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This paper presents a new and original variational framework for atlas-based segmentation. The
proposed framework integrates both the active contour framework, and the dense deformation fields of
optical flow framework. This framework is quite general and encompasses many of the state-of-the-art
atlas-based segmentation methods. It also allows to perform the registration of atlas and target images
based on only selected structures of interest. The versatility and potentiality of the proposed framework
are demonstrated by presenting three diverse applications: In the first application, we show how the pro-
posed framework can be used to simulate the growth of inconsistent structures like a tumor in an atlas. In
the second application, we estimate the position of nonvisible brain structures based on the surrounding
structures and validate the results by comparing with other methods. In the final application, we present
the segmentation of lymph nodes in the Head and Neck CT images, and demonstrate how multiple
registration forces can be used in this framework in an hierarchical manner.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Atlas-based segmentation is a widely used technique for auto-
mated segmentation of medical images (see Rohlfing et al. (2005)
for a survey). It relies on the existence of a reference image (called
atlas) in which structures of interest have been accurately seg-
mented, usually by hand. To segment a new image (called target
image), a dense deformation field that puts the atlas into a point-
to-point spatial correspondence with the target image is first com-
puted. This transformation is then used to project label maps as-
signed to structures from the atlas onto the target image to be
segmented. This way, the segmentation problem is reduced to a
registration problem that tries to capture and compensate the nor-
mal anatomical variabilities.

The main advantage of the atlas-based segmentation method is
that the dense deformation field, interpolated on the whole image
ll rights reserved.
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from the registration of visible image features, allows to easily
estimate, in the target image, the position of structures with fuzzy
or no visible contours. Moreover, this approach allows to segment
at the same time several contours of any types (closed, open, con-
nected or disconnected) provided that they have been defined in
the atlas image. The accuracy of the segmentation results depend
on the segmentation of the reference image and mainly on the
quality of the registration between the reference image (the atlas)
and the target image. A wide range of image registration tech-
niques that allow to deform a given atlas to a subject have been
developed over the last 20 years (Bajcsy and Kovacic, 1989;
Christensen et al., 1994; Rueckert et al., 1999; Thirion, 1998). To
compute the deformation field, they generally optimize some
global similarity measure (such as mutual information, sum of
squared differences or cross-correlation) coming from the atlas
intensity image.

The main limitation of the image registration methods com-
monly used for atlas registration is that they often lead to a com-
promise between the accuracy of the registration and the
smoothness of the deformation. When at some places the registra-
tion is not accurate enough, a widely-used solution is to globally or
locally allow more variability in the registration model in order
to obtain more local deformation, but with the risk of creating
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irregularities in the deformation field (Duay et al., 2004). Also, this
does not assure that the desired level of precision will be obtained.
Another limitation of these methods is that they assume that a
point to point correspondence exists between the atlas and the
images to be segmented. Such assumption can lead to an inaccu-
rate registration, particularly, in the presence of content-based
inconsistencies between the atlas and the target image.2

In this paper, we propose a general framework that encom-
passes many of the existing complementary registration methods.
Thus, it facilitates to combine the advantages of different registra-
tion approaches. It can perform both the registration and segmen-
tation tasks jointly. We also propose a new label function
representation that can represent multiple labels using a single le-
vel set function, and it enables to perform the registration based on
only the selected consistent structures of interest in atlas and tar-
get images.

The rest of the paper is organized as follows. Section 2 presents
a brief review of the state-of-the-art methods that integrate the AC
framework in the registration process. Section 3 presents the main
contributions of this paper that include general formulation of our
active deformation fields model and a new multi-phase active con-
tour representation. Section 4 presents various types of registra-
tion/segmentation forces that can be used in our framework,
comparison of our new multi-phase representation with two other
state-of-the-art methods that can be derived from our general
framework, regularization constraints, and an hierarchical ap-
proach that we use for applying registration forces. In Section 5,
we present three clinical applications. Finally, conclusions are pre-
sented in Section 6.

2. State-of-the-art: Joint registration and active contour
segmentation

This is not the first attempt to combine registration and active
contour (AC) segmentation. Concerning the algorithms deduced
from the level set evolution equation, we cite as the first reference,
the ‘‘morphing AC model’’ proposed by Bertalmı́o et al. (2000), de-
spite the fact that this method combines morphing instead of reg-
istration to AC segmentation. This model deforms the moving
image to the target image as in a registration process but the cor-
responding geometric transformation is not determined explicitly.
The goal is to identify in the target image, a contour that corre-
sponds to the object segmented in the reference image. This is
done by solving a system of two partial differential equations
(PDEs). The first one is in charge of morphing the two images.
The second one is a tracking equation that makes the level set
function evolve with the same velocity given by the morphing
equation. Vemuri et al. (2003) have proposed an algorithm very
close to the ‘‘morphing AC model’’ of Bertalmío, but dedicated for
atlas registration. The main difference is that the image matching
is not anymore tracked by a level set function but by a deformation
field and that the morphing and the tracking PDEs are combined in
a single PDE. To get the segmentation of a particular object in the
target image, the computed deformation is applied to the segmen-
tation of the corresponding object in the moving image following
the principles of the atlas-based segmentation method. This model
is further analyzed in more detail in Section 3.1.

The first attempt to model the atlas-based segmentation di-
rectly from the energy equations is made by Yezzi et al. (2001).
This model first defines two segmentation energies, one in the
moving image and another one in the target image, that aim to seg-
2 The term ‘‘content-based inconsistencies’’ in this paper refers to the presence of
certain structures (for example, a tumor), either in the atlas, or in the target image,
but not in both. The example presented in Section 5.2 further illustrates such content-
based inconsistencies.
ment the same object in both the images. Then both energies are
coupled by defining the active contour of the target image as being
the active contour of the moving image under a particular defor-
mation. The advantage of this method is that it can combine mul-
ti-modal information since the segmentation energies are defined
independently on both the images.

Inspired by the Yezzi’s model, several authors have proposed
other joint registration and AC segmentation models. Moelich
and Chan (2003) have shown that Yezzi’s model is very sensitive
to the initial active contour position and deformation. To avoid lo-
cal minima, the active contours of both images have to be initially
already well superposed to the objects of interest. Thus they have
proposed to define the active contour of both images (not only of
the target image as in the Yezzi’s model) as being the initial curve
under a particular deformation. They have also introduced a pre-
registration step to find out the best initial registration parameters
that compensate in both images the difference of positions
between this initial curve and the objects of interest. Unal and
Slabaugh (2005) have generalized the rigid framework of Yezzi to
non-rigid registration. An et al. (2005) have further included a prior
segmentation term in their model that computes the intensity
difference between the prior shape and the shape to be segmented
by the active contour in the target image. This term in fact corre-
sponds to the matching image term used in the Bertalmío and
Vemuri’s models with the difference that it is computed only inside
the prior shape. Young and Levy (2005) have proposed to refine in
a second step, the segmentation result obtained by the Yezzi’s
model with the ‘‘morphing AC model’’ of Bertalmío. Finally,
(Droske et al., 2009) have presented two joint registration and
AC segmentation models. The first model is similar to Yezzi’s mod-
el, but optimizes a non-rigid deformation that is then propagated
from the contour to the whole image. Their second model did
not use anymore a level set function to represent the contour. It
is based on an energy that optimizes the detection of common
contours between the source and target images. Thus close, open,
connected and disconnected contours can be considered for the
registration. However, this model is limited to contour-based
registration, and cannot exploit region-based features.

