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Abstract  

 

This paper proposes two new methods for the three-dimensional denoising of 

magnetic resonance images that exploit the sparseness and self-similarity 

properties of the images. The proposed methods are based on a three-

dimensional moving-window discrete cosine transform hard thresholding and a 

three-dimensional rotationally invariant version of the well-known nonlocal 

means filter. The proposed approaches were compared with related state-of-

the-art methods and produced very competitive results. Both methods run in 

less than a minute, making them usable in most clinical and research settings.    

 

 

Keywords: MRI, denoising, sparseness, nonlocal means 

 

 

Abbreviations:  

 

VBM: Voxel-based morphometry 

PCA: Principal component analysis 

DCT: Discrete cosine transform 

NLM: Nonlocal means 

ODCT3D: Oracle-based 3D discrete cosine transform filter 

RI-NLM3D: Rotationally invariant nonlocal means filter 

PRI-NLM3D: Prefiltered rotationally invariant nonlocal means filter 

WSM: Wavelet sub-band mixing 

RMSE: Root mean squared error 

SSIM: Structural similarity index 
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1. Introduction 

 

The denoising of magnetic resonance (MR) images is an important open 

problem that has been discussed frequently in the recent literature because of 

its relevance to many clinical and research uses. Denoising is used as a 

preprocessing step in many image processing and analysis tasks such as 

registration or segmentation to reduce the random noise arising from the 

acquisition process. 

 

One approach that has been applied extensively in MRI preprocessing is the 

Gaussian filter (Ashburner and Friston, 2000). This method, although capable of 

reducing some image noise (especially in homogeneous areas), also removes 

high-frequency signal components, thereby blurring edges in the images. 

Therefore, this filter has been commonly used for regularization purposes, such 

as in voxel-based morphometry (VBM) (Ashburner and Friston, 2000), to reduce 

anatomical inconsistencies. 

 

A large number of edge-preserving methods have been proposed to overcome 

the above-mentioned blurring effects. For example, anisotropic diffusion filters 

(Gerig et al., 1992) are able to remove noise using gradient information while 

respecting important image structures. Recently, Krissian and Aja-Fernandez 

(2009) proposed a new anisotropic diffusion filter based on a linear minimum 

mean squared error estimation and partial difference equations for Rician noise 

removal that has achieved state-of-the-art results.  

 

Wavelet-based filters have also been applied successfully to the denoising of 

MR images (Pizurica et al., 2003). Such filters are rooted in the processing of 

images in a transformed domain. Other transforms that have been applied to 

denoise images include principal component analysis (PCA) (Muresan and 

Parks, 2003) and the discrete cosine transform (DCT) (Yaroslavsky et al., 

2000). Many transform domain filters derive from variations of the transform-

threshold-inverse transform principle.  
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In accordance with this principle, local transform approaches (i.e., sliding 

window with or without overlapping) have obtained very good results in recent 

years (Guleryuz, 2003; Guleryuz, 2007; Yaroslavsky et al., 2000). In Guleryuz’s 

(2007) method for Gaussian noise reduction, the image noise is removed using 

overcomplete linear transforms and thresholding. In practice, Guleryuz applied 

a classical sliding-window DCT thresholding as in Yaroslavsky et al. (2000), but 

overlapping estimations were adaptively combined to reduce the Gibbs effects.  

 

Other recently proposed approaches use learned image patch dictionaries 

(Aharon et al., 2006; Elad and Aharon, 2006; Mairal et al., 2008) instead of DCT 

bases to perform the denoising. All these approaches stem from the fact that an 

image can be represented as the linear combination of a set of image bases 

with very few non-null coefficients. This property, known as sparseness, is the 

core of the JPEG and JPEG2000 compression standards. 

 

Finally, the nonlocal means (NLM) filter, a new method introduced by Buades et 

al. (2005), has emerged as a very simple and effective way to reduce noise 

while minimally affecting the original structures of the image. This method is 

based on the natural redundancy of patterns within the images. Recently 

improved, the NLM filter has been applied to the denoising of MR images and 

demonstrated better results than those of previous related methods (Coupé et 

al., 2008a, 2008b; Manjón et al., 2010; Wiest-Daesllé et al., 2008).   

