
Karl–Franzens Universität Graz

Technische Universität Graz

Medizinische Universität Graz

SpezialForschungsBereich F32

An image space approach to

Cartesian based parallel MR

imaging with total variation

regularization

Stephen L. Keeling Christian Clason

Michael Hintermüller Florian Knoll

Antoine Laurain Gregory Von Winckel

SFB-Report No. 2008–022 December 2008

A–8010 GRAZ, HEINRICHSTRASSE 36, AUSTRIA

Supported by the

Austrian Science Fund (FWF)



SFB sponsors:

• Austrian Science Fund (FWF)

• University of Graz

• Graz University of Technology

• Medical University of Graz

• Government of Styria

• City of Graz



An image space approach to Cartesian based parallel
MR imaging with total variation regularization

Stephen L. Keeling1, Christian Clason1, Michael Hintermüller2, Florian Knoll3,
Antoine Laurain1, Gregory Von Winckel1

Abstract. The Cartesian parallel magnetic imaging problem is formulated variationally using a high

order penalty for modulations and a total variation like penalty for the image. Then the optimality

system is derived and numerically discretized. The full problem is first considered in terms of the

subproblems of modulation correction and aliasing correction. The cost functional used is non-convex,

but the derivative of the cost has a bilinear residual term, and the functional is convex in each single

argument. Thus, convex analysis is used to formulate the optimality condition for the image in terms of

a primal-dual system. Also, a nonlinear Gauss-Seidel iteration is used to minimize with respect to one

variable after the other using Newton’s method. Favorable computational results are shown for artifical

phantoms as well as for realistic magnetic resonance images.

Keywords: Cartesian parallel magnetic resonance imaging, aliasing correction, modulation correction,

primal dual, total variation regularization

1 Introduction

Magnetic Resonance Imaging (MRI) is a medical imaging method in which radio frequency
coils, such as those shown in Fig. 1, are used for both nuclear excitation and for signal detection
in order to measure the hydrogen atom density distribution in the human body; thus, displaying
this distribution permits visualization of tissues with varying density. The density distribution
is not measured directly by a coil; rather, it is encoded during the measurement process by
applying external gradient magnetic fields so that the phase and the frequency of the time-
dependent radio pulse echo correspond to source location while the amplitude of the pulse
corresponds to the density. Specifically, such raw data are shown in Fig. 2 with respect to
frequency and phase axes, and the magnitude of a Fourier Transform of these raw data gives
the density distribution as seen in Fig. 3. (For a full discussion of the principles of MRI, see,
e.g., [13], [23].)

On the one hand, a large homogeneous coil such as the body coil shown in Fig. 1a, may be
used for the uniform illumination of a volume as shown in Fig 3a. On the other hand, a smaller
surface coil such as those shown in Fig. 1b can be used to resolve local details with greater
sensitivity near the coil center but with an illumination falling off with the distance from the
coil center as seen in Fig. 3b. Aside from spatial resolution, achieving the temporal resolution
necessary for dynamic examinations, as in [17], is particularly challenging since each line in
Fig. 2 must be acquired separately in the current implementation of MRI. A standard approach
for accelerating measurement is to acquire only a subset of these lines. However, such Cartesian
or line-wise subsampling leads to the aliasing shown in Fig. 4. (See [13], [23] for a full discussion
of aliasing.) To compensate for the aliasing effect the approach of Parallel Magnetic Resonance
Imaging (PMRI) is used in which multiple independent surface coils measure the radio echo
simultaneously in a complementary fashion allowing reconstruction. Specifically, each image
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Figure 1: (a) Shown on the left is a magnetic resonance body coil in which a reclining patient may be
situated. (Used with permission of GE Medical Systems.) (b) Shown on the right are smaller surface
coils mounted on a head rack. (See [15].)

Figure 2: Shown on the left and right respectively are (a) the real and (b) the imaginary part of the
raw measurement, for which the magnitude of a Fourier Transform gives the image shown in Fig. 3a. In
both (a) and (b), the horizontal axis corresponds to the measured pulse frequency while the vertical axis
corresponds to the measured pulse phase.

Figure 3: (a) Shown on the left is an image measured with a body coil as in Fig. 1a. This is the
magnitude of a Fourier Transform of the data shown in Fig. 2. (b) Shown in the middle is an image
measured with a surface coil as in Fig. 1b, where the brightest point of the image is nearest to the coil
center. (c) Shown on the right is the coil sensitivity of the middle image, displayed only on the support
of the first image.
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Figure 4: Shown on the left in (a) is the subset (in white) of lines taken from Fig. 2 to compute the
aliased image (b) shown on the right, as opposed to the fully sampled image in Fig. 3a. Specifically, the
subsampling consists here of every fourth horizontal line, and the aliasing consists of vertically copying
the fully sampled image (intensities divided by four) so that slicing the result at the arrow-marked heights
gives four identical horizontal strips.

Figure 5: Modulated and aliased images measured by four surface coils such as shown in Fig. 1 using
the subsampling shown in Fig. 4. Note that the intensities are reduced by modulation (nonuniform) as
well as by division by four (uniform) as in Fig. 4.

measured by a surface coil is corrupted both by the modulation effect seen in Fig. 3 as well as
by the aliasing effect seen in Fig. 4; however, the coils are typically placed in a circle as shown
in Fig. 1b, so the modulations (the so-called sensitivities) are independent. The goal of PMRI
is thus to reconstruct the image shown in Fig. 3a from images such as those shown in Fig. 5.

