Cosio, 2008). Ladak et al. (2000) and Hu et al. (2003)
presented semi-automated schemes in which several points on the prostate contour are
manually selected to initialize a deformable model for prostate segmentation. Manual
intervention is then used to guide the segmentation. Pathak et al. (2000) similarly presented
an algorithm to detect prostate edges which were then used as a guide for manual delineation
on prostate ultrasound images. In Gong et al. (2004), deformable ellipses were used as the
shape model to segment the prostate from TRUS images. Recently, some researchers have
attempted to develop prostate segmentation methods from in vivo endorectal prostate MR
imagery (Costa et al., 2007; Gong et al., 2004; Flores-Tapia et al., 2008; Makni et al., 2008;
Liu et al., 2009; Betrouni et al., 2008; Klein et al., 2008; Zwiggelaar et al., 2003; Gao et al.,
2010). Klein et al. (2008) presented a segmentation algorithm in which the prostate
boundary is obtained by averaging the boundary of a set of training images which are best
registered to a test image. Costa et al. (2007) presented a 3D method for segmenting the
prostate and bladder simultaneously to account for inter-patient variability in prostate
appearance. In Zwiggelaar et al. (2003), polar transformations were used in conjunction with
edge detection techniques such as non-maxima suppression to segment the prostate. A recent
paper by Gao et al. (2010) uses a more advanced registration task to first align the prostate
shapes, and hence creates a more accurate statistical shape model. The appearance of the
prostate is learned using both the distance to the center of the prostate as well as the voxels’
intensity information in a Bayesian framework, which showed very promising results on a
number of studies. One possible limitation with some of these prostate segmentation
schemes (Costa et al., 2007; Gong et al., 2004; Klein et al., 2008; Zwiggelaar et al., 2003) is
in their inability to deal with variations in prostate size, shape, and across different patient
studies. Further, some of these methods are often susceptible to MR image intensity artifacts
including bias field inhomogeneity and image intensity non-standardness (Madabhushi et
al., 2005, 2006; Madabhushi and Udupa, 2006).

A popular segmentation method is the active shape model (ASM), a statistical scheme that
uses a series of manually landmarked training images to generate a point distribution model
(Cootes et al., 1995). Principal component analysis (PCA) is then performed on this point
distribution model to generate a statistical shape model (Cootes et al., 1995). A texture
model is created near each landmark point of each training image, and the Mahalanobis
distance between the test image and the training model is minimized to identify the
boundary of an object (Cootes et al., 1995; Cootes and Taylor, 1994, 2004). The
Mahalanobis distance is a statistical distance measurement and routinely used in conjunction
with ASMs to estimate dissimilarity between training and test image intensities at user
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selected landmark points. After finding boundary points by minimizing the Mahalanobis
distance, the shape model is deformed to best fit the boundary points, and the process is
repeated until convergence.

While ASMs have been employed for a variety of different segmentation tasks related to
biomedical imagery (Zhu et al., 2003, 2005; Cootes et al., 1993; Smyth et al., 1997;
Montagnat and Delingette, 1997; de Bruijne et al., 2003; Mitchell et al., 2002), they have a
major shortcoming in that they tend to be very sensitive to model initialization (Wang et al.,
2002) and sometimes fail to converge to the desired edge. Manual initialization can be
tedious and subject to operator variability. Over the last few years, some researchers have
been exploring schemes for accurate and reproducible initialization of ASM's (Cosio, 2008;
Brejl et al., 2000; Cootes et al., 1994). Seghers et al. (2007) presented a segmentation
scheme where the entire image is searched for landmarks. They however concede that
accurately initialized regions of interest (ROIs) would greatly improve their algorithm's
efficiency and accuracy. Gao et al. (2010) use a single user click to initialize their prostate
segmentation scheme, and would undoubtedly benefit from an automatic method for
localizing the prostate in MR imagery. van Ginneken et al. (2002) pointed out that without a
priori spatial knowledge of the ROI, very computationally expensive searches would be
required for ASM initialization, contributing to a slow overall convergence time. Multi-
resolution ASMs have also been proposed, wherein the model searches for the ROI in the
entire scene at progressively higher image resolutions (Cootes et al., 1994). Brejl et al.
(2000) presented a shape-variant Hough transform to initialize an ASM, but the scheme can
be very computationally expensive. Cosio (2008) presented an ASM initialization method
based on pixel classification which was applied to segmenting TRUS prostate imagery. The
method employs a Bayesian classifier to discriminate between prostate and non-prostate
pixels in ultrasound imagery. A trained prostate shape is then fit to the edge of the prostate,
identified via the Bayesian classifier. A Genetic Algorithm (Mitechel, 1998) is employed to
minimize the distance between the trained prostate shape and the edge of the prostate.