 

In this paper, we present two new approaches to the three-dimensional (3D) 

denoising of MR images. The first is an extension of the original method 

proposed by Guleryuz (2007). Based on local 3D DCT hard thresholding, our 

proposed method has been adapted to deal with Rician noise (the typical type 

of noise present in magnitude MR images) using a pseudo-oracle principle. The 

second proposed method is a new rotationally invariant 3D version of the 

Rician-adapted NLM filter that uses a prefiltered image obtained by DCT 

denoising. 
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2. Methods 

 

Typically, the observed noisy MR image y is considered the linear combination 

of a noise-free image x and a white noise realization n from the measurement 

process:  

nxy                                                       (1) 

 

Therefore, the goal of any denoising algorithm is to find a good estimate x̂ , 

given y. This section describes two recent methods for image denoising based 

on efficient concepts of how to solve this problem: 

 

 Denoising using sparseness: The first method under study is the local 

DCT denoising method proposed by Guleryuz (2007) that uses the 

sparseness of the image (i.e., the ability of the image to be represented 

by a small number of base functions, e.g., DCT bases).  

 

 Denoising using self-similarity: The second method under 

investigation is the well-known NLM filter proposed by Buades et al. 

(2005) that uses the pattern redundancy present in the image. After a 

brief presentation of the original NLM filter, a new rotationally invariant 

version of this filter is proposed. 

In order to take advantage of both properties, sparseness and self-similarity, a 

new efficient collaborative method is proposed. The proposed technique is 

based on a rotationally invariant version of the NLM filter and uses an image 

prefiltered with the extended DCT-based method to compute patch similarities.  

Finally, the adaptation of the proposed methods to allow them to handle Rician 

noise (i.e., the type of noise present in magnitude MR images) is described. 
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2.1. Denoising using sparseness 

     

2.1.1. Guleryuz’s method (DCT3D) 

 

In Guleryuz’s (2007) method, the estimate of the noise-free image x̂ is obtained 

using a hard thresholding method. An overcomplete set of 3D block DCTs 

(444 block size) is used (Guleryuz used 88 blocks in his 2D method, which 

yields the same number of coefficients). The local denoised estimate at block j, 

j
x̂ , is obtained by applying a hard thresholding rule: 
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where H is a 3D DCT, cj are the transform coefficients of the j block, and T is 

the hard thresholding operator with threshold . Finally, all local estimates )(ˆ ix
j

 

are combined from all overlapping j blocks at position i using the following 

weighted average rule:  
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where V is the number of overlapping blocks contributing to 



ˆ x ( i)  and  j is the 

weight of each block j, which is proportional to the inverse of the 
j

ĉ  L0 norm 

(number of nonzero coefficients of block j after the thresholding operation). This 

approach gives more weight to estimations with more null values after 

thresholding. Thus, homogeneous blocks tend to be favored in comparison with 

blocks containing edges and thus suffering from Gibbs effects. The only 

parameter in this method is the threshold value .  
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2.1.2. Oracle-based filters 

 

Oracle-based filters assume that, if the null coefficients of the original noise-free 

image are known, they can be applied to improve the denoising. In fact, the 

thresholding method that minimizes the mean squared error with the original 

image is given by: 
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which compares the magnitude of the noise-free DCT coefficients with the 

standard deviation of the noise  (see Mallat (1999) for more details). 

 

Unfortunately, in practice, no noise-free image x is available; hence, this 

approach is unfeasible.  

 

2.1.3. Proposed Oracle-based DCT filter (ODCT3D) 

 

If we relax the Oracle condition, we can use a prefiltered image pre
x̂  with, for 

example, the described DCT3D method as an approximation of the noise-free 

image. With this approach, the cj block coefficients of the noisy image y can be 

better thresholded (applying the threshold operation described in Equation 4) 

using the corresponding block coefficients pj of the prefiltered image. The final 

image reconstruction is performed using the same approach described above. 

We will refer to this method as Oracle DCT3D (ODCT3D). As we will show later, 

this modification not only allows better results to be obtained in terms of 

quantitative measures, but also reduces the remaining Gibbs artifacts of the 

original DCT3D method.  

 

The only parameter of this method is the threshold  from the prefiltering step. 

In all of our experiments, we used a  value of 2.7  (where  is the standard 

deviation of the noise), which is common in DCT and wavelet thresholding 

methods (Mallat, 1999). 
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2.2. Denoising using self-similarity 

 

2.2.1. The original nonlocal means denoising filter 

 

For its use of the self-similarity properties of an image, the NLM filter has 

recently become known as a simple but effective way of removing noise from an 

image while minimally affecting its original structure.  