Standard reconstruction strategies currently in use include SENSE [19] and GRAPPA [8].
The SENSE approach is based in image space and it involves the use of initial reference images,
such as in Fig. 3a and 3b, to estimate their quotient shown in Fig. 3c. Knowledge of these
sensitivities and the subsampling strategy allows an algebraic reconstruction of images under-
lying subsequent coil measurements. Particularly in the course of a dynamic examination in
which patient motion may occur, the sensitivities originally estimated according to the SENSE
approach may not be accurate for subsequent measurements. The GRAPPA approach is based
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Figure 6: Shown at the upper left in (a) is the subset (in white) of lines taken from Fig. 2 to compute
the aliased image (b) shown at the upper right. Note in relation to Fig. 4 that center-lines are included,
and the resulting image (b) is nearer to the fully sampled image in Fig. 3a than is the image in Fig. 4b.
Shown at the lower left in (c) is the subset (in white) of lines and points taken from Fig. 2 to compute
the aliased image (d) shown at the lower right. Note in relation to the result in the first row with whole
horizontal reference lines, that this result with only a small square of reference points is comparable.

in frequency space and it involves the interpolation of missing lines based upon additionally
acquired so-called center-lines near the origin as shown in Fig. 6a. Specifically, the data on the
lines of Fig. 4a nearest to the center-lines are used to construct an interpolation kernel which
best fits the additionally measured data on the center-lines of Fig. 6a, and this interpolation
kernel is used to interpolate missing data on the remaining unsampled lines. The image shown
in Fig. 6b shows the improvement over that in Fig. 4b when the additional data from the center-
lines are used. Note also that when measurements are performed in three dimensions, lines of
data are acquired orthogonal to the image plane, and these may include just a few additional
reference points near the origin as seen in the center square of Fig. 6c. The resulting image in
Fig. 6d is comparable to that obtained with whole horizontal lines as shown in Fig. 6b; thus,
in certain computational contexts, it may be advantageous to use only the few low frequencies
in Fig. 6c, even if the whole lines of Fig. 6a are measured. The additional low frequency in-
formation used in Fig. 6 strengthens the previous image of Fig. 4b by adding a low resolution
version of the full image in Fig. 3a. Nevertheless, using these additional data to interpolate
the remaining unsampled data according to the GRAPPA approach is prone to errors since the
points in frequency space are in general uncorrelated.

Nonlinear least squares methods for PMRI have been proposed recently [1] [21]. These
methods are based in frequency space and so use a spectral formulation to impose high-order
Sobolev regularity on sensitivities and L2 regularity on the reconstructed image. Note that
such spectral formulations implicitly impose an unnatural periodicity on sensitivities. Also,
these approaches rely on the measurement of center-lines. The present authors were motivated
to consider approaches to PMRI which are free of the use of center-lines and of pre-measured
reference images, partly because of the success of modulation (not aliasing) corrections without
any outside information besides a given corrupted image. (See, e.g., [22] as well as the results in
Subsection 2.4.) The authors’ corresponding investigations are reported separately in detail in
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[9] and [4], where special cost functionals as well as tailored optimization techniques are studied.
However, it will be seen in results below that reconstructions are significantly better with the
additional data such as shown in Fig. 6. Thus, the present challenge is to reduce the cost of such
additional measurements as much as possible while retaining a suitable reconstruction quality.

In particular, the approach set forth in this paper performs well by using only a very small
number of reference points as seen in Fig. 6c. The proposed approach is variationally formulated
with second order derivative penalties for sensitivities and a total variation like penalty for the
image. Specifically, the formulation for sensitivities is based upon [15] and [16], and the total
variation formulation is based upon the primal-dual formulation of [10], as opposed to others
such as [3] or [11]. The use of total variation regularization is found below to yield results
superior to those obtained by L2 regularization.

With respect to the required minimization, note that the least-squares residual in the cost
functional for parallel imaging has a derivative which is bilinear in the unknown image and
sensitivities. Using only first derivative information, as in a gradient descent scheme, can
be inefficient because of poor scaling observed in the gradient components corresponding to
the sensitivities as opposed to the image. On the other hand, the non-convexity of the cost
functional makes its Hessian in general indefinite and thus a pure Newton’s method is not
suitable, as demonstrated in [4]. In this work a nonlinear Gauss-Seidel scheme is used to solve
the optimality system by applying a Newton scheme to solve for one variable after the other.
To regularize the computation of sensitivities, a segmentation of the image is also used, which
is based on the use of topological derivatives as in the work of the authors [12].

The paper is organized as follows. Before considering the full parallel imaging problem, the
subproblems of modulation correction and aliasing correction are first considered in Section 2.
These subproblems are formulated variationally and their optimality systems, their numerical
discretizations and their solutions are treated in subsections. For the methods formulated
it is found that pure modulation corrections can be achieved reliably, but that pure aliasing
corrections cannot be achieved for Cartesian subsampling. With this framework the stage is
set for the analogous constructions for the complete parallel imaging problem in Section 3. As
with the subproblems, the full problem is formulated variationally and its optimality system,
its numerical discretization and its solution are treated in subsections. In spite of the failure
of pure aliasing correction for Cartesian subsampling, it is found for the approach proposed for
parallel imaging that modulation correction and aliasing correction can indeed be performed
simultaneously when several measurements are available. On the other hand, it is found that
the number of coils should be larger than the aliasing folding factor, and that at least a minimal
number of additional measurement reference points in frequency space, as shown in Fig. 6, are
necessary for accurate reconstructions.