The second major shortcoming of ASM's is their inability to converge to the desired object
boundary in the case of weak image gradients. The appearance model normally uses the
intensities of the image to learn a statistical appearance model. However, there have been
several studies in which using statistical texture features and more advanced appearance
models have shown to yield improved accuracy over just using image intensities (Zhu et al.,
2005; Seghers et al., 2007; van Ginneken et al., 2002; Toth et al., 2008, 2009). In addition,
since the ASM models the object border using a multi-dimensional Gaussian, a large
number of training images are required for accurate model generation (Ledoit and Wolf,
2004).

In this paper we present a novel, fully automated ASM initialization scheme for
segmentation of the prostate on multi-protocol in vivo MR imagery by exploiting the MR
spectral data. Note that for the studies considered in this work, the MRS data was acquired
as part of routine multi-protocol prostate MR imaging and not specifically for the purposes
of this project. While the resolution of MR and MRS data are different, the identification of
prostate spectra by eliminating non-informative spectra outside the prostate provides an
initial accurate ROI for the prostate ASM. We leverage the idea first introduced in Tiwari et
al. (2008, 2009), in which spectral clustering was employed to distinguish between prostatic
and extra-prostatic spectra. We achieve this through replicated k-means clustering of the MR
spectra in the midgland. Replicated k-means clustering aims to overcome limitations
associated with the traditional k-means algorithm (sensitivity to choice of initial cluster
centers). For each slice, the largest cluster (identified as the non-informative cluster) is
eliminated. The mean shape of the prostate is then transformed to fit inside the remaining
spectra, which serves to provide the initial landmark points for a 2D ASM. In addition, since
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the spectral data severely degrades away from the mid-gland of the prostate, we limit the
clustering to the midgland. The resulting initialized shape is then rescaled to account for the
change in size of the gland towards the base and the apex.

The ASM is performed in 2D because our limited number of 3D studies (32 in total) would
prevent accurate statistical models from being generated in 3D. However, while we only had
access to 32 3D studies, this constituted a total of 388 2D image slices. According to Ledoit
and Wolf (2004), the ratio of the number of Gaussian dimensions (in our case 5) to the
number of samples (in our case either 388 or 32) must be significantly less than 1. We
therefore reasoned that while 32 3D samples would be insufficient to create an accurate 3D
appearance model, the 388 slices would suffice to generate an accurate 2D statistical
appearance model. In addition, we have opted to use multiple statistical texture features to
better detect the prostate border. Statistical texture features have been shown to improve
ASM accuracy (Seghers et al., 2007; van Ginneken et al., 2002; Toth et al., 2008, 2009). We
calculate gray level statistics (such as mean and variance) of the neighborhood surrounding
each landmark on the prostate border and use these statistics to generate our appearance
model.

Note that as in traditional ASM schemes, the off-line training phase needs to only be done
once. In this paper we compare the ASM segmentation performance using our MRS-based
initialization scheme against corresponding results obtained via the initialization method
recently presented by Cosio (2008). In Cosio (2008), only four patients were evaluated, with
a total of 22 TRUS image slices, resulting in a mean MAD value of 1.65 mm. Note that
while the Cosio method was originally presented for US data, in this work, we evaluate it in
the context of prostate MR imagery.2 The popular Cootes et al. (1995) ASM was employed
with both initialization schemes. Both schemes were rigorously evaluated via a 5-fold
randomized cross validation system, in which the manual delineations of the prostate by an
expert radiologist were used as the surrogate for ground truth. We also rigorously evaluted
the results of the replicated k-means clusteirng algorithm with the results from two other
popular clustering schemes – hierarchical and mean-shift clustering.