 

Originally proposed by Buades et al. (2005), the NLM filter takes advantage of 

the high level of pattern redundancy in an image, achieving high-quality image 

denoising by averaging similar realizations of the noisy signals. Basically, this 

filter reduces the noise in an image by averaging voxels that originally had the 

same intensity in the noise-free image. To this end, Buades et al. (2005) 

suggested that voxels with similar neighborhoods (small 3D patches in our 

volumetric case) tend to have similar original values, yielding the following filter 

expression: 
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where  represents the search volume, the weights w(i,j) represent the 

similarity between any two 3D patches Ni and Nj centered around pixels i and j, 

and h2 is a parameter controlling the strength of the filter.  

 

So defined, this filter is able to identify Nj patches as similar to a given patch Ni, 

such that they share the same structure and orientation. This means that the 

weights defined in Equation 5 are not rotationally invariant. Therefore, similar 

patches with similar structure but different orientations to the reference patch 

will have a small influence in the average.  
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2.2.2. Rotationally invariant nonlocal means filter (RI-NLM3D) 

 

To avoid this problem, the orientation of each patch can be estimated and 

corrected before computing the L2 norm (Kleinschmidt et al., 2008; Zimmer et 

al., 2008). However, this solution is very time consuming, as it increases the 

already high computational burden of the NLM method, and the reorientation 

operation introduces interpolation artifacts and correlates the noise, making the 

denoising process more difficult.  

 

Instead of correcting the orientation of the patches, a rotationally invariant 

measure describing the patch information can be used (Lou et al., 2008; 

Zexuan et al., 2009), for instance, rotationally invariant image descriptors such 

as Hu or Zernike moments (Hu, 1962; Teague, 1980). However, such 

descriptors are sensitive to noise, and their ability to represent patch information 

decreases rapidly as noise power increases. 

 

Therefore, we present a simple but effective similarity measure that is 

rotationally invariant and based on voxel intensity and the corresponding local 

patch mean (using a 333 voxel Gaussian kernel): 
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where µNi and µNi are the mean values of patches Ni and Nj around voxels i and 

j, and h is related to the standard deviation of the noise. Note that the distance 

between the patch means is multiplied by three to account for this distance 

being approximately three times smaller than the average voxel distance 

because of the application of Gaussian smoothing. Our experiments showed 

that giving this distance three times the weight produces the best results. 

 

Because it uses the value of the central voxel of the patch, this similarity 

measure is point specific rather than region specific, which allows a better 

description of the characteristics of the voxel. On the other hand, using the 

mean value of the region around the voxel would make the similarity measure 
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more robust against the noise while minimizing the aggregation artifacts that 

could produce cartoon-like images. 

 

In analyzing Equation 6, it becomes clear that this measure exhibits the same 

noise sensitivity as Hu or Zernike moments because it uses the intensity of the 

voxel of the similarity measure, which is not a robust descriptor of the real 

intensity of the voxel (the main benefit of this approach is its low computational 

complexity). For this reason, applying this filter to medium and high noise levels 

produces poor results. However, we will show that, under certain 

circumstances, this method can obtain very good denoising results when 

combined with a prefiltering step. We will refer to this method as the RI-NLM3D. 

 

2.3. A new collaborative method based on sparseness and self-similarity 

 

We propose to combine the two methods described above to obtain better 

results than could be obtained by either method separately. Specifically, we 

propose an Oracle-based RI-NLM3D method where the similarities between 

voxels and patches are computed from the already denoised image using the 

ODCT3D method and then applied to denoise the original noisy image: 
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where the new weight  is computed using the ODCT3D denoised image xo and 

applied to denoise the noisy image y.    

 

Kervrann et al. (2007) proposed a similar plug-in estimator for 2D NLM filtering. 

In their approach, they first denoised the image with a Bayesian NLM filter. The 

similarity between denoised patches was then computed and finally applied to 

noisy voxels. However, this method has the disadvantage of being 

computationally intensive and only based on pattern redundancy without taking 

into consideration the sparseness properties of the image.  
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By contrast, the proposed approach presents an interesting advantage in that 

the RI-NLM3D method only works well for low noise levels, a condition that is 

met after the ODCT3D method has been applied. Figure 1 shows a scheme of 

the proposed method.  

 

 

Fig. 1. Scheme of the proposed method.  