Other types of models close to this joint registration and active
contour segmentation framework have been proposed. First, there
are algorithms derived from joint optical flow registration and ac-
tive contour segmentation that aim to generate a dense but ‘‘dis-
continuous’’ deformation field on the whole image for the study
of motion in image sequences (Amiaz and Kiryati, 2006; Paragios
et al., 2002). Also Paragios et al. (2003) have extracted the non-ri-
gid deformation between 2D geometric shapes by representing
them with a level set function. This last model extracts the defor-
mation only on the active contours.

The main contribution of this paper is a new framework that
combines the advantages of the models described above and over-
comes some of their limitations. First, as in An et al. (2005), we
consider the moving image as a prior image (the atlas). The initial
shapes of the active contours are given by the objects of interest
that are manually delineated in this prior image. Then, as in
Moelich and Chan (2003), we perform an initial global registration
step in order to compensate for the initial differences of position
between the atlas and the target image. Also, as in Droske et al.
(2009), our algorithm computes a dense non-rigid deformation
field on the whole image. Similar to Vemuri et al. (2003), our meth-
od has been inspired first by the general evolution equation of the
level set function. One of the main differences is that in our
scheme, we propose to model several connected and/or discon-
nected active contours with a new label function representation.
This label function permits in particular to consider different
segmentation/registration forces at different areas of the image. In-
spired by An et al. (2005) and Young and Levy (2005), we propose
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an approach to combine the object-based forces coming from the
AC segmentation technique with the pixel-based forces used in
Vemuri’s model, AC segmentation models with shape prior (Chen
et al., 2002), or in optical flow registration algorithms (Barron
et al., 1994).

3. Our active contour-based atlas registration framework

This section contains the main contributions of this paper, and
is organized as follows: The details of related previous work are
presented in Section 3.1. General formulation of our active defor-
mation fields model is presented in Section 3.2. A new multi-phase
active contour representation is proposed in Section 3.3.

3.1. Related work

The main source of inspiration for our joint registration and seg-
mentation algorithm is the partial differential equation (PDE)-
based model proposed by Vemuri et al. (2003). The formulation
of Vemuri’s model has been intuitively deduced from the following
general level set evolution equation introduced by Osher and
Sethian (1988):

@/Dðx; tÞ
@t

¼ mð/Dðx; tÞÞjr/Dðx; tÞj; ð1Þ

where m is the velocity of the flow or speed function that contains
the local segmentation and contour regularization constraints, and
/D : X! R (for the image domain X) is the signed distance function
often used to represent implicitly the active contour by its zero le-
vel. The original idea brought by Vemuri’s model is to replace in (1),
/D by the intensity function of the image to register /I : X! R (the
moving image). This leads to the following equation:

@/Iðx; tÞ
@t

¼ mð/Iðx; tÞÞjrGr � /Iðx; tÞj; ð2Þ

where Gr is a Gaussian kernel with standard deviation of r, and � is
the convolution operator. The image /I is prior smoothed with a
Gaussian filter because the gradient computation is very sensitive
to noise. The level sets considered in the segmentation process cor-
respond to the contours naturally present in the moving image, i.e.,
the curves of high image gradient. The speed function used in both
Bertalmío’s and Vemuri’s model is the intensity difference term
m(/I(x, t)) = (/I(x, t) � /T(x)), where /T(x) is the intensity function
of the target image.

Note that Eq. (2) gives only the intensity evolution, but not the
geometric transformation between the images. So, in order to
explicitly track the deformation field, they have intuitively derived
one more equation presented below. The deformation field vector
u : Rn ! Rn (typically, n = {2,3}) is given by:

@uðx; tÞ
@t

¼ ð/Iðx; tÞ � /TðxÞÞ
rGr � /Iðx; tÞ
jrGr � /Iðx; tÞj�

; ð3Þ

where jCj� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCj2 þ �2

q
, and � is a small positive constant used for

avoiding the singularity.
The intensity function /I at time t is given by the deformation

field u(x, t) and the initial intensity function /I(x,0) such that:

/Iðx; tÞ ¼ /Iðxþ uðx; tÞ;0Þ; ð4Þ

which ensures that the evolution of the intensity function exactly
corresponds to the current deformation.

The deformation forces of Vemuri’s model are pixel-based
forces computed on the whole image. This has two main conse-
quences. First, this algorithm presents some limitations when it
has to recover global differences because the registration forces
that it uses are very local. Secondly, it fails to register regions when
texture is different with similar intensity distributions. This
situation could, for example, arise in natural images (Paragios
and Deriche, 2002) in which two regions (object and background
in this example) have similar intensity distributions, but different
textures. This can happen in medical images also, particularly, in
the segmentation of ultrasound images (Hui et al., 2009). Finally,
Vemuri’s model has no scheme to prevent the registration of
inconsistent regions.

3.2. Our model: Active deformation fields

The general formulation of our model is based on tracking of the
level set function motion based on the conservation of morpholog-
ical (i.e., shape) description. Since level sets are basically a morpho-
logical notion, the conservation of morphological description
essentially states that level set function is preserved under small
deformation field and a short period of time. Let ‘‘/G’’ represent a
general level set function; it means that wherever /G is used, it is
applicable to different types of level set functions like signed dis-
tance function (/D), intensity function (/I), or the label function
(/L) that will be introduced in Section 3.3. Now, the above men-
tioned conservation implies that /G remains constant for small dis-
placements and a short period of time. This results in the following
equation:

/Gðx; tÞ ¼ /Gðxþ du; t þ dtÞ ) d/Gðx; tÞ ¼ 0; ð5Þ

where d/G is the total derivative of /G. By using the chain rule, this
constraint can be rewritten as the evolution equation of a vector
flow:

@uðx; tÞ
@t

¼ �
/G;t

j 5 /Gj
N/G

; ð6Þ

where /G,t is given by (1) (with a change of subscript), and it repre-
sents the variation of the level set function according to the desired
forces such as supervised segmentation, shape prior knowledge or
contour regularization; N/G in the above equation represents the
normal of level set, and is given by:

N/G
¼

5/G
j5/G j

; if 5 /G – 0;

0; otherwise:

(
ð7Þ

Note that the widely used morphological descriptor in registration
problems is the ‘‘luminance function’’. With the luminance function,
the above mentioned conservation is equivalent to optical flow (OF)
assumption, which states that the brightness of the moving image
stays constant for small displacements, over short periods of time.
In that sense, in our discussions, we will be referring to ‘‘conserva-
tion of morphological description’’ simply as ‘‘OF approach’’.

By introducing the evolution equation of the level set segmen-
tation model (1) in (6), we obtain the following formula merging
the active contour segmentation framework with the image registra-
tion task:

@uðx; tÞ
@t

¼ �mð/Gðx; tÞÞN/G
: ð8Þ

The level set function /G does not evolve with the usual finite differ-
ence scheme. Its position at time t is given by the deformation field
u(x, t) and the initial level set function /G(x,0) such that:

/Gðx; tÞ :¼ /Gðxþ uðx; tÞ;0Þ; ð9Þ

where /G(x, 0) is the initial active contour position. This ensures that
the evolution of the level set function exactly corresponds to the
current deformation. Notice that when intensity function is used
as the level set function (i.e., when /G = /I), the general evolution
Eq. (8) is indeed equivalent to gradient flows, where each voxel
warps along its intensity-gradient, and its corresponding deforma-
tion field is taken into account by (9). Introducing (9) in (8) yields:
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@uðx; tÞ
@t

¼ �mð/Gðxþ uðx; tÞ;0ÞÞN/G
: ð10Þ

This equation defines a displacement vector at each point of the le-
vel set function. The level set function models the contours of the
objects selected in the atlas to drive its registration.