The rest of the paper is organized as follows. In Section 3 we provide a brief overview of
our MRS-based ASM initialization scheme. In Section 4 we present the details of our
methodology for identifying the prostate ROI via spectral clustering of MRS data. Section 5
describes the methodology for our ASM segmentation system. Section 6 describes the
experimental set up and evaluation methods, in addition to our implementation of the ASM
initialization method by Cosio (2008). In Section 7 we present both the qualitative and
quantitative results, followed by a brief discussion of our findings. Finally, concluding
remarks and future directions are presented in Section 8.

3. System overview
3.1. Notation

We define a spectral scene  where  is a 2D grid of metavoxels. Note that
metavoxel is a voxel at the lower spectral resolution. For each spatial location , there

is an associated 256-dimensional valued spectral vector ,
where f̂j(ĉ) represents the concentration of different biochemicals (such as creatine, citrate,
and choline). We define the associated T2-w MR intensity image scene , where C
represents a set of spatial locations (voxels), f(c) is the MR image intensity function

2The extension of the scheme in Cosio (2008) to MR imagery was made possible by the lead author (Cosio) of Cosio (2008).
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associated with every c ∈ C, and c = (xc, yc). The distance between any two adjacent

metavoxels,  (where ∥·∥2 denotes the L2 norm) is roughly 13 times the
distance between any two adjacent spatial voxels c,d ∈ C. We define  as
the set of N landmarks used to define a given prostate shape. The mean landmark
coordinates across all training images is given as X̄ = {c̄1, . . . , c̄N}. The κ-neighborhood of
pixels surrounding each c ∈ C is denoted as , where for , ,

. Finally, we denote as Δ ∈ {MRS, Cos} the MRS-based ASM presented in this
work and the Cosio method (Cosio, 2008) respectively. A table of commonly used notation
and symbols employed in this paper is shown in Table 1.

3.2. Data description
Our data comprises 32 multi-protocol clinical prostate MR datasets including both MRI and
MRS endorectal in vivo data. These were collected during the American College of
Radiology Imaging Network (ACRIN) multi-site trial (Mr imaging, xxxx) and from the
University of California, San Fransisco. The MRS and MRI studies were obtained on 1.5
Tesla MRI scanners, and the MRI studies were axial T2-w images. The 32 3D studies
comprised a total of 388 2D slices, with a spatial XY resolution of 256 × 256 pixels, or 140
× 140 mm. The ground truth for the prostate boundary on the T2-w images was obtained by
manual outlining of the prostate border on each 2D section by a solitary expert radiologist,
one with over 10 years of experience in prostate MR imagery.

3.3. Brief outline of ASM initialization schemes
Fig. 2 illustrates the modules and the pathways comprising our automated initialization
system. First, replicated k-means clustering is performed on the spectra in the midgland,
identified as the middle slices. The largest cluster obtained is identified as the non-
informative cluster corresponding to the extra-prostatic spectra and removed. The remaining
spatial locations corresponding to the resulting spectra are denoted by SMRS. The prostate
shape is fit to the region corresponding to these informative spectra. The clustering results
are then extended to the base and apex slices.

4. Methodology for MRS-based ASM initialization scheme
4.1. Clustering of spectra (calculation of SMRS)

The crux of the methodology is to determine a set of prostate voxels (SMRS) based on a
clustering of the spectroscopic data. This algorithm is described in the form of a sequence of
steps below.

1.
For a given 2D MRS slice , we first obtain the MR spectra

2. The metavoxels , are aggregated into k clusters , by

applying k-means clustering to all . k-means clustering aims to
minimize the sum of distances to the clusters’ centroids, for all clusters. Formally,
it iteratively estimates

(1)
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3. Since the k-means algorithm is dependent on the starting locations of the centroids
(i.e. which Va each ĉ initially belongs to), the result is sometimes a local minima
instead of a global minima. To overcome this limitation, the clustering was
repeated 25 times with random initial locations of the centroids, and the resulting
clustering which yields the minimum value from Eq. (1) is selected. Repeating the
clustering more than 25 times did not significantly change the results.

4. The dominant cluster is identified as being extra-prostatic (non-informative), and
the metavoxels in this cluster are removed. This is akin to the approach used in
Tiwari et al. (2009), in which it was found that the dominant cluster is the non-
informative cluster. The set of remaining metavoxels is then defined as,

(2)

The set of MRI voxels corresponding to metavoxels in  are then idenfitied. For
our data, we found that k = 3 clusters yielded the best results. Fig. 3a shows the 3
clusters V1 – V3 as colored metavoxels. The largest cluster is shown in green, and

would be eliminated, yielding  as the cluster comprising blue and red

metavoxels. While  denotes the set of metavoxels, the voxels associated with

 are denoted as SMRS and are shown in red3 in Fig. 3b.