2 Corrections of Single Surface Coil Images

A natural approach to reconstructing uncorrupted images, similar to that shown in Fig. 3a,
from modulated and aliased images, such as those shown in Section 1, is first to correct the
corrupted images individually before combining them for the reconstruction. In this section, the
potentials and limitations of this approach are elucidated. In the following subsections, pure
modulation corrections are first investigated, and then pure aliasing corrections are considered.

2.1 Modulation Correction

For instance, consider first the estimation of the modulation σ of Fig. 3c, as well as the
unmodulated image u in Fig. 3a, simply from the image ũ of Fig. 3b. The desired unknowns σ
and u satisfy σu ≈ ũ and are determined here by minimizing the sum of a residual term plus
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regularization terms:

J(u, σ) =
1

2

∫

Ω
|σu− ũ|2dx +

ν

2

∫

Ω
|∇2σ|2dx +

κ

2

∫

Ω
u2dx + µ

∫

Ω
φǫ(|∇u|2)dx (2.1)

Here Ω = (0, 1)d is the image domain, with d = 2 in the examples of this work, but there is no
fundamental restriction on the dimension. While the raw data such as in Fig. 2 are complex-
valued, it is assumed here for simplicity that their inverse Fourier Transform is real-valued5 and
therefore agrees with the magnitude images such as shown in Fig. 3. Thus, the arguments of
J in (2.1) are real-valued; furthermore, they are considered to be mappings u, σ : Ω → [0, 1],
although the restriction of range is not explicitly enforced in (2.1), as would be the case, e.g.,
if barrier functions were added to (2.1). For (2.1), the ℓ2 norm of the nth order derivative is
given by:

|∇nσ|2 = ∇nσ · ∇nσ, ∇nσ1 · ∇nσ2 =
∑

|α|=n

(

n
α!

)

∂ασ1∂
ασ2 (2.2)

The penalty on the second derivative of the modulation σ seen in (2.1) is based upon work
in [15] and [16]. Among the key points is first the fact that the modulation σ is much smoother
than the image u. Also, to avoid that σ have values outside [0, 1], barrier functions have been
considered as seen in [9] and [12], but it is found here in practice that the modulation is non-
negative on the image support, where it can also be scaled to be less than one. The values of
σ outside the support of u are not important except in the way that values inside the support
are influenced through smoothness of the modulation. In particular, the high order natural
boundary conditions on σ reduce disturbances of the modulation at the domain boundary and
thus also at the boundary of the image support. For example, when a penalty such as

∫

Ω |∆σ|2dx

is used, then harmonic functions are in the kernel of the penalty and boundary disturbances
appear as seen in [15]. Also, when a spectral penalty is used such as

∑

k(1+ |k|2)2|ω(k)|2, where
{ω(k)} are Fourier or trigonometric series coefficients of σ, then σ is implicitly continued by
periodicity outside of Ω, and finite dimensional approximations lead to boundary disturbances.

To regularize the image u, the function φǫ in (2.1) is the Gauss-TV penalty used by the
authors in [10] and [14],

φǫ(s) =

{

s/(2ǫ), 0 ≤ s ≤ ǫ2
√

s− ǫ/2, s ≥ ǫ2 (2.3)

which emerges naturally from the duality formulation as shown in [10] and as seen below in
(A.28). The L2 regularization in (2.1) is included so that κI + σ2 is invertible in (2.15) below
even when σ becomes very small.

To examine the landscape of the functional in (2.1), as well as those with similar structure
used later, consider the minimization of the following model function:

f(x, y) = 1
2(yx− z)2 + 1

2νy2 + µ|x| (2.4)

A contour plot of f is shown in Fig. 7 along with the vector fields −∇f and −[∇2f ]−1∇f .
Without regularization from µ and ν, the whole curve yx = z would minimize f ; however, with
positive regularization a unique minimizer exists, although it lies in a flat and elongated region
of the landscape. The location of the unique minimizer depends of course entirely on the regu-
larization. Note that the gradient direction field −∇f points strongly toward yx = z, but the
field is rather weak in a near neighborhood of the curve. On the other hand, the Newton direc-
tion field −[∇2f ]−1∇f actually points away from yx = z unless sufficiently near to the curve,
where the Newton direction field is actually weaker than the gradient direction field. Thus, it is
not surprising that computational experiments using Newton’s method to minimize functionals

5Physically this means that there are negligible differences among the chemical environments of the hydrogen
atoms. When this is not the case, real and imaginary parts of the residual σu − ũ may be processed separately
as seen in [15].
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Figure 7: Contour plots of f in (2.4) (with z = 0.5, µ = ν = 0.01) are shown with the vector fields (a)
−∇f on the left and (b) −[∇2f ]−1∇f on the right. The curve yx = z is shown dashed in both plots,
and the minimizer for f is shown as the asterisk near the dashed curve.

such as (2.1) have had limited success. Furthermore, using rapidly converging schemes to min-
imize a convex functional with respect to one variable and then the other has performed better
than carrying out line searches along gradient directions for the joint functional.

This iterative method arrives quickly at the flat elongated region of the landscape. However,
any of the above iterations can stall in such a region, leading numerically to an effective non-
uniqueness in minimizers. To distinguish among such numerical minimizers, iterations may be
guided by additional information. For instance, since the arguments of J are expected to have
range in [0, 1], the modulation is normalized here in each iteration to achieve a maximum value
of 1 on the support of the image. Note that a normalization of the modulation is more stable
than that of the image since the modulation is smoother. Also, the modulation is regularized in
early iterations by using a segmentation of the image in the modulation computation instead of
the image itself. Such projection and regularization techniques have been found here to perform
better than treating the nonconvexity of J by starting iterations with larger and ending with
smaller regularization parameters in (2.1).