As mentioned earlier, different types of level set functions can
be used in place of /G in the above formulation. For instance,
signed distance function (/D) representation can be used; however,
the main drawback of /D representation is that it can model only
two regions. Multi-phase representations have been proposed by
combining several signed distance function (see for instance Vese
and Chan, 2002; Zhao et al., 1996), but such solution will drasti-
cally increase the computational complexity of this model. On
the other hand, while the representations like intensity function
(/I) can model any type of contours, they are limited to only pix-
el-based registration forces (see Section 4.1 for more details on
/D and /I).

To cope with these limitations, in this paper, we propose a new
label function representation of the level sets that can model any
number of regions as well as represent various types of registration
forces, using a single function, and this is an important contribu-
tion of this paper. This new multi-phase active contour representa-
tion is described in detail in the following section.3

3.3. New multi-phase active contours representation

For the registration of multiple regions, we propose a new label
function /L to represent the active contours selected in the atlas. In
the /L representation, the contours do not anymore correspond to
the zero level set, but to the discontinuities of piecewise constant
level set function. This label function permits to define an arbitrary
number of regions as follows:

/L : x 2 Xk ! /LðxÞ ¼ k; k 2 ½1; . . . ;n� ifx 2 Xk; ð11Þ

where Xk is the kth labeled region and n is the number of regions. In
this representation, active contours are modeled by the discontinu-
ities of /L.

The main advantage of this label function representation is that
it can distinguish any number of regions with a single function. The
implementation of this representation is an important challenge;
when multiple regions are represented using /L, it does not contain
the polarity information that is essential to compute the widely
used region-based forces of the AC segmentation. Note that the
term polarity in this context is defined as the information of direc-
tion that indicates the inside (Xin) and the outside (Xout) for each
modeled region. The importance of polarity information will be
more clear with the description of region-based forces in Section
4.5. We now present in detail on how we handle this issue of polar-
ity information.

In order to accurately represent the polarity information for
each region, we introduce in the general formulation of our model
(10), a sign function: S(/L(x)). The purpose of this sign function is to
manipulate the overall direction of the evolution such that it is al-
ways oriented in the direction of Xin to Xout, independent of the
orientation of the gradient of the label function /L(x) (which is al-
ways from the low intensity label to the high intensity label). In
other words, irrespective of the direction of 5/L(x), the direction
of (S(/L(x))5/L) should always be from inside to outside of that re-
gion. For an easy understanding, we explain the design of the func-
tion S(/L(x)) using an example shown in Fig. 1. The green line
3 We note that in the AC segmentation framework, the idea of using labels to
perform a multi-phase segmentation has been presented (see for instance Lie et al.,
2006). The difference with our work is that this representation has been proposed
previously for particular variational energy-models and we present a scheme for any
type of PDE-based models.
enhances the interface between a high-intensity and a low-
intensity label, each representing a different region. Each panel
shows the current pixel (enhanced in bold) surrounded by its eight
neighbors. The arrows represent the direction of the gradients of
the label function which are always from the low intensity label to
the high intensity label. Now, if the neighbors of x have higher
intensity label values than /L(x), it means that the desired level set
evolution direction coincides with the gradient direction; so,
S(/L(x)) value is taken to be 1 (Fig. 1a). On the other hand, if the
neighbors of x have lower intensity label values than /L(x), it
means that the desired level set evolution direction is opposite to
that of the gradient direction of the label function; so, S(/L(x)) value
is taken to be�1 (Fig. 1b). Finally, if all the neighbors of x have same
label values as that of x, it means that the gradient value of the label
function is zero, and there is no evolution of the level set for that
pixel; so, S(/L(x)) value is taken to be 0 (Fig. 1c). Thus, with the
inclusion of this polarity information and the label function, the
general formulation of our registration model (10) becomes:

@uðx; tÞ
@t

¼ �Sð/LðxÞÞmð/Lðxþ uðx; tÞ;0ÞÞN/L
: ð12Þ

To further illustrate about the polarity information, another exam-
ple of a label function containing three regions (X1,X2,X3) is pre-
sented in Fig. 2. The arrows in Fig. 2a show the orientations of the
gradient 5/L at the interfaces of the label function. Fig. 2b shows
the orientations of (S(/L(x))5/L(x)). In both these figures, arrows
in the regions where the polarity information and the gradient are
in the opposite direction, are marked in red4; if both are in the same
direction, they are marked in green.

We now present other important implementation details of the
label function. As mentioned in Section 3.2, /L value at time t and
with the deformation field u is computed using Eq. (9). Note that
this computation is done using a nearest neighbor interpolation
so that values of the level set function remain fixed ([1, . . . ,n]) dur-
ing the registration process. Another point to be mentioned is,
since /L is not a continuous function across its borders, we con-
volve it with a Gaussian kernel Gr prior to the gradient computa-
tion. One of the possible alternatives to Gaussian kernel is using
a regularized version of the Heaviside function as in Chan and Vese
(2001); however, Chan and Vese (2001) does not treat all level sets
equally, giving more weight to the zero level set. Thus, image reg-
istration with the proposed multi-label level set representation is
more robust if all the level sets are treated equally, which is done
with the Gaussian smoothing approach. Further, to stabilize the
numerical computation when5/L is close to zero, Eq. (12) is mod-
ified as follows:

@uðx; tÞ
@t

¼ �Sð/LðxÞÞmð/Lðxþ uðx; tÞ;0ÞÞ 5 Gr � /Lð Þ
j 5 Gr � /Lj�

: ð13Þ

As mentioned earlier, � is a small positive constant used for avoid-
ing the singularity. In all our experiments, we set � to 1e�6; we no-
tice that as long as � is small enough such as � < 1e�4, there are no
problems of sensitivity of the method to this parameter.
4. Driving forces and regularization constraints

In this section, we first present various types of registration/
segmentation forces that can be used in our registration frame-
work. Secondly, we derive two of the existing atlas registration
models (Yezzi’s model (Yezzi et al., 2001) and Vemuri’s model
(Vemuri et al., 2003)) from our general framework, and compare
them conceptually with the model that we have proposed in
4 For interpretation of color in Figs. 1–13, the reader is referred to the web version
of this article.



Fig. 1. Illustration of the sign function S(/L(x)): (a) S(/L(x)) is taken as 1 when the gradient direction of the label function coincides with the direction of level set evolution. (b)
S(/L(x)) is taken as�1 when the level set evolution direction has to be opposite to that of the gradient direction of the label function. (c) S(/L(x)) is 0 when there is no gradient.