4.2. Fitting the prostate shape (calculation of X0)
Cosio (2008) employed the Genetic Algorithm to optimize the pose parameters of the
prostate shape to fit a given binary mask. We found that using the objective function
described below yielded an accurate initialization for a given set of prostate pixels SMRS.
The mean shape X̄ constitutes a polygon, and the set of voxels inside this polygon is denoted
as SX̄. More generally, for a given set of affine transformations T, which represent scaling
rotation and translation, the set of voxels within that polygon are denoted as ST(X̄). The
objective function we use aims to maximize the true positive ratio, so that the initialization
is given as

(3)

where Δ ∈ {MRS,Cos}. The optimization of Eq. (3) is performed via the Genetic Algorithm
(Mitechel, 1998). The entire initialization process for Δ = MRS is shown in Fig. 3.

4.3. Estimation of  in the base and apex
The MRS spectra lose their fidelity towards the base and the apex of the prostate. This is
demonstrated in Fig. 4a, in which the three resulting clusters (V1, . . . , V3) are shown via
red, green, and blue metavoxels respectively. It was found that the spectra in the midgland
of the prostate yielded accurate estimations of SMRS. For this reason, we perform our
clustering algorithm in the midgland of the prostate, the results of which are then extended
to the base and apex. Note that since the 2D T2-w MRI slices tend to cover the prostate from
base to apex, we have found that in our studies, the middle slice typically corresponded to
the midgland. Hence we used the middle slice as our anchor midgland slice. We observed
that the area of the prostate decreases to 80% its size in the base, and 30% its size in the

3For interpretation of color in ‘Figs. 1–10’, the reader is referred to the web version of this article.
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apex. Fig. 4b demonstrates this tapering off of the gland in the base and apex. Fig. 4b is a
histogram showing the size of the prostate relative to the central slice for all ground truth

segmentations. Hence, to calculate  for the remaining slices,  is first calculated for
slice 5, and is linearly scaled down to 80% its size for the first third of the 2D sections, and
to 30% its size for the latter third of the gland.

5. Multi-feature ASM based segmentation
5.1. Basic shape model

Following model initialization , an ASM search (Cootes et al., 1995) is performed to
segment the prostate from a new image. An ASM is defined by the equation

(4)

where X̄ represents the mean shape, P is a matrix of the first few principal components
(Eigenvectors) of the shape, created using Principal Component Analysis (PCA), and b is a
vector defining the shape, which can range from between –3 and +3 standard deviations
from the mean shape. Therefore, X is defined by the variable b. Given a set of landmark

points , (Δ ∈ {MRS, Cos}) for iteration i, the goal is to find landmark points  closest to
the object border. The shape is then updated using Eq. (4) where

(5)

where each element of b can only be within ±3 standard deviations of the mean shape. The

final ASM segmentation is denoted as . The training of the ASM to determine X̄ and P
is performed by manual delineation of the prostate boundary followed by manual alignment
of 100 equally spaced landmark points along this boundary (N = 100). It should be noted
that this needs to only be performed once in an off-line setting, and once an ASM is trained
it can be used for repeated segmentations without significant manual intervention.

5.2. Basic appearance model
We define the set of intensity values near c as . Over all training
images, the mean intensity values for a given landmark point cn, n ∈ {1, . . . , N}, are
denoted as ḡn, with the covariance matrix denoted as Σn. We define the set of pixels near cn

∈ Xi along the normal to the shape as . The standard cost function for a given pixel to
the training set is the Mahalanobis distance. Therefore,  is defined as

(6)

5.3. Multi-feature appearance model
Our previous work and that of others in employing multiple image features to drive the
ASM model has shown that multi-feature ASM's are more likely to latch on to weak edges
and boundaries compared to the traditional intensity driven ASM (Seghers et al., 2007; van
Ginneken et al., 2002; Toth et al., 2008, 2009). In this work, in addition to using image
intensity values g(c), we also extracted the mean, standard deviation, range, skewness, and
kurtosis of intensity values with local neighborhoods associated with every c ∈ C. If E
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represents the expected value of an image feature, then the feature vector (G(c)) associated
with each c ∈ C is defined as,

(7)

Our cost function in Eq. (6) thus uses G instead of g.