 

Finally, a preselection strategy was also applied to avoid useless computations 

(Coupé et al., 2008a; Kervrann et al., 2007). We used a statistically driven rule 

based on the distance between the patch means of the prefiltered volume:  
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          (8) 

 

In this way, patches with an intensity difference greater than h do not contribute 

to the denoising process. We will refer to this proposed method as the 

prefiltered rotationally invariant NLM3D (PRI-NLM3D). 

 

Because the proposed similarity measure is applied to the already denoised 

image using the ODCT3D method, the h parameter controlling the strength of 

the filter was set to 0.4  instead of  (this value was found experimentally to be 

the best option through an exhaustive search of many image types and noise 

conditions). As in Coupé et al. (2008a), the radius of the search volume  was 
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set to 5 voxels, which resulted in a 3D search volume of 111111 voxels. 

Experimentally, this volume was shown to be a good compromise between 

computational complexity and quality of the results. Larger search volumes 

improved the results only marginally, but increased the computational burden 

significantly.   

 

2.4. Adaptation to Rician noise 

 

Noise in magnitude MR images follows a Rician distribution (Nowak, 1999). 

Consequently, the weighted average produced by applying the PRI-NLM3D 

method will be biased because of the asymmetry of the Rician distribution. 

 

To avoid such bias, we adopted a method of bias correction used in early MRI 

denoising (Manjón et al., 2008; Wiest-Daesslé et al., 2008). The unbiased PRI-

NLM3D estimator is defined as follows: 
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We also adapted the ODCT3D method to deal with Rician noise. In this case, 

because of the effect of DCT thresholding, the bias in the squared domain is not 

constant, but dependent on intensity. It can be estimated theoretically and 

inverted in the original domain using the properties of the first moment of a 

Rician distribution, as expressed in Equation 10:  
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 are the biased and unbiased estimates due to the Rician 

bias at position i from block j, I0 and I1 are the modified Bessel functions of order 
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zero and one, respectively, and  is the standard deviation of the noise. Then, 

the final unbiased estimate is obtained by mapping the biased estimates directly 

onto the unbiased ones by using a precomputed look-up table. Finally, the 

different estimations from the different blocks are averaged to provide the final 

unbiased estimate in a manner similar to Equation 3: 

 










V

j

j

V

j

jj
ix

ix

1

1

))(ˆ(

)(ˆ 





                                              (11) 

 

where operator   is a mapping function that provides the unbiased estimate for 

a given biased estimate by using the precomputed equivalences from 

Equation 10.  

 

3. Experiments and results 

 

To evaluate the described methods, we used the well-known BrainWeb 3D MRI 

phantoms (Collins et al., 1998; Kwan et al., 1999), T1-weighted (T1w), PDw, 

and T2w volumes of 181217181 voxels (voxel resolution = 1 mm3), which 

were corrupted with different levels of Rician noise (1% to 15% of maximum 

intensity). Rician noise was generated by adding Gaussian noise to real and 

imaginary parts and then computing the magnitude image. 

 

Two quality measures were used to evaluate the results. The first was the root 

mean squared error (RMSE) metric, which is a distance measure commonly 

used in image processing. The second was the structural similarity index 

(SSIM) (Wang et al., 2004), which is a measure more consistent with the human 

visual system:  
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where µx and µy are the mean value of images x and y, x and y are the 

standard deviation of images x and y, xy is the covariance of x and y, 
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c1 = (k1L)2, and c2 = (k2L)2 (where L is the dynamic range, k1 = 0.01 and 

k2 = 0.03). As suggested by Wang et al. (2004), the SSIM was locally estimated 

using a Gaussian kernel of 333 voxels. Finally, the mean value of all the local 

estimations was used as a quality metric. For the sake of clarity, both measures 

were estimated only in the region of interest (head tissues) obtained by 

removing the background (i.e., the label 0 of the discrete model in BrainWeb).  

 

3.0.1 DCT3D vs. ODCT3D 

 

To evaluate the proposed ODCT3D method, we compared it with the 3D 

version of Gurelyuz’s (2007) method (DCT3D) using the T1w BrainWeb 

phantom. Figure 2 shows the RMSE and SSIM measures for different levels of 

Rician noise and indicates that the proposed method outperforms the DCT3D 

method at medium and high noise levels. Furthermore, as can be seen in 

Fig. 3, the proposed ODCT3D method reduces the Gibbs effects that remain 

after the DCT3D method is applied. 