2.2 Optimality Conditions

In this work Hk(Ω) denotes the Sobolev space of functions with distributional derivatives
up to order k in Lp(Ω); see [5] for further information about these function spaces. As explained
in [15], the optimality condition for (2.1) with respect to σ for fixed u is:

B(u)σ = uũ, σ ∈ H2(Ω) (2.5)

which is given in weak form as:
∫

Ω

[

ν∇2σ · ∇2σ̄ + u2σσ̄
]

dx =

∫

Ω
σ̄uũdx, ∀σ̄ ∈ H2(Ω). (2.6)

According to [15] there is a unique weak solution σ ∈ H2(Ω) when ũ ∈ L2(Ω) holds and
u ∈ L∞(Ω) has a support with positive measure. The additional regularity σ ∈ H4(Ω) is
shown in [16]. In strong form, B(u) = ν∆2 + u2, and a smooth solution σ satisfies the natural
boundary conditions ∂3

nσ = ∂2
nσ = ∂n∂τσ = 0, ∂Ω, where ∂n and ∂τ are the normal and

tangential derivatives respectively [15].
In initial iterations of the nonlinear Gauss-Seidel method (2.5) is solved by replacing the

image u with a segmentation S(u) based upon [12]. Specifically, the image is approximated by:

S(u) =
M∑

i=1

ciχi (2.7)

where χi is the characteristic function for a subdomain Ωi ⊆ Ω in which the segmentation
possesses the grey level ci. These subdomains are disjoint and are determined so that the cost
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J(Ω1, . . . ,ΩM ) =
∫

Ω[S(u) − u]2dx is minimized and so cannot be reduced by transfering part
of one subdomain to another. The topological derivative Tij(x) measures the rate of change of
J(Ω1, . . . ,ΩM ) when a ball B(x, r) of vanishingly small radius r is transfered from Ωi to Ωj:

Tij(x) = lim
|B(x,r)|→0

J(Ω1, . . . ,Ωi\B(x, r), . . . ,Ωj ∪B(x, r), . . . ,ΩM )− J(Ω1, . . . ,ΩM )

|B(x, r)| (2.8)

Here and below, |B| denotes the measure of the set |B|. The segmentation (2.7) is determined
so that all derivatives Tij are non-negative. As shown in [12] they are given explicitly as:

Ti,j(x) =

{

[cj − u(x)]2 − [ci − u(x)]2, |Ωj| 6= 0
−[ci − u(x)]2, |Ωj| = 0

(2.9)

for x ∈ Ωi, and Ti,j(x) = 0 for x 6∈ Ωi. In order that the topological derivative approach operate
in a more global fashion, a point x is transfered from Ωi to Ωj only when

Ti,j(x) < γ min
y∈Ωj

Ti,j(y) (2.10)

where γ ∈ (0, 1). Given the subdomains, the grey levels {ci} are given by the following:

ci =
1

|Ωi|

∫

Ωi

udx; |Ωi| 6= 0, ci = 0, |Ωi| = 0. (2.11)

See Algorithm 2 below for the details of determining S(u).
To establish an optimality condition for (2.1) with respect to u for fixed σ, define the

functionals F : L2(Ω)→ R ∪ {∞},

F(u) =
1

2

∫

Ω
|σu− ũ|2dx +

κ

2

∫

Ω
u2dx (2.12)

and G : L2(Ω)→ R ∪ {∞},
G(u) =

µ

2

∫

Ω
φǫ(|∇u|2)dx (2.13)

so that the dependence on u in J is given by F(u) + G(u).6 Note that these operators satisfy
the conditions of the Fenchel Duality Theorem, and the desired optimality condition is thus
given by [20]:







F(u) + F∗(v) =

∫

Ω
uvdx

G(u) + G∗(−v) = −
∫

Ω
uvdx

(2.14)

where the convex conjugates F∗ and G∗ in (2.14) are given as follows; see Appendix A for
details. First, F∗ : L2(Ω)→ R ∪∞ is given by:

F∗(v) =
1

2

∫

Ω

[

(κ + σ2)−1(v + σũ)2 − ũ2
]

dx (2.15)

Secondly, G∗ : L2(Ω)→ R ∪∞ is given by:

G∗(v) = ISµ(v) +
ǫ

2µ

∫

Ω
|∇(∆−1

N v)|2dx (2.16)

Here IS denotes the indicator function of the set S, and in particular,

ISµ(v) =

{

0, v ∈ Sµ

∞, otherwise
Sµ =

{

v ∈ L2(Ω) : |∇(∆−1
N v)| ≤ µ,

∫

Ω
vdx = 0

}

(2.17)

6The authors wish to thank Otmar Scherzer for his suggestion that these functionals be defined on L
2; see

also the recent book [7].
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Also, ∆−1
N : L2(Ω)→ H2(Ω) is the solution operator for the boundary value problem,

{

∆w = v, Ω
∂w/∂n = 0, ∂Ω

∫

Ω
wdx =

∫

Ω
vdx = 0 (2.18)

where ∂w/∂n = ∇w · n and n is the outwardly directed unit normal vector at ∂Ω. As seen in
Appendix A the functionals (2.12), (2.13), (2.15) and (2.16) lead to the following formulation
of the optimality system (2.14):

{

(κ + σ2)u−∆Nw = σũ
−µ∇u + ⌊∇u⌋ǫ∇w = 0

u ∈ L2(Ω), ∆Nw ∈ Sµ (2.19)

where ⌊∇u⌋ǫ = max{ǫ, |∇u|}.