6. Experiments and performance measures
6.1. Performance measures

For each image, a single expert radiologist segmented the prostate region, yielding ground
truth landmarks XE. For a given shape X, the set of pixels contained within the shape is
denoted as SX. We employ the performance measures shown in Table 2.

Performance measures 1–4 are area based performance measures, in which a higher value
indicates a more accurate segmentation, while performance measures 5 and 6 are edge based
performance measures which evaluate proximity of the ASM extracted boundary compared
to the manually delineated boundary. A lower value in measures 5 and 6 reflects a more
accurate segmentation.

6.2. Comparison of clustering algorithms
We compared the efficacy of the replicated k-means clustering scheme with hierarchical
clustering (Hastie et al., 2009) and mean-shift clustering (Comaniciu and Meer, 2002).
Hierarchical clustering generates a dendrogram based off the Euclidean distance between
spectra, and hierarchically combines spectra which have a low distance between them into a
single cluster. The process is repeated until a pre-specified number of clusters remain
(Hastie et al., 2009). Mean-shift clustering attempts to iteratively learn the density of the
feature space and yields a clustering result based of the manifold instead of a pre-specified
number of clusters (Comaniciu and Meer, 2002). Each methodology was used to calculate

SMRS in the midgland, and these estimations of  in the midgland were compared to the
ground truth segmentations XE for all studies. Table 3 summarizes the clustering
experiments performed.

6.3. Comparison of initialization methods

6.3.1. Cosio based initialization (calculation of )—Cosio developed an
automated ASM initialization scheme (Cosio, 2008) to segment prostate ultrasound images.
We extended the Cosio (2008) scheme to MR imagery in order to compare this scheme
against our MRS-based initialization method.4 The crux of the methodology is to classify
the pixels in the images based on a Bayesian classification scheme using a mixture of
Gaussians to represent the distribution of prostate and non-prostate pixels.

1. A set of 10 images was expertly segmented, resulting in a set of voxels within the
prostate, denoted as  and a set of pixels outside the prostate, denoted as S- =
C – S+.

4Extension of the scheme in Cosio (2008) to MR imagery was performed with the assistance of the first author in Cosio (2008),
Fernando Cosio
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2. Each voxel c = (xc, yc) had a three dimensional vector constructed from its x and y
coordinates and its intensity value Fxy(c) = [xc, yc, f(c)].

3. The distribution for prostate pixels  and non-prostate pixels  based on the
spatial-intensity vector Fxy(c) = [xc, yc, f(c)] was then estimated by using the
Expectation–Maximization function to generate a mixture of 10 Gaussians. The

distribution is given as , where N is a 3-D normal distribution

such that  and .

4. For each of the images considered, Bayes’ law (Duda et al., 2001) was then used to
determine the posterior conditional probabilities of a given voxel c ∈ C belonging
to the prostate class  and the non-prostate class , where
w denotes the class. The set of pixels SCos represents those pixels in which the
likelihood of belonging to the prostate class was greater than the likelihood of
being part of the non-prostate class, so that

(8)

The methodology presented in Section 4.2 was then used to calculate .

6.3.2. Comparing ASM segmentations using different initialization schemes—
To test the ASM, each initialization method (Δ ∈ {MRS, Cos}) resulted in an initialization

 for each image, and 2a final ASM segmentation . To evaluate ASM performance in
the absence of any automated initialization, we placed the mean prostate shape in the center
of the image yielding a third initialization, Δ = Mid. A 5-fold cross validation was
performed as follows. The 32 3D studies were randomly split into five groups of about six
studies. For each group of studies, the remaining 26 were used for training the ASM, and the
segmentation was performed for each slice in each of the six studies. This was repeated for
each group resulting in segmentations for all 388 images. The segmentations were compared
to the ground truth XE in terms of the six performance measures in Table 2. A paired
Student's t-test was then carried out for each of the performance measures to determine the
level of statistical significance. The t-test was performed over all 388 images (or, stated
differently, with 387 degrees of freedom). Finally, the correlation (R2 value) between each

final segmentation result  and the initialization result was
calculated for each performance measure, to determine the correlation between the final
segmentation with respect to the initialization. A high R2 value would indicate that the
model is very sensitive to the initialization.