 

Fig. 2. Left: Root mean squared error (RMSE) of the ODCT3D and DCT3D methods for 

different noise levels. Right: Structural similarity index (SSIM) of the ODCT3D and DCT3D 

methods for different noise levels.  
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Fig. 3. Example result of the filtering process (axial slice) using the ODCT3D and DCT3D 

methods for a Rician noise level of 15%. The DCT3D filtered image shows some Gibbs effects, 

mainly observable in homogeneous areas, while the image produced with the proposed 

ODCT3D method no longer shows such artifacts. 

 

3.1. Comparison of methods 

 

We compared our proposed Rician-adapted versions of the ODCT3D and PRI-

NLM3D methods with some recently proposed related methods used for MRI 

denoising of Rician distributed noise: the optimized blockwise nonlocal means 

filter (Coupé et al., 2008a), the wavelet sub-band coefficient mixing method 

(WSM) (Coupé et al., 2008b), and the ORNRAD filter (Krissian and Aja-

Fernandez, 2009). 

 

Figure 4 shows a comparison of the RMSE and SSIM measures obtained using 

the methods under investigation with different image types and noise levels. 

Figures 5, 6, and 7 are provided for a visual comparison of the results. All the 

methods were run with the optimal parameters suggested by the authors (see 

Table 1). With the exception of the ORNRAD filter, all the methods were 

implemented using multithreaded C MEX files in MATLAB 2009a (The 

MathWorks, Inc.) in Windows XP 64-bit Edition (Pentium quad-core 2.4 GHz 

with 8 GB of RAM). The ORNRAD filter was run (using AMILab 2.0.4 on an 

Intel Xeon X5650 with 12 cores and 12 GB of RAM running Linux Fedora 13) 

by its authors, who supplied results for the same datasets. 
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To facilitate the reproducibility of the presented experiments, the Matlab code 

for our the experiments will be available on our webpage: 

http://personales.upv.es/jmanjon/denoising/prinlm.html. 

Table 1. Method parameters (v is the radius of the search volume, f is the radius of the 3D 

patches, h is the strength of the filter, and  is the standard deviation of the noise).  

Method Parameters 

Blockwise NLM  v = 5, f = 1, h =  

WSM   v = 3, f1 = 1, f2 = 2, h =  

ODCT3D    = 2.7  

PRI-NLM3D  v = 5, h = 0.4   

ORNRAD  v = 1, T = 2, dt = 1/6, 1 = 0.7, 2 = 1 
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Fig. 4. Left: RMSE of the compared methods for different image types and noise levels. Right: 

SSIM of the compared methods for different image types and noise levels.  
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As can be seen in Fig. 4, the proposed ODCT3D and PRI-NLM3D methods 

showed improvements over the other filters under consideration in most of the 

cases. The PRI-NLM3D method was the best method in almost all cases. Only 

the ODCT3D method surpassed the PRI-NLM3D method at high noise levels 

on the PDw data, probably because of the low contrast of the images. The 

ORNRAD method performed very well on the T1w images, producing similar 

results to those of the proposed ODCT3D method, although its performance 

decreased noticeably on the PDw and T2w images in terms of the RMSE.  

  

Furthermore, as can be observed in Figs. 5, 6, and 7, the PRI-NLM3D 

produced visually more pleasant results than the other methods, showing fewer 

oscillations in homogeneous areas and better defined edges.  

 

In terms of filtering time, the ORNRAD method was the slowest, taking 12 min 

on average (note that this was using a single-threaded implementation, 

whereas the other methods were running on four cores), followed by the WSM 

method at 110 s, the blockwise NLM3D at 81 s, the PRI-NLM3D method at 

60 s, and finally the ODCT3D method at only 10 s. 
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Fig. 5. Example filtering results for an axial slice of the T1w BrainWeb phantom (Rician noise 

level of 15%). The third row shows the absolute value of the image residuals for the different 

methods.  
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Fig. 6. Example filtering results for an axial slice of the PDw BrainWeb phantom (Rician noise 

level of 15%). The third row shows the absolute value of the image residuals for the different 

methods.  
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Fig. 7. Example filtering results for an axial slice of the T2w BrainWeb phantom (Rician noise 

level of 15%). The third row shows the absolute value of the image residuals for the different 

methods.  
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3.2. Evaluation on real clinical data 