Fig. 2. Example of a label function with three regions. (a) Orientations of the label
function gradients. (b) Orientations of (S(/L(x))5/L(x)), i.e., with the inclusion of
polarity information. Arrows are marked in red when orientations of (5/L(x)) and
(S(/L(x)) 5/L(x)) are in the opposite directions; arrows are marked in green when
both the orientations are same.
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Section 3.3. Then, we present the smoothing and the bijectivity
constraints that we include in our AC-based registration frame-
work. Then, we describe two types of hierarchical approaches that
we use in our implementation. Finally, we present an overview of
the whole segmentation approach.
4.1. Registration/segmentation forces

One of the main contributions of our registration framework is
that it facilitates using various types of AC-based as well as OF-
based forces. Thus, this framework can be easily adapted to various
specific applications. Fig. 3 classifies the AC-based and OF-based
forces according to their effect in a contour matching process. The
most used regularization force of the AC framework is the mean
Fig. 3. Classification of the AC-based and OF-based forces according to their effect
in a contour matching process.
curvature force. This force smoothes the level sets by minimizing
their length. They can be applied to any type of contour representa-
tion. The pixel-based forces are based on the smallest image feature,
the pixel value. They allow the local registration of the whole mov-
ing image domain or selected regions. Pixel-based forces are the
typical segmentation forces of the OF model. In AC model, these
forces are rather used to include intensity or shape prior knowledge
in a segmentation process. These forces can match any type of con-
tours (closed or open) and can also be used with any type of repre-
sentation. However, they are very sensitive to image noise and are
limited to recover small deformations. The object-based forces can
register image regions. Finally, region-based forces are very efficient
forces of the AC framework because they are less sensitive to noise
than the boundary-based forces. They can also perform supervised
segmentation, i.e., they can use prior knowledge extracted from a
reference image. In summary, the current framework allows to
choose any of these forces depending on the specific application.
4.2. Derived atlas-based registration models

Different models can be derived by simply changing the type of
active contour representation /G, and/or the speed term m that is
used to generate the segmentation/registration forces in (10). Note
that the possible selections of m are determined/limited by the
selection of the level set function /G. We present here three impor-
tant special cases of this generalized framework.

(i) If /D is used as the level set function in (10), it results in
Yezzi’s model (Yezzi et al., 2001). With the /D representation,
only the speed terms related to the object-based forces and
the regularization forces can be used, but not the pixel-
based forces. As mentioned earlier, /D representation can
be used only for the two-phase segmentation.

(ii) If /I is used as the level set function, it results in the Vemuri’s
model (Vemuri et al., 2003). With the /I representation, only
the speed terms related to the pixel-based forces can be
used; neither the object-based, nor the regularization forces
can be used.

(iii) If the new /L representation proposed in Section 3.3 is used,
it results in the segmentation model presented in Eq. (13).
With this new /L representation, speed terms related to
any of the three forces can be used. Further, /L representa-
tion can perform multi-phase segmentation. The above dis-
cussion has been summarized in Table 1. Thus, it is clear
that the proposed framework generalizes two completely
diverse state-of-the-art atlas-based methods, and with our
proposed /L representation, multi-phase segmentation can
be performed besides benefitting from any of the registra-
tion forces.



Table 1
Comparison of our model that uses /L representation, with Yezzi et al. (2001) and
Vemuri et al. (2003).

Yezzi’s
model

Vemuri’s
model

Our model with
/L

Level set function /D /I /L

Regularization forces U � U

Pixel-based forces � U U

Object-based forces U � U

Multi-phase
segmentation

� U U
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4.3. Regularization constraints

In order to constrain the output deformation field to be uniform
we use two types of regularization constraints: (i) smoothing
constraints, (ii) bijectivity constraint; these are described in more
detail below. Incorporation of these constraints is required because
of the ill posed nature of the non-rigid transformation.

4.3.1. Smoothing constraints
Linear diffusion smoothing is the commonly used regularization

constraint in non-parametric registration algorithms (see Thirion,
1998; Vemuri et al., 2003). It is applied at the end of each iteration
on the current global deformation field. Its PDE corresponds to the
well-known heat equation:

@vðx; tÞ
@t

¼ Dvðx; tÞ;

vðx; t ¼ 0Þ ¼ u�ðxÞ; ð14Þ

where u� is the solution of Eq. (10) at the point x and D is the
Laplacian operator. This technique permits not only to smooth the
deformation field, but also to diffuse the contour deformation in a
narrow-band around it. The fastest way to perform this diffusion
is by filtering. The filter corresponding to the heat equation is the
Gaussian filter.

As mentioned in Section 4.1, mean curvature is commonly used
in active contour segmentation models for smoothing. Opposed to
the linear diffusion, mean curvature approach acts directly on the
evolution equation. Its goal is to constrain the evolving contours
of the moving image to stay smoothed during their evolution.
Hence, in this paper, we apply mean curvature smoothing while
using region-based forces, and apply linear diffusion smoothing
(through Gaussian filtering) while using pixel-based forces.

4.3.2. Bijectivity constraint
In recent years, there are significant developments in the esti-

mation of smooth and invertible transformations with the main
goal being the preservation of the topology of objects. In the frame-
work of registration containing large deformations, diffeomor-
phisms are powerful and mathematically elegant transformations
that ensure a one-to-one smooth and continuous mapping with
nonsingular Jacobian determinant; they guarantee both invertibil-
ity and preservation of topology. Earlier diffeomorphic registration
algorithms are based on differential equations-based modeling of
‘‘viscous fluid’’ (Miller et al., 1999; Christensen et al., 2002). Recent
diffeomorphic algorithms (Marsland and Twining, 2004; Beg et al.,
2005; Avants et al., 2008; Vercauteren et al., 2009) resulted in
more accurate estimations, but still, most of these algorithms have
a high computational cost.

In a small deformation framework, many registration ap-
proaches still use non-diffeomorphic transformations; these algo-
rithms, unlike diffeomorphic methods, are based on simply
adding non-parametric displacement fields to an identity trans-
form. However, such approaches do not necessarily preserve the
topology, and do not guarantee the bijectivity constraint unless
some explicit schemes are implemented like in Thirion (1998)
and Christensen and Johnson (2002). Note that our deformation
field computation is similar to the ‘‘additive Demons iterations
scheme’’ of Thirion’s approach (Thirion, 1998) in terms of the
way the deformation field is updated, and the type of iterative
scheme. Thirion (1998) computes the forward and the backward
transformations independently, following the approach suggested
by Burr (1981), and modifies these transformations at each itera-
tion to maintain their compatibility.

The backward transformation required in Thirion’s approach
can be computed in different ways. The simplest method could
be to use a second label function defined on the target image,
and perform registration with the first image. However, creating
a label function on the target image could be cumbersome when
segmentation of the structures that are used in the labeled image
cannot be obtained using simple segmentation procedures like
thresholding. Hence, in order to avoid the segmentation of labeled
structures in the target image, we use another method inspired by
the Thirions’s algorithm (Thirion, 1998). In this approach, the in-
verse transform is computed by diffusing the object of the target
image through the contours of the source label image. This leads
to the following equation:

@uðx; tÞ
@t

¼ mð/Gðxþ uðx; tÞ;0ÞÞN/G
: ð15Þ

Notice that the above equation is identical to (10) except that the
label function is not deformed and the driving forces have an oppo-
site sign because they do not have to attract the contour to the tar-
get image; rather, it has to diffuse the target object inside the
contour. While the above approach, like in Thirion (1998), is good
enough for small deformation framework, it may not be an accurate
method in case of large deformations. Recently, a diffeomorphic
model for the Demons algorithms has been proposed in
Vercauteren et al. (2009). We could also probably adapt a similar
approach to our framework in order to deal with large deforma-
tions; however, this is beyond the scope of this paper.