6.4. Comparison of multi-resolution ASM's
For each of the initialization methods (Δ ∈ {MRS, Cos, Mid}), a multi-resolution ASM was
also performed. A Gaussian image pyramid was constructed with 4 image resolution levels
(ranging from 32 × 32 pixels to 256 × 256 pixels), and at each image level a distinct ASM
model is constructed. The result from the final pyramid (the full-resolution image) was used

as , and 5-fold cross validation and statistical significance tests were performed as
described above. Finally, the correlation (R2 value) was also calculated, the hypothesis being
that if the multi-resolution framework was able to overcome poor or lack of initialization,
then the R2 values would be lower for the multi-resolution experiments. In essence, we were
aiming to explore whether a multi-resolution approach would make redundant the need for
initialization. The entire set of ASM experiments performed are summarized in Table 4.
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7. Results and discussion
7.1. Comparison of clustering algorithms 

Fig. 5 shows some qualitative results from  for a midgland slice, which was used to
calculate SMRS. In all the images, the red cluster indicates the largest cluster which is

removed, so that  corresponds to all metavoxels that are not red. While all the clustering
methodologies found a set of metavoxels within the prostate, it is obvious that only the
replicated k-means clustering algorithm was able to properly identify most of the prostate
metavoxels. The superior performance of replicated clustering over the two other algorithms
might have to do with the fact that we were unable to identify the optimal parameter values
for the mean-shift and hierarchical clustering schemes. Although we experimented with
several different parameter settings, the hierarchical and mean-shift clustering algorithms
ended up clustering most of the background metavoxels with the prostate metavoxels. The
replicated k-means clustering, however was able to group most of the prostate metavoxels
together for a value of k = 3. Note that k = 3 appeared to work better than k = 2, owing
perhaps to some heterogeneity of tissues (cancerous and benign areas) within the prostate.

For each of the 32 studies, X0 was calculated for the midgland slice, and compared to XE.
The quantitative results for a single midland slice are shown in Fig. 7 over all 32 studies.
The most important thing to note is the extremely high sensitivity of the replicated k-means
compared to the other clustering algorithms, suggesting that the mean-shift and hierarchical
clustering tended to under-segment the prostate voxels. In addition, the overlap measure of
the replicated k-means, which takes into account both false positive and false negative
pixels, was higher than any of the other algorithms, suggesting a more accurate overall
initialization.

7.2. Comparison of initialization schemes 

Fig. 6 shows SΔ in red with  in white for Δ ∈ {Cos, MRS} for two different studies, with
XE shown in the third column ((c) and (f)) for reference. It can be seen that both perform
quite well in locating the prostate pixels. This was further tested quantatitively over all 388
slices, results of which are shown in Fig. 8. Fig. 8 illustrates that in many cases the MRS
initialization yielded superior results. It should be noted that the specificity was extremely
high in most cases due to the large size of the image compared to the size of the target object

. Our model yielded an average value of while the Cosio method had a value of
0.62. Comparison of our segmentation system with other MR prostate segmentation schemes
show that our system performs comparably to other related techniques. Zhu et al. (2003)
have overlap coefficients ranging from about 0.15 to about 0.85, while our mean overlap is
0.66. Costa et al. (2007) used prior knowledge from the MRI scan to localize an ROI
containing the prostate, resulting in a mean sensitivity and PPV of 0.75 and 0.80
respectively for the prostate. Our model achieved mean sensitivity and PPV values of 0.81

and 0.79 respectively. Comparing the initialization schemes 
revealed that all results were statistically significant to a high degree, except for the edge
based performance measures between Δ = MRS and Δ = Mid, shown in Table 5. When
comparing the actual ASM segmentations, all results were statistically significant except for
the Hausdorff distance between Δ = Cos and Δ = Mid, shown in Table 6. In Table 8, it can
be seen that the ASM is extremely sensitive to the initialization, with the lowest R2 value
being 0.71.
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7.3. Comparison of multi-resolution ASM's 
Fig. 9 shows the result from the multi-resolution ASM's over 388 images using a 5-fold
cross validation scheme. These results were then compared to the values reported in Fig. 8b
via the use of a statistical significance test, shown in Table 7. Apart from a few scenarios
(sensitivity of Δ = MRS, specificity of Δ = Cos, and overlap and edge performance
measures of Δ = Mid), the multi-resolution approach generally improved the ASM
segmentation results significantly. Finally, the R2 values from the multi-resolution
experiments were calculated, and they were all extremely high (with the lowest being 0.59).
It is interesting that in the Δ ≠ MRS experiments, the R2 values actually increased with the
multi-resolution framework, and additional studies will have to be carried out to investigate
this further. Overall, while a multi-resolution framework is useful for accurate
segmentations, the fact that the multi-resolution results were still correlated to the
initialization suggests that a multi-resolution framework by itself is not sufficient for
addressing the lack of accurate model initialization.