2.3 Numerical Methods

The discretization of the optimality conditions in Subsection 2.2 begins with a division of
Ω into Nd = 2pd (dimension d = 2) cells, each with unit aspect ratio and width h = 2−p.
Specifically, with the integer component multi-indices  = (1, 2, . . .), 0 = (0, 0, . . .), and 1 =
(1, 1, . . .), the cell centroids are x = (− 1

2)h, 1 ≤  ≤ N · 1. Then, U ≈ u(x) and U denotes
the vector of values {U} according to the lexicographic ordering in which 1 increments first
from 1 to N , then 2, and so on. Also, let D(U) denote the diagonal matrix with the values
{U} situated along the diagonal according to the lexicographic ordering.

Following [15], (2.5) is discretized by B(u) ≈ νBh + D(U )2, where Bh is a finite difference
approximation to the biharmonic operator with natural boundary conditions. Specifically, the
stencil values (weights for neighboring cells) for Bh are given explicitly as follows for the cells
with centroids {x : 1 ≤  ≤ 3 · 1}, where stencil weights are obtained by dividing the following
by 2800h4:

0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208

0 0 −592 −2176 848 0 −2176 −3920 −4352 848 848 −4352 −4512 −4352 848

0 0 4368 −2256 768 0 −2256 20400 −4512 768 768 −4512 24768 −4512 768

0 0 −592 −2176 848 0 −2176 −3920 −4352 848 848 −4352 −4512 −4352 848

0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208

0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208

0 0 −592 −2176 848 0 −2176 −3920 −4352 848 848 −4352 −4512 −4352 848

0 0 3440 −1960 920 0 −1960 16960 −3920 920 920 −3920 20400 −3920 920

0 0 −296 −1088 424 0 −1088 −1960 −2176 424 424 −2176 −2256 −2176 424

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208

0 0 −296 −1088 424 0 −1088 −1960 −2176 424 424 −2176 −2256 −2176 424

0 0 928 −296 −152 0 −296 3440 −592 −152 −152 −592 4368 −592 −152

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For a given u and ũ set U = {u(x)} and Ũ = {ũ(x)}. Then the numerical solution to (2.5)
is given as S = {S}, S ≈ σ(x) which solves:

[νBh + D(U)2]S = D(U)Ũ (2.20)

The matrix on the left side can be stored in sparse format, and the equation is solved in
MATLAB7 in the present work using backslash.

The segmentation computations in (2.7) - (2.11) are carried out by evaluating each function
at the cell centroids x = x. See Algorithm 2 below for the details of determining S(U).

The optimality system (2.19) is solved using a generalized Newton method. The system,

[

(κ + σ2) −∆N

[−µI + (|∇u|>ǫ)
⌊∇u⌋ǫ

∇u∇wT]∇ ⌊∇u⌋ǫ∇

] [

δu
δw

]

= −
[

(κ + σ2)u−∆Nw − σũ
−µ∇u + ⌊∇u⌋ǫ∇w

]

(2.21)

7See http://www.mathworks.com
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is simplified by first eliminating the second equation to obtain:

{

(κ + σ2)−∇ ·
[

1

⌊∇u⌋ǫ

(

µI − (|∇u| > ǫ)

2⌊∇u⌋ǫ
[∇upT + p∇uT]

)]

∇
}

δu =

−(κ + σ2)u + σũ + µ∇ ·
( ∇u

⌊∇u⌋ǫ

)

(2.22)
and the eliminated equation becomes:

δp =
1

⌊∇u⌋ǫ

(

µI − (|∇u| > ǫ)

2⌊∇u⌋ǫ
[∇upT + p∇uT]

)

∇δu + µ
∇u

⌊∇u⌋ǫ
− p (2.23)

where p = ∇w ∈ H0(div) = {p ∈ L2(Ω) : ∇ · p ∈ L2(Ω), n · p = 0, ∂Ω}. Note that the term
∇upT has been symmetrized with [∇upT + p∇uT]/2.

To discretize (2.22) and (2.23) the discrete derivative matrices ∇(xi)
h have stencils given

explicitly as follows in R2 for the cells with centroids {x : 1 ≤  ≤ 2 ·1}, where stencil weights
are obtained by dividing the following by 2h2:

0 0 0 0 0 0 0 1 0 0 1 0

0 −1 1 −1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 −1 0

0 0 0 0 0 0 0 1 0 0 1 0

0 −1 1 −1 0 1 0 −1 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0

so that Neumann boundary conditions are implicitly implemented. Thus, the gradient and
divergence are approximated by:

∇ ≈ ∇h =

(

∇(x1)
h

∇(x2)
h

)

, ∇· ≈ −∇T
h (2.24)

Also, functions of ∇hU are defined according to:

|∇hU | =
{

[(∇(1)
h U)2 + (∇(2)

h U)2 ]
1

2

}

(|∇hU | > ǫ) = {(|∇hU |) > ǫ}

1

⌊∇hU⌋ǫ
=

{

1

max{(|∇hU |), ǫ}

}

(|∇hU | > ǫ)

⌊∇hU⌋ǫ
= D(|∇hU | > ǫ)

1

⌊∇hU⌋ǫ
(2.25)

and P = (P 1;P 2) is understood below as a column vector of column vectors P 1 and P 2. Thus,
(2.22) is discretized as:

{

κI + D(S)2 +

∇T
h

[

D

(
1

⌊∇hU⌋ǫ

)(

µI −D

(
(|∇hU | > ǫ)