4.4. Hierarchical approach to registration forces

As described in Section 4, our proposed framework facilitates to
use multiple registration forces coming from both OF and AC
frameworks. Further, the multi-phase AC representation proposed
in Section 3.3 enables to select specific regions to be used for each
of those registration forces. To benefit fully from these features, we
propose to use the registration/segmentation forces in an hierar-
chical manner, based on their relative global (or local) characteris-
tics. For instance, we know that the pixel-based forces are more
local forces compared to the region-based forces. Hence, logically,
performing the registration first with the relatively global region-
based forces, and then with the pixel-based forces could avoid con-
verging to a local minimum. In addition, we point out that there
are other possible types of hierarchical approaches that can be eas-
ily incorporated into our framework, like, hierarchy of structures to
be used (Houhou et al., 2005). The hierarchical approach is illus-
trated in more detail in Section 5.

4.5. Atlas-based segmentation process

We now present an overview of the complete segmentation
process. The whole atlas-based segmentation process is illustrated
in Fig. 4. Active contour-based atlas registration framework de-
scribed in the preceding sections is used to register the atlas onto
the target image. The structures used for driving the registration
constitute the label function. These structures are selected based
on two criteria: First, they should be closely located (or relevant)



Fig. 4. Block diagram illustrating the proposed atlas segmentation process.
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to the structures of interest so that their registration will influence
the location of the actual structures to be segmented. Second,
structures with distinct characteristics (like edges and region prop-
erties) are selected so that they can be accurately delineated by the
registration/segmentation forces. Once the dense deformation field
matching the atlas to the patient’s image is computed, the segmen-
tation process ends up as the classical atlas-based method. The
transformation is applied to the manually segmented structures
of the atlas image for automatically obtaining their segmentation
on the target image.

For some of the applications presented in the next section, we
use a region-based force inspired by the unsupervised region-
based segmentation model proposed by Chan and Vese (2001).
The following speed function is used for this purpose:

m ¼
Z

Xin

jIðxÞ � lprior
in j2dx�

Z
Xout

jIðxÞ � lprior
out j

2dx; ð16Þ

where Xin is the image area inside the contour and Xout is the image
area outside the contour, lprior is the prior mean of a given region
extracted from a reference image (the atlas) and I is the intensity
function of the image to segment. This force assumes that corre-
sponding regions between the reference and the target images have
similar means.5

Note that even for multi-phase segmentation with more than
two regions, the above energy equation remains same except that
the parameters of the label function are interpreted in a slightly
different manner; those parameters are not defined anymore with
respect to the entire label function. Instead, they are defined for
each distinct region of the label function (i.e., based on the value
of /L(x)).

With the label function representation and the above mean-
based force, the equation of the derived AC-based atlas registration
model is:

@uðx; tÞ
@t

¼ �Sð/LðxÞÞ IðxÞ �lprior
in

� �2
� IðxÞ �lprior

out

� �2
� �

5 Gr �/Lð Þ
j 5Gr �/Lj�

:

ð17Þ

The parameters and the numerical approach used for solving the
above equation are same as those that are already presented for
pixel-based registration (Eq. (13)) except with the following addi-
tional important details: Since lprior does not evolve during the reg-
istration process, it is computed only once, on the atlas image, at the
beginning of the registration. The sign function S(/L(x)) is computed
over 8-pixel neighborhood for 2D images, and over 27-voxel neigh-
borhood for 3-D images. The implementation details for /L(x) are al-
ready presented in Section 3.3.

We would like to mention here regarding the sensitivity of reg-
istration towards manual delineations of labels. Notice that the
5 Possible intensity differences between both images can be reduced in a pre-
process step by histogram matching.
above region-based registration approach requires delineation of
selected structures only in the atlas, but not in the target image.
It is assumed that the structures of interest are accurately delin-
eated in the atlas. In case of any errors in those manual delinea-
tions, deformation field estimated from the region-based
registration can get affected accordingly. However, thanks to the
pixel-based forces, if they are used in the next level (whenever
applicable), since they do not depend on manual delineations, they
can indeed correct the previous errors as long as the effect of errors
caused in the preceding step are within a retrievable local neigh-
borhood range. The bijectivity constraint can also automatically
compensate for small errors in manual segmentations.

Finally, note that although we presented here only the classical
mean-based region-forces that use sum of squared intensity differ-
ences as the similarity measure for the registration, this framework
is not at all limited to only these forces; it can be easily adapted to
various other types of metrics, as well as registration forces. For in-
stance, we indeed showed in Duay et al. (2007) how marginal
entropies and joint entropy can be used for driving the region-
based registration. Thus, this framework is suitable for even mul-
ti-modal registration. It also allows to easily incorporate other
measures (like mutual information and its variants) as well, and
it could be probably extended to other statistical registration mod-
els like (Toews and Wells, 2009). Regarding the incorporation of
other types of registration forces, we showed in Houhou et al.
(2008) how shape-based forces can also be integrated into our
framework.
5. Applications

In this section, we demonstrate the versatility and potentiality
of our framework through a 2D synthetic example and three real
clinical applications.
5.1. 2D synthetic example

We illustrate here, the behavior of various algorithms, using a
2D synthetic example. Fig. 5 shows the synthetic images used for
this purpose. Fig. 5a and b show the target and atlas images respec-
tively. Labeled image of the atlas is shown in Fig. 5c, and is used
during the region-based registration. This labeled image, also
called as label function, defines four connected regions. Notice that
three of these regions (the background, the left and right regions)
are consistent between the atlas and the target image, i.e., they
have similar mean intensities and texture; on the other hand, the
last one (the central region) has a similar mean in both images
but the orientation of the texture pattern is different. The target
contours are overlayed in red onto the atlas and target images to
visualize the initial differences. The arrows in Fig. 5b indicate that
in the right region, non-corresponding atlas and target texture pat-
terns having similar intensity distribution are initially superposed.

Fig. 6a shows the results obtained from Vemuri’s model (Vemuri
et al., 2003). It can be noted that it cannot register correctly in the
right and central regions due to the following reasons: (i) The
algorithm fails to register global differences because the registration
forces that it uses (pixel-based forces) are very local. (ii) Since it has
no scheme to prevent the registration of inconsistent regions, it
obviously tries to register even the inconsistent texture patterns in
the central region.

Fig. 6b shows the results obtained from Yezzi’s model (Yezzi
et al. (2001)) that uses mean-based forces to register the four re-
gions marked by the labeled image. For this example, while the
Yezzi’s model has globally registered the regions better than the
Vemuri’s model, one can see the limitations of using region-based
forces alone. Notice from the results that, since the deformation is



Fig. 5. A 2D synthetic example. Input data: (a) Target image. (b) Atlas image. (c) Labeled image corresponding to atlas. Contours of the target image are superposed over the
intensity images in order to highlight the initial differences.

Fig. 6. Registration results from different methods applied on the synthetic data in Fig. 5.

Fig. 7. AC-based registration of an atlas to a brain image with a large occupying tumor. (a) Atlas with objects of interest (the head in green, the ventricles in blue, and the
tumor one-voxel seed in red). (b) Atlas contours superposed over the target image. (c) Registration results driven by the contours of the head and the tumor. (d) Resultant
deformation field.
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based on only the contours of interest, it has more registration
errors in the texture when we are far away from the registered
contours. Moreover, we can model only closed contours with the
Yezzi’s model.