In addition, Table 9 shows that while the Cosio scheme was very efficient, the MRS
initialization scheme only required approximately 1 second to accurately initialize the
prostate ROI (using a 2.8 GHz, 32 GB RAM system with MATLAB 2009b and the Ubuntu
Linux operating system). In a clinical setting, the need for rapid initialization of a
segmentation scheme is motivated by the need for real time biopsy guidance, real time
registration of ultrasound with MRI, and radiation therapy applications, all of which use
segmentation of the prostate gland as a first step (Barqawi et al., 2007; Chen et al., 2010;
Zhou et al., 2010).

8. Concluding remarks
In this paper, we have presented a fully automated and accurate ASM initialization scheme
for prostate segmentation from multi-protocol in vivo MRI/MRS data. With the increasing
use of MR imaging of the prostate, several institutions are beginning to acquire multi-modal
MR prostate data, including MR spectroscopy (Kurhanewicz et al., 1996; Kumar et al.,
2008; Vilanova and Barcelo, 2007; Hom et al., 2006; Tiwari et al., 2009). The primary novel
contribution of our work is in leveraging information from one imaging protocol
(spectroscopy) to drive the segmentation of the prostate on a different protocol (T2-weighted
structural MRI). To the best of our knowledge this is the first instance of multi-modal
information being used in this fashion for ASM initialization. Our method uses replicated k-
means clustering to cluster the MRS spectra in the midgland. For the studies we considered,
the central slice was ssumed to be the midgland. This may not always be the case, and future
work will entail developing an automated, more intelligent scheme for selecting the
midgland slice. We then eliminate the background spectra, fit the shape to the remaining
spectra, and extend our initializations to the base and apex of the prostate. We employed a
multi-feature ASM to perform the segmentation, wherein multiple statistical texture features
were used to complement image intensities. We compared our MRS initialization method
against a recent image feature driven ASM inititialization method by Cosio (2008) and
found that our scheme resulted in significantly better segmentations. Future work will entail
evaluating our scheme on a larger cohort of data.
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Fig. 1.
(a) 2D section of T2-weighted MR image with the prostate boundary in green. Metavoxels
within the prostate are shown in red, and metavoxels outside the prostate are shown in blue.
The top of the choline and creatine region is indicated by the left-most purple circle in each
of (b)–(d), and the top of the citrate peak is denoted by the right-most purple circle in each
of (b)–(d). (h) The mean MRS spectra from the prostate spectra (red) and the extra-prostatic
spectra (blue) are shown. (i) Each datapoint represents an MRS spectra (prostate in red,
extra-prostatic in blue), in which principal component analysis was used to reduce the 256-
dimensional spectra to 3-dimensional spectra for visualization purposes.
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Fig. 2.
Pathways and modules involving in the MRS-based ASM initialization scheme for prostate
segmentation on multi-protocol in vivo MRI.
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Fig. 3.
(a) MRS metavoxels  (shown as colored boxes) overlaid onto the T2-w image  where
each color represents a different class resulting from the replicated k-means clustering
scheme. The voxels associated with the informative metavoxels (SMRS) are shown as a red

overlay in (b), with the resulting shape initialization  shown as a green line in (b) and
(c).
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Fig. 4.
(a) Example of a clustering result in the base of the prostate, in which the three colors
represent Va, a ∈ {1, 2, 3}. The results demonstrate the degradation of quality of MR spectra
in the prostate near the base, a phenomenon which also occurs near the apex. (b) A 2D
histogram of the relative size of the prostate as a function of the slice index from base to
apex reveals that the prostate is largest in the center and tapers off towards the extrema.
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Fig. 5.
Shown above are the qualitative results from  in columns 1, 2, and 3 respectively for
two different studies. The color of each metavoxel reflects its class assignment, and the
white shape represents X0. For reference, column 4 shows the ground truth XE in white.
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Fig. 6.
SΔ is shown in red for two different studies (1 study per row), for Δ = Cos in the first