2⌊∇hU⌋ǫ

)[

∇hUP T
µ + P µ∇hUT

])]

∇h

}

δU =

−
[

κI + D(S)2
]

U + D(S)Ũ − µ∇T
h

[

D

(
1

⌊∇hU⌋ǫ

)

∇hU

]

(2.26)
where, following [10], P µ is a version of P truncated to have a cellwise magnitude not more
than µ:

P µ = (D(|P | < µ)P 1;D(|P | < µ)P 2)
+ µ(D(|P | ≥ µ)D(|P |)−1P 1;D(|P | ≥ µ)D(|P |)−1P 2),

|P | = {
√

(P 1)2 + (P 2)2}
(2.27)
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As shown in [10], using the truncation P µ in (2.26) guarantees that δU provides a descent
direction for the cost functional with fixed modulation. The matrix on the left in (2.26) can
be stored in sparse format and the system is solved in MATLAB in the present work using
backslash. The update for P itself is given by a discretization of (2.23):

δP = D

(
1

⌊∇U⌋ǫ

)(

µI −D

(
(|∇U | > ǫ)

2⌊∇U⌋ǫ

)[

∇hUP T
µ + P µ∇hUT

])

∇hδU

+µD

(
1

⌊∇U⌋ǫ

)

∇hU − P

(2.28)

The above numerical formulations are applied algorithmically as follows.

Algorithm 1: Correction of a single modulated image without aliasing

Input: Ũ , ǫ, κ, µ, ν, M , γ, δ
Output: U , S

Initialization: U = (Ũ −min{Ũ})/(max{Ũ} −min{Ũ}), S = 1
Outer Iteration: start with t0 = ‖U‖, t = 2δ · t0
while (t > δ · t0)

save Û = U

compute S(U) with Algorithm 2 below,
in the first iteration with 2 grey levels, increasing later to M

solve (2.20) where in initial iterations U is replaced by S(U)
determine the support of U from S(U ) by setting 0 = ck = min{ci} and 1 = ci6=k

normalize S = S/σ, σ = max{S : over  for which S(U ) 6= 0}
Inner Iteration: start with s0 = ‖U‖, s = 2δ · s0, P = 0

in initial outer iterations with µ = 0, later with the input value of µ
while (s > δ · s0)

solve (2.26) for δU and set U = U + δU

set δP with (2.28), set P = P + δP and set P µ according to (2.27)
update s = ‖δU‖

end

update t = ‖U − Û‖
end

Algorithm 2: Image Segmentation

Input: U , M , γ, δ
Output: Ωi, ci, i = 1, . . . ,M

Initialization: χ1 = 1, χj = 0 for j 6= 1, cj determined from (2.11)
for j = 2, . . . ,M

for i = 1, . . . , (j − 1)
compute Ti,j by (2.9) with |Ωj| = 0
transfer {x ∈ Ωi : (2.10) holds} from Ωi to Ωj

update ci and cj with (2.11)
end

end

Iteration: start with t0 = 1 +
∑M

i,j ‖Ti,j‖, t = 2δ · t0
while (t > δ · t0)
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for i = 1, . . . ,M
compute Ti,j for i 6= j = 1, . . . ,M with (2.9) if |Ωi| 6= 0 and otherwise Ti,j = 0
set Ti,j(x) = min{Ti,j(x), 0}
define: Ti(x) = min1≤j≤M Ti,j(x)
transfer: {x ∈ Ωi : Ti,j(x) = Ti(x) and Ti(x) < γ ·miny∈Ωi

Ti(y)}
from Ωi to Ωj, i 6= j = 1, . . . ,M

update cj , j = 1, . . . ,M , with (2.11)
end

update t =
∑M

i,j ‖Ti,j‖
end

Computational results using these algorithms are shown in the next subsection.

2.4 Computational Results

In this section given images are artificially modulated, and Algorithm 1 is used to correct the
modulation; thereby, a reconstruction can be compared to a known desired result. Based upon
the authors’ considerations in [4] and [9] of appropriate sensitivity parameterizations founded
on the Biot-Savart Law, functions of the following form are used for artificial modulations:

σ(x) =
1

[1 + α‖x− x0‖2]
3

2

(2.29)

For the example of Fig. 8, a modulation (2.29) was used with parameters,

x0 = (1
2 , 1

2) + r(cos(θ), sin(θ)), r = 3
4

√
2

2 , θ = π
2 , α = 5 (2.30)

This modulation is shown in Fig. 8b on the support of the given exact image U∗ appearing in
Fig. 3a. The product of the two images, denoted by Ũ , is shown in Fig. 8a. This Ũ was used
as input for Algorithm 1 along with ǫ = 10−3, κ = 10−5, µ = 10−4, ν = 102, M = 5, γ = 0.5
and δ = 10−3. Also, the dimension of the images is N = 128, but the domain is normalized
to (1, N)2 so that h = 1. The reconstruction U is shown in Fig. 8c with intensity scale [0, 1],
where lower intensities are shown darker while higher intensities are shown brighter. To avoid
the effect of an error in intensity scale, the reconstruction error is measured with the metrics,

d2(U ,U ∗) =
1

N
min
s∈R
‖sU −U ∗‖ℓ2 =

1

N
‖s∗U −U∗‖ℓ2 , s∗ = U ·U∗/‖U‖2ℓ2

d∞(U ,U ∗) = ‖∆U‖ℓ∞ , ∆U = s∗U −U∗
(2.31)

Then the error image ∆U is shown in Fig. 8d with the intensity scale [−1, 1]. The quantitative
errors are d2(U ,U∗) = 0.053 and d∞(U ,U ∗) = 0.40. The simulation was then repeated with
5% noise added as follows with n = 0.05:

FFT(Ũ )→ Û , Û +
n

N
‖Û‖2X → Û , FFT−1(Û )→ Ũ (2.32)

where X is N × N with elements normally distributed around mean 0 with variance 1. With
noise added, µ = 5 · 10−4 was used on input. The reconstruction resulting from Algorithm 1 is
shown in Fig. 8e and the reconstruction error image is shown in Fig. 8f. The quantitative errors
in this case are d2(U ,U∗) = 0.052 and d∞(U ,U ∗) = 0.42.