We finally performed the registration with our framework,
using the hierarchical approach, and the results are shown in
Fig. 6c. In this hierarchical approach, region-based registration is
performed followed by the pixel-based registration. Since the tex-
ture of the central region is different between the images to be reg-
istered, this region is not considered during the pixel-based
registration, and thanks to the label function to determine where
to compute the pixel-based forces; we just let the texture pattern
in the central region to follow the deformation of the region-based
contours. We can see from the results on this simple synthetic 2D
images that our combined region-based and pixel-based hierarchi-
cal model has the potential to give better results than the methods
that use only pixel-based forces or, only region-based forces.
5.2. Atlas registration on a brain MR image with tumor

The purpose of this first application is to demonstrate with a
simple example, how our framework can be adapted to the regis-
tration problems where there are inconsistent structures (like tu-
mors) between the atlas and the patient’s image. In particular,
we show on 2D MR images how our registration framework can
be used to grow an inconsistent structure in an atlas.

5.2.1. Data set
The images used in this application are obtained from the

Surgical Planning Laboratory (SPL) of the Harvard Medical School
& NSG Brain Tumor Database (Kaus et al., 1999; Kikinis et al.,
1996). The atlas and the patient’s images are shown in Fig. 7a
and b respectively. Note that the patient’s image contains a struc-
ture which not present in the atlas; this inconsistent structure is in
fact a tumor that has drastically deformed its surrounding struc-
tures. Contours selected in the atlas (the head in green and the ven-
tricles in blue) are overlayed on both the images to visualize the
initial differences.

5.2.2. Our method
To grow the patient’s tumor in the atlas, we use a technique in-

spired by the tumor growth model we have previously presented
in Bach Cuadra et al. (2004). This technique inserts a one-voxel
seed (shown by a red point in Fig. 7a) inside the atlas and grows
it radially in order to simulate a tumor growth. Here, we propose
to model this one-voxel seed as the initial position of an active con-
tour. This way, we do not need a special radial growth scheme any-
more. Indeed, the radial evolution of this AC-based seed is



Fig. 8. Left and right STN atlases (coronal views). (a) Structures selected in the atlas
to estimate the position of the STN: lateral ventricles (L) and third ventricle (T). (b
and c) Left and right STN ground truth (dark blue) computed from the estimations
of two medical experts (Expert 1 in red and Expert 2 in light blue). STN position is
represented by a circle of radius 1 mm.
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implicitly defined in the evolution equation of our atlas registra-
tion model. Moreover, the active contour is going to segment the
tumor of the patient image during the registration process. Thus,
the pre-segmentation of the patient tumor is not required unlike
with our previous method (Bach Cuadra et al., 2004). We can see
that our active contour-based algorithm allows to select the atlas
contours that drive its registration. In this application, the atlas
registration is driven by the head contour (green contours) and
the tumor growth (red contours). We let the ventricles (blue con-
tours) to follow the deformation interpolated from the displace-
ment of the selected contours since, our objective here is also to
analyze the influence of the selected contours (green and red) to
their surrounding contours (blue). Thus we evolve these contours
using the region-based forces described in Section 4.5.

5.2.3. Results
Fig. 7c shows the segmentation result obtained after the region-

based registration of the external contour of the head and the tu-
mor. Fig. 7d shows the computed deformation field. We can see
that the registration of the selected green and red contours has
brought the blue contours closer to their target contours. However,
notice that, while the deformation field near the contours of the se-
lected structures is very accurate, it is not so when one is far away
from these contours. This behavior is very much expected since we
considered here region-based registration with only two structures
for driving the registration. In order to obtain a more accurate
deformation field throughout the brain volume: (a) more struc-
tures should be selected for driving the region-based registration,
and (b) as a final step, pixel-based registration can be performed
for all those regions that are consistent between the two images
(i.e., excluding tumor region). However, in the current application,
since the structure to be automatically segmented is only the ven-
tricle, region-based registration driven by the above two structures
alone is good enough for the demonstration purpose. This object-
based registration also illustrates the spatial dependance that ex-
ists between anatomical structures in the process of registration.

5.3. Automatic subthalamic nucleus targeting for deep brain
stimulation surgery

In this application, we show how our registration framework
can be used to estimate the position of nonvisible brain structures
based on surrounding ones. We also perform a quantitative evalu-
ation of six segmentation methods along with the manual segmen-
tations made by two experts (Duay et al., 2008).

Deep brain stimulation of the subthalamic nucleus (STN) has re-
vealed to be the most effective surgical technique for the treatment
of Parkinson’s disease or other movement disorders (Perlmutter
and Mink, 2006). The STN is a very small brain structure not easy
to locate due to its bad visibility in common medical imaging
modalities such as MR images. Hence, atlas-based segmentation
methods are often considered to estimate its position in the pa-
tient’s image. In our previous works (Sanchez Castro et al., 2005,
2006), we have shown that the position of the STN is spatially
influenced by the position of the lateral and third ventricles
(Fig. 8a). In this application, study the influence of neighboring
structures in the estimation of the STNs location. We also perform
a quantitative evaluation of our framework for this application.

5.3.1. Data set
In this study, a set of 39 bilaterally implanted parkinsonian pa-

tients are considered (78 STNs). Two kinds of images are acquired
pre-operatively for each patient: 3D T1-weighted MPRAGE MRI se-
quence (Siemens Vision, 1.5T, Erlangen, Germany) TR 9.7 ms, TE
4 ms, number of slices/slice thickness: 164/1.40 mm, FOV
280 � 280, matrix 256 � 256, pixel size 1.09 � 1.09 mm and few
coronal slices of an IR T2-weighted, TR 2560 ms, TE 4 ms, number
of slices/slice thickness: 7/3 mm, FOV 300 � 300, matrix 512 �
512, pixel size 0.59 � 0.59 mm. Taking profit from the fact that in
some specific patients the STN is visible in MR T2-weighted images
a ground truth is constructed from expert’s knowledge (Fig. 8b and
c) following the protocol described in Sanchez Castro et al. (2005,
2006). Finally, eight patients with clearly visible STNs are selected
to take part in this validation process. Among the eight selected pa-
tients (16 STNs), the experts have selected the one with the most
clearly visible STN as a reference subject, both for the right and left
sides.

5.3.2. Registration methods
We compare six registration methods along with the manual

segmentations made by two independent experts, using the valida-
tion scheme proposed in Sanchez Castro et al. (2005, 2006). Out of
the six registration methods, three methods perform registration of
the whole left and right atlases since, it is not possible with those
three methods to select any structures/regions of interest for per-
forming the registration. Those three methods are:

(i) Affine: This is a 12 degrees of freedom (translation, rotation,
scaling and shearing) mutual-information-based registra-
tion algorithm, based on the work of Maes et al. (1997); this
affine registration is also used as a pre-alignment step for
the non-rigid registration algorithms that are considered in
this application.

(ii) Demons: It is an independent implementation of the inten-
sity-based algorithm (Thirion, 1998).

(iii) BSplines: It is a mutual-information-based free-form defor-
mation algorithm similar to the method proposed in
Rueckert et al. (1999). The other three registration methods
that we compare are non-rigid registration methods that are
used to register only the selected structures of interest (the
lateral and third ventricles), and are as follows:

(iv) Segm.-Demons: The Demons registration is applied between
the binary masks of the selected structures in the atlas and
the patient under study. This algorithm is same as the one
that we used in Sanchez Castro et al. (2006) to determine
which structures influence the STN position.