column ((a) and (d)), and Δ = MRS in the second column ((b) and (e)). The initialization 
is shown in white, and the ground truth segmentation XE is shown in column 3 ((c) and (f))
for reference.
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Fig. 7.
Quantitative results for  are shown for the six performance measures over 32
midgland slices, in which the blue bar represents , the red represents , and the yellow
represents . The standard deviations over 32 studies are shown with black bars.
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Fig. 8.

(a) Results from the initialization schemes comparing  to  for each slice, in which  is
shown in blue,  is shown in red, and  is shown in yellow. The statistical significance

results are shown in Table 5. (b) Results from the ASM's comparing  to XE for each
slice, in which  is shown in blue,  is shown in red, and  is shown in yellow. The
statistical significance results are shown in Table 6. Standard deviations over 388 slices are
shown as black bars in both (a) and (b).
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Fig. 9.

Results from the multi-resolution ASM experiments , in which  (the multi-resolution
ASM using the MRS initialization) is shown in blue,  (the multi-resolution ASM using the
Cosio initialization) is shown in red, and  (the multi-resolution ASM using the Midgland
initialization) is shown in yellow. The results from the tests of significance, in which each
multi-resolution test (shown above) was compared to each non-multi-resolution test (shown
in Fig. 8b) are given in Table 7. Standard deviations over all 388 slices are shown as black
bars.
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Table 1

List of notation and symbols used.

Symbol Description Symbol Description

C MRI scene Ĉ MRS scene

C Set of spatial coordinates in C Ĉ Set of metavoxel coordinates in Ĉ

c A spatial location in C ĉ A metavoxel in Ĉ

f(c) Intensity value at c F̂ (ĉ) Spectral content at ĉ

S+ ⊂ C Prostate spatial locations (from experts) D Distribution from a sum of Gaussians

SΔ ⊂ C Prostate spatial locations Δ ∈ {MRS, Cos} Initialization method employed

X Set of landmark points (X ⊂ C) X̄ Mean training landmark points

XΔ
0 Initialized landmarks XΔ

Final Final segmentated landmarks
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Table 2

Performance measures used.

Measure Formula

Overlap ∣ SXΔ
∩ SXE

∣ ∕ ∣ SXΔ
∪ SXE

∣

Sensitivity ∣ SXΔ
∩ SXE

∣ ∕ ∣ SXE
∣

Specificity ∣ C − SXΔ
∪ SXE

∣ ∕ ∣ C − SXE
∣

Positive predictive value (PPV) ∣ SXΔ
∩ SXE

∣ ∕ ∣ SXΔ
∣

Mean absolute distance (MAD) 1
N

∑n=1
N ( cn − dn , cn ∈ XΔ, dn ∈ XE )

Hasudorff distance (HAD) maxn( cn − dn , cn ∈ XΔ, dn ∈ XE )
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Table 3

Experimental set ups for calculation of SMRS.

Experiment Description

E1
Hierarchical clustering

E2
Mean-shift clustering

E3
Replicated k-means clustering
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Table 4

Experimental set ups for the ASM experiments performed.

Experiment X Δ Description

E4 XΔ
0 MRS MRS initialization

E5 XΔ
Final ASM

E6 XΔ
Final Multi-resolution ASM

E7 XΔ
0 Cos Cosio initialization

E8 XΔ
Final ASM

E9 XΔ
Final Multi-resolution ASM

E10 XΔ
0 Mid Initialized by placing X̄ in the middle of C

E11 XΔ
Final ASM

E12 XΔ
Final Multi-resolution ASM
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Table 9

Efficiency table noting the mean time, in seconds for a single image. For MRS, the time noted is the total time
calculating SMRS for a single midgland slice, using k-means clustering replicated 25 times. For Cosio, the time
is the calculation of SCos for a single midgland slice, given that the distributions have already been calculated.
The computer system had a 2.8 GHz processor and 32 GB of RAM, running MATLAB 2009b with the
Ubuntu Linux operating system.

MRS Cosio ASM

Mean time (s) 1.3 0.08 0.14
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