 

To evaluate the consistency of the PRI-NLM3D method on clinical data, two 

datasets were used. The first was an MP-RAGE T1w volumetric sequence 

acquired on a Siemens 1.5T Vision scanner (Erlangen, Germany) [TR = 9.7 ms, 

TE = 4 ms, TI = 20 ms, TD = 200 ms, flip angle = 10 º, voxel resolution = 

111.25 mm3, 256256128 voxels]. The Rician noise level (used as the 

filtering parameter) was estimated to be around 2% of the maximum intensity 

using the object-based method proposed by Coupé et al. (2010). The filtering 

results for this dataset are shown in Fig. 8. The PRI-NLM3D method removed 

the noise successfully, showing no significant anatomical information on the 

image residuals. The processing time for this dataset was 42 s.  

 

The second dataset was an MP-RAGE T1w volumetric sequence acquired on a 

Siemens Trio 3T scanner (Erlangen, Germany) [TR = 2300 ms, TE = 2.9 ms, 

TI = 900 ms, flip angle = 9 º, voxel resolution = 1 mm3, 256240176 voxels]. 

The Rician noise level was estimated to be around 1% of maximum intensity. 

Figure 9 allows for a visual comparison of the results produced using the 

ODCT3D, ORNRAD, and PRI-NLM3D methods. The PRI-NLM3D method 

removed the noise successfully while preserving fine details of the images, 

whereas the ODCT3D and especially the ORNRAD method slightly 

oversmoothed some details. The processing time for this dataset was 9 s with 

the ODCT3D method, 52 s with the PRI-NLM3D method, and 13 min with the 

ORNRAD filter. 
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Fig. 8. Example results of the proposed PRI-NLM3D filter on real data (Rician noise level of 

2%). The background and part of the face were removed by a defacer program to preserve the 

anonymity of the subject. From top to bottom: Original noise volume, denoised volume using 

the proposed method, and the corresponding residuals. 
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Fig. 9. Example results of filters applied to real data (Rician noise level of 1%). All compared 

methods worked very well, but the ODCT3D, and especially the ORNRAD method, tended to 

oversmooth some fine details in the images (see magnification of the white square region in the 

lower row). 

 

4. Discussion  

 

We presented two new methods for MRI denoising (ODCT3D and PRI-NLM3D) 

that take advantage of two intrinsic properties of MR images: sparseness and 

self-similarity. The proposed PRI-NLM3D method was compared with state-of-

the-art methods in MRI denoising and produced the best results out of all the 

methods under consideration. 

 

The enhanced accuracy of the proposed methods can be understood by taking 

two main facts into consideration. First, the ODCT3D method benefits from the 

high compressibility (sparseness) of MRI data, allowing a very efficient noise 

reduction (the ODCT3D method obtained very good results in comparison with 

previously proposed NLM-based methods). Second, the PRI-NLM3D method  

indirectly takes benefit from the sparseness properties of the images by using 

the prefiltered ODCT3D data as prior. This method showed a very good 

performance as a result of using the low noise image prior and the increased 

number of redundant patterns present when using a rotationally invariant 
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similarity measure (compared with the non-rotationally invariant NLM voxelwise 

version). It is worth noting that, although other nonlocal rotationally invariant 

methods have been previously proposed in the literature, they were 2D 

implementations rather than 3D like the one proposed in this paper.  

 

Both the ODCT3D and PRI-NLM3D methods showed an improved performance 

over previous state-of-the-art MRI denoising methods. The main differences 

between these two methods exist in the small details: The ODCT3D method 

tends to slightly oversmooth edges and some fine details (compared with the 

PRI-NLM3D), probably as a result of its nature as a block processor, whereas 

the PRI-NLM3D method seems to retain more detail in the denoised image 

because of its voxelwise processing. 

 

From a practical point of view, the proposed methods run in a reasonable time 

(less than 1 min) for most research and clinical settings. Moreover, GPU-based 

implementations can be used to further reduce the processing time. Recently, a 

GPU-based NLM filter implementation showed a drastic reduction in the 

computational burden (Huang et al., 2009), which could allow for an almost 

real-time version of the proposed filters.  

 

Finally, it is worth noting that the application of the proposed method can clearly 

benefit not only visual diagnostics, but also quantitative methodologies that rely 

on good quality data, such as MRI brain tissue segmentation or MR diffusion 

tensor image processing. 
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