(v) RBF: This is a mutual information-based technique in which
the deformation that registers the intensity atlas onto the
patient’s image is modeled with a linear combination of
radial basis functions (RBF) using the finite supports that
are placed at relevant image point features (Sanchez Castro,
2007).

(vi) Our method (AC): We perform the registration using our pro-
posed framework; we use the region-based active contour
(AC) forces described in Section 4.5. For the FFD-based algo-
rithm, we used the standard BSpline expansion with cubic
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Splines (Sanchez Castro, 2007). To speed-up the optimiza-
tion process, the algorithm is implemented through an hier-
archical multi-scale scheme, both for images and grid of
control points. We have tested grids of 4, 8, 12 and 16 points
in each direction, and a grid of 16 � 16 � 16 points has been
considered optimal. No further parameter exploration has
been performed for finer grids in order to keep a reasonable
computational cost. The parameters used for Affine, Demons,
Segm.-Demons and RBF are same as those used in Sanchez
Castro (2007).

5.3.3. Results
The error estimations are computed as the Euclidean distance

from the estimated target given by each method/expert to the
ground truth. For evaluating the significant differences, analysis
of variance (ANOVA) statistical test is performed. Fig. 9a presents
a statistical box plot generated by this test, and Fig. 9b presents a
multi-comparison test of the means. Fig. 9b shows that the results
from Segm.-Demons, our model are statically different from affine
registration, RBF and Demons, while they are similar to the ex-
perts’ inter-variability. Table 2 presents the mean and standard
deviation of the errors for all the methods and expert segmenta-
tions; it also summarizes the important differences among these
methods. The entries in the table are sorted by decreasing mean
error. It can be noted that our model using the region-based AC
forces gave better results than RBF and Demons whereas, results
from BSplines and Segm.-Demons are better than our AC model.
However, as pointed out in the table, the advantage of our AC
model over Segm.-Demons is that, Segm.-Demons requires prior
manual contouring of the structures of interest on the patient’s
Fig. 9. ANOVA statistical test results for the segmentation of STN. (a) Box plots of error
comparison test based on the mean of segmentation errors.

Table 2
Comparison of mean and standard deviations of estimated errors for STN segmentations. W
segmentations done by two independent experts. The details of our method are shown in

S. No. Method Estimated error (mm)

1 Affine 2.42 ± 0.84
2 RBF 1.83 ± 0.53
3 Demons 1.77 ± 0.65
4 Our Model 1.74 ± 0.55
5 BSplines 1.72 ± 0.48
6 Expert 1 1.61 ± 0.29
7 Segm.-Demons 1.58 ± 0.71
8 Expert 2 1.40 ± 0.38
image while our AC model does not require any such manual con-
touring on the patient’s image. The segmentation results from
BSplines are only slightly better than our AC model. But, as men-
tioned in the table, unlike AC model, BSplines method does not
facilitate to select the regions of interest for driving the registra-
tion and hence, the registration has to be always performed over
the whole image. At this point, we want to reemphasize that the
purpose of these applications is however not to prove that the
proposed framework is the best one for some specific applica-
tions. Rather, as mentioned at the beginning of this section, the
objective of these applications is to demonstrate the versatility
and potential of our generalized framework in adapting to differ-
ent applications, and validate the results with other state-of-
the-art models. In this application, our framework is using only
the region-based AC forces. Unlike other models, it is possible to
include additional registration forces in our framework. Future
work involves including additional registration forces derived
from a prior deformation field model, like the one proposed in
Charpiat et al. (2007).
5.4. Segmentation of head and neck lymph nodes

Notice that in the preceding clinical applications, we have used
only the region-based AC registration forces for our framework.
The purpose of this final application is to illustrate the ability
and the advantage of our framework to combine multiple registra-
tion forces in an hierarchical manner, as described in Section 4.4. In
particular, we perform the segmentation of lymph node regions in
the 3D Head and Neck (H&N) CT images using both region-based
and pixel-based forces. We also perform a comparison with two
statistics for six registration algorithms, and two expert segmentations. (b) Multi-

e compare here, the results obtained from six registration methods, and the manual
bold.

Nature of segmentation Ability to register only selected regions

Automated �
Automated U

Automated �
Automated U

Automated �
Manual –
Semi-automated U

Manual –



Fig. 10. One of the patients’ image to be segmented in the data set. The image is shown in (I) Axial, (II) Sagittal and (III) Coronal views. Ground truth segmentations of the
lymph nodes are superposed over the image.
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relevant classical models: (i) Vemuri’s model (Vemuri et al., 2003)
and (ii) Yezzi’s model (Yezzi et al., 2001).

Automated segmentation of lymph nodes on 3D CT images is a
crucial step for intensity modulated radiotherapy (IMRT) treat-
ment of H&N cancer. Lymph nodes are constructed volumes that
do not have any visibly distinct boundaries with respect to the sur-
rounding structures. Rather, they are defined relative to other vis-
ible landmark structures in the CT images, and thus making their
segmentation a challenging task. Fig. 10 shows the manually delin-
eated ground truth segmentations of lymph node levels: IB-Left,
IB-Right, IIA-Left, IIA-Right, III-Left, III-Right, IV-Left, IV-Right, VA-
Left, VA-Right, VB-Left, VB-Right, and VI. The ground truth segmen-
tations are performed by a medical expert, under the supervision of
a radiation oncologist. In Gorthi et al. (2009), we used a prelimin-
ary version of the current framework with the main focus being the
specific H&N lymph nodes segmentation problem. We now per-
form a detailed evaluation with the current framework, and also
study the effect of combining various registration forces in an hier-
archical manner for this application.

5.4.1. Data set
The data set used for this application contains the H&N CT

images of 13 patients, acquired at Divisions of Radiotherapy, Gen-
eva University Hospital (HUG), during the routine clinical practice.
The resolution of CT images in X and Y directions is varying in the
range of 0.45–0.94 mm. The typical resolution in the Z direction is
3 mm. The size of each axial slice is 512 � 512 pixels. The Field of
View (FOV) was not same for all the images, and hence, the images
are cropped during the preprocessing to contain the same FOV. The
number of slices for the data set after cropping is varying in the
range of 61–73.

5.4.2. Registration methods
We compare here three registration models: In the first case, we

use our framework with only the pixel-based forces for performing
the registration; thus, this is equivalent to using the Vemuri’s mod-
el (Vemuri et al., 2003). In the second case, we use our framework
Fig. 11. Labeled image superposed over the atlas image in the axial, sagittal and coronal v
Trachea. This image is used for driving the region-based registration.
with only the region-based forces for performing the registration;
thus, this is equivalent to using Yezzi’s model (Yezzi et al., 2001).
In the final case, we consider both the region-based and pixel-
based forces in an hierarchical manner. Notice that this hierarchi-
cal approach became possible because of the proposed framework.
As mentioned earlier, since region-based forces are more global
than the pixel-based forces, during the hierarchical registration,
we first use the region-based forces, and then followed by the pix-
el-based forces.

The structures that have been selected for driving the region-
based registration are: (i) external contours of the H&N, (ii) bones,
and (iii) trachea, thus forming four distinct labels (including the
background). Fig. 11 shows these labels for one of the patients. No-
tice that all the above selected structures have unique intensity
characteristics (i.e., mean values of intensities inside and outside
the selected structures), and they also influence the location of
the lymph nodes to be segmented. During the region-based regis-
tration, curvature-based regularization is also used on the resulting
contour. Gaussian smoothing with a sigma of 1.5 mm is used in the
region-based registration whereas a sigma of 3.5 mm is used in the
pixel-based registration.