On the basis of the positive results shown in Fig. 8, simulations with phantoms are next
considered to demonstrate how the method performs on images with a very different spectrum
than that of Fig. 8. In the following example, the exact image U∗ is that shown in Fig. 9b.
The product of this image with the same modulation of Fig. 8 gives the data image Ũ shown in
Fig. 9a. This Ũ was used as input for Algorithm 1, and other input parameters were the same as

12



Figure 8: The upper left image (a) is the product of the exact image of Fig. 3a and the modulation
in the lower left image (b). The upper middle image (c) is the reconstruction obtained by Algorithm 1,
and the corresponding reconstruction error image is shown in the lower middle image (d). The upper
right image (e) is the reconstruction when 5% noise is added to (a), and the lower right image (f) is the
corresponding reconstruction error image.

Figure 9: The upper left image (a) is the product of the exact image in the lower left (b) and the
modulation of Fig. 8. The upper middle image (c) is the reconstruction obtained by Algorithm 1, and
the corresponding reconstruction error image is shown in the lower middle image (d). The upper right
image (e) is the reconstruction when 5% noise is added to (a), and the lower right image (f) is the
corresponding reconstruction error image.
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with Fig. 8. The reconstruction U is shown in Fig. 9c, and the reconstruction error image ∆U is
shown in Fig. 9d. The quantitative errors are d2(U ,U ∗) = 0.0045 and d∞(U ,U∗) = 0.060. The
simulation was then repeated with 5% noise added to the image in Fig. 9a. The reconstruction
resulting from Algorithm 1 is shown in Fig. 9e and the reconstruction error image is shown in
Fig. 9f. The quantitative errors in this case are d2(U ,U ∗) = 0.015 and d∞(U ,U ∗) = 0.24.

On the basis of these positive results, the approach of Section 3 could well be simplified
by first correcting the modulations of data images which are not corrupted by aliasing. The
potential for aliasing correction is considered in the next subsection.

2.5 Aliasing Correction

Now consider the estimation of an image u such as in Fig. 3a from an aliased image ũ
obtained from Cartesian subsampling as shown in Figs. 4 or 6. As in Subsection 2.1 u is
considered to be a mapping u : Ω→ [0, 1].

The subsampling operator is a projection P = F−1χF , where

Fu = ω, ω(k) =

∫

Ω
u(x)e−2πık·xdx (2.33)

F−1ω = u, u(x) =
∞∑

k=−∞

ω(k)e2πık·x (2.34)

and χ = χ(k) is a characteristic function in frequency space. The projection also has the direct
image space representation P = Q + R where Q represents the folding effect as seen in Fig. 4
without reference points,

(Qu)(x1, x2) =
1

Nf

Nf∑

n=1

u(x1, ⌈x2 + (n− 1)/Nf⌉1), ⌈x⌉1 = x− [x] (2.35)

and R represents the effect of the Nr reference points as seen additionally in Fig. 6,

(Ru)(x) = 2

Nr/2
∑

l=1

∫

Ω
u(y) cos(2πkl · (x− y))dy (2.36)

In (2.35) Nf is the folding factor, i.e., Nf = 4 in Fig. 4, and the simplification of the projection
in (2.35) is obtained by noting [9]:

1

Nf

Nf∑

j=1

u(x1, ⌈x2 + (j − 1)/Nf⌉1) =
∞∑

k=−∞

ω(k)e2πık1x1





Nf∑

j=1

e2πık2(x2+(j−1)/Nf )





=
∞∑

k=−∞

ω(k1,Nfk2)e
2πı(k1x1+Nfk2x2)

(2.37)

where the right side in (2.37) includes only every Nf line of frequencies as illustrated in Fig. 4,
and the left side in (2.37) agrees with the right side of (2.35). The representation of R in (2.36)
is obtained under the assumption that the reference points are symmetrically situated, as in
Fig. 6, so that kl = −kNr/2+l, l = 1, . . . ,Nr/2. Thus, [9]

(Ru)(x) =
Nr∑

l=1

∫

Ω
u(y)e2πıkl·(x−y)dy =

Nr/2
∑

l=1

∫

Ω
u(y)

[

e2πıkl·(x−y) + e−2πıkl·(x−y)
]

dy (2.38)

which agrees with (2.36).
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Since the data are measured only on the support of χ, ũ is in the range of P . Since the data
may be noisy on the support of χ, ũ ≈ Pu holds, and it is considered to estimate u from ũ by
minimizing:

J(u) =
1

2

∫

Ω
|Pu− ũ|2dx +

κ

2

∫

Ω
u2dx + µ

∫

Ω
φǫ(|∇u|2)dx (2.39)

As with (2.40) seen below for the more general case with more than one coil, the primal-dual
optimality system for (2.39) is:

{

κu + Pu−∆Nw = ũ
−µ∇u + ⌊∇u⌋ǫ∇w = 0

u ∈ L2(Ω), ∆Nw ∈ Sµ (2.40)

The L2 regularization in (2.39) is included so that κI + P is invertible in (3.7) below no matter
which subsampling P is used.

The images reconstructed from the aliased images shown in Figs. 4b and 6d by solving (2.40)
are shown respectively in Figs. 10a and 10b. Unfortunately, the aliasing artifacts resulting from

Figure 10: The images shown (a) on the left and (b) in the middle are obtained by solving (2.40) with
ũ as shown in Figs. 4b and 6d, respectively. For comparison, the exact image in Fig. 3a has also been
aliased by subsampling along a limited set of radial lines, and the resulting image is shown (c) on the
right.

Cartesian subsampling contain so much structure that a TV like penalty is not suitable for
artifact removal. As shown for instance in [2], reconstruction methods for undersampled data
require at least that the aliasing artifacts be relatively incoherent or noise like. For example, the
image shown in Fig. 10b is obtained by subsampling the exact image in Fig. 3a along a limited
set of radial lines. Note that the aliasing artifacts from radial subsampling have much less
structure than those from Cartesian subsampling. Indeed, the authors have successfully carried
out TV based image reconstruction from radially subsampled data as reported separately in
[18].

On the basis of the unsuccessful result in Fig. 10 of attempting a pure aliasing correction
when the data are Cartesian subsampled, it is not surprising that the method is even less suc-
cessful to correct data which are aliased and modulated as in Fig. 5. Nevertheless, when several
such modulated and aliased images are available, they can be used together to successfully
reconstruct an uncorrupted image as seen in the next section.

3 Image Reconstruction from Parallel Coil Measurements

In this section it is considered to reconstruct an image u such as in Fig. 3a from several
aliased and modulated images {ũi} such as in Fig. 5 measured simultaneously from coils using
the same Cartesian subsampling represented by the projection P described in Subsection 2.5.
The number of coils is denoted by Nc and satisfies Nc ≥ Nf . While the subsampling projection P
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is assumed to be known and identical for each coil, the sensitivity σi of the ith coil is not known
and must be estimated along with u. The desired unknowns {σi} and u satisfy Pσiu ≈ ui,
i = 1, . . . , Nc and are determined by minimizing:

J(u, {σi}) =
1

2

Nc∑

i=1

∫

Ω
|Pσiu− ũi|2dx+

ν

2

Nc∑

i=1

∫

Ω
|∇2σi|2dx+

κ

2

∫

Ω
u2dx+µ

∫

Ω
φǫ(|∇u|2)dx (3.1)

where the penalty terms of (3.1) are explained in Subsections 2.1 and 2.5. The landscape of the
cost functional (3.1) is also conceptualized as in Fig. 7, and a nonlinear Gauss-Seidel scheme is
used to solve the optimality system by applying a Newton scheme to solve for one variable after
the other. As with modulation correction, additional information is used to orient iterations.
Specifically, all sensitivities are scaled by the same constant in each iteration so that the largest
value among them achieves a maximum value of 1 on the support of the image. Also, the
sensitivities are regularized in early iterations by using a segmentation of the image in the
computation of sensitivities instead of the image itself.

3.1 Optimality Conditions

The optimality condition for (3.1) with respect to σi for fixed u is:

B(u)σi = uũi, σi ∈ H2(Ω) (3.2)

which is given in weak form as:

∫

Ω

[

ν∇2σi · ∇2σ̄ + σiuPuσ̄
]

dx =

∫

Ω
σ̄uũidx, ∀σ̄ ∈ H2(Ω). (3.3)

That (3.3) is solvable is established as follows.

Theorem 1 Suppose ũi ∈ L2(Ω) and u ∈ L∞(Ω). Suppose further that if a linear function σ
satisfies

∫

Ω uσdx = 0 then σ = 0. Then there exists a unique solution σi ∈ H2(Ω) to (3.3).

Proof: Define the bilinear form on the left in (3.3) as F (σ, σ̄). If σ ∈ H2(Ω) satisfies F (σ, σ) = 0,
then

∫

Ω |∇2σ|2dx = 0 implies that σ is a linear function. From Parsevals’s identity, 0 =
∫

Ω |Puσ|2dx ≥
∫

Ω |Quσ|2dx with Q from (2.35). Then integrating Quσ = 0 pointwise over
(0, 1) × (0, 1/Nf ) gives:

0 =

∫ 1

0





∫ 1/Nf

0

Nf∑

n=1

u(x1, x2 + (n− 1)/Nf)σ(x1, x2 + (n− 1)/Nf)dx2



 dx1 =

∫

Ω
uσdx (3.4)

Therefore, σ = 0. Thus, as in the proof of Poincarè’s Inequality [5], [F (σ, σ)]
1

2 is equivalent to the
norm ‖σ‖H2(Ω), and hence the bilinear form F (σ, σ̄) is coercive and bounded on H2(Ω)×H2(Ω).
The linear form G(σ̄) on the right in (3.3) is bounded in L2(Ω) and hence in H2(Ω). Thus, the
claim follows with the Lax Milgram Lemma [5].

As with (2.5), (3.2) is solved in initial iterations of the nonlinear Gauss-Seidel method by
replacing the image u with the segmentation S(u) of (2.7). It was also considered to compute
a segmentation according to the minimization of J(Ω1, . . . ,ΩM ) =

∑Nc

i=1

∫

Ω[PσiS(u) − ũi]
2dx,

whose topological derivatives are given