There can be huge anatomical variations in the H&N region
among different patients. In addition to the registration method
used, similarity/closeness of the atlas to the patient’s image to be
segmented also plays an important role in the segmentation accu-
racy. If the atlas is more similar to the patient to be segmented,
better will be the segmentation results. Hence, unlike in the other
two applications, a single arbitrarily selected image is not used as
atlas for all the images in the data set; rather, for each image to be
segmented, an atlas is adaptively selected from the rest of the
images in the data set, based on the Mean Square Error (MSE) met-
ric. For this purpose, each image to be segmented is first affinely
registered to the other images in the data set, using leave-
one-out strategy; then MSE value is computed over the entire
image region for each pair of affinely registered images; the image
that has given the least MSE is chosen as the atlas for that patient’s
image to be segmented.
iews. The labeled structures in the image are (1) External-contour, (2) Bones, and (3)
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Notice that use of statistical similarity measures compared to
MSE metric could probably reduce the sensitivity to atlas selection.
However, the type of impact of the reduced-sensitivity on the
accuracy of segmentation can largely depend on the nature of
structures to be segmented. For instance, when the structures to
be segmented are thin or soft tissue structures with slowly varying
intensities, statistical similarity measures could unfortunately be
very insensitive in accurately registering those regions (i.e., nega-
tive impact of decreased-sensitivity); thus, for such structures,
they are not preferable over MSE metric. On the contrary, for
example, if structures are not thin and containing some artifacts,
statistical measures could probably result in more accurate as well
as robust registration results than MSE metric. Since lymph nodes
are soft tissue structures, we preferred MSE for this application.

5.4.3. Results
Fig. 10 shows one of the patients’ image to be segmented.

Ground truth segmentations of lymph nodes for that patient are
superposed over the same image. Fig. 11 shows the atlas image
that was selected for the above patient’s image, based on MSE cri-
teria. Labeled image used for driving the region-based (first level)
registration is superposed over the same image. In order to quali-
tatively illustrate the advantage of the proposed hierarchical ap-
proach, segmentation results from the three methods in one of
the axial slices, along with its ground truth, are presented in
Fig. 12; the names of the lymph nodes are labeled in the sub-figure
that shows ground truth segmentations. We can see the advantage
of the hierarchical approach, particularly for lymph nodes IB and
VA. Notice that, in this slice, these are the lymph nodes that are
close to the structures considered during region-based registration,
Fig. 12. Ground truth and automated segmentations obtain

Fig. 13. Box plots comparing average values sensitivity, DSM and mean HD for lymph nod
based forces (Yezzi’s model) and (c) our hierarchical model.
and thus, profiting better from both Yezzi’s model and Vemuri’s
model. Hence, with reference to the ground truth, we can see that
these results are better compared to using only one of the two
methods.

The segmentation results are quantitatively compared using
two statistical metrics: (i) Sensitivity, (ii) Dice Similarity Measure
(DSM), and a geometrical metric: (i) Mean Hausdorff Distance
(HD). Sensitivity metric gives a measure of true positive fraction;
higher the sensitivity (ideal value = 1), better the segmentation
accuracy. DSM gives a measure of overlap between the ground
truth segmentation and automated segmentation; higher DSM va-
lue (ideal value = 1) implies a better overlap between the ground
truth and automated segmentations. Mean HD gives a measure
of mean value of geometrical deviation (in mm) between the con-
tours of the ground truth and automated segmentations. Lower the
mean HD (ideal value = 0 mm), better the automated segmenta-
tions. Fig. 13 shows the box plots of Sensitivity, DSM and mean
HD when different types of registration forces are used. The corre-
sponding mean and standard deviation values are summarized in
Table 3. It can be noted from these results that for all the three
measures, our hierarchical registration approach combining re-
gion-based and pixel-based forces gave better results than the
Vemuri’s model (using only pixel-based forces) and the Yezzi’s
model (using only region-based forces).

We also performed tests to evaluate the statistical significance of
differences between the methods. We used Wilcoxon signed-rank
test (Wilcoxon, 1945) for this purpose; this is a non-parametric test
procedure for the analysis of matched-paired data. Note that
Wilcoxon signed-rank test can be seen as non-parametric alterna-
tive to paired-student test since it does not make any assumptions
ed from the three approaches in one of the axial slices.

es segmentation, using (a) only pixel-based forces (Vemuri’s model) (b) only region-



Table 3
Mean and standard deviations of Sensitivity, DSM, and mean HD measures for lymph nodes segmentation obtained from: (a) Vemuri’s model (Vemuri et al., 2003), (b) Yezzi’s
model (Yezzi et al., 2001), and (c) our hierarchical model.

Method Type of forces Sensitivity DSM Mean HD (mm)

Vemuri’s model Only pixel 0.550 ± 0.066 0.494 ± 0.056 4.507 ± 1.412
Yezzi’s model Only region 0.518 ± 0.072 0.451 ± 0.062 5.043 ± 1.669
Our model Region + pixel 0.574 ± 0.070 0.503 ± 0.057 4.449 ± 1.418
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regarding the distributions of the data population. We performed
this test on DSM statistics, for each permutation of pair of methods
chosen from the three methods, with the alternative hypothesis
being: ‘‘Segmentation results from the first method are statistically
better (greater) than the second method.’’ Based on these results, the
following conclusions are drawn for this application at 0.05 signifi-
cance level: (i) Segmentation results from Vemuri’s model are better
than Yezzi’s model (with a p-value of 0.0004). (ii) Segmentation re-
sults from our hierarchical model are better than Vemuri’s model
(with a p-value of 0.009) as well as Yezzi’s model (with a p-value
of 0.0001).
6. Conclusions

The main contribution of this paper is a new and original frame-
work that encompasses many existing registration methods. We
have presented how active contour (AC) based registration model
of Yezzi et al. (2001), and pixel-based registration model of Vemuri
et al. (2003) can be derived from the proposed framework. We
have also proposed a new label function for performing multi-
phase AC-based registration. The advantage of the proposed label
function is that it can distinguish any number of regions with a sin-
gle function. Our proposed framework allows to select the regions/
structures to be used for driving the registration process. This way,
the atlas can be registered on target images using the objects that
are consistent between both the images. Moreover, registering
only the structures that are relevant to estimate the position of
the objects of interest, limits the possibilities of mis-registration
and also reduces the computational time. We have proposed to
use multiple registration forces in an hierarchical manner, based
on their relative global characteristics so that convergence to a lo-
cal minimum can be avoided besides benefitting from multiple
registration forces.

We have demonstrated the versatility of the proposed frame-
work through three diverse clinical applications. In these applica-
tions, we mainly used the classical region-based forces (with
mean square error (MSE) metric on intensities), and pixel-based
forces. The proposed framework facilitates even combining various
other forces like shape-based forces. Further, besides MSE metric, it
also allows to use information theoretic similarity measures like
mutual information and its variants; hence, this framework can
be adapted even for multi-modal registration. In future work, we
would like to explore combining additional forces as well as using
other similarity metrics. It would be also interesting to modify the
currently used bijectivity constraints with a diffeomorphic
approach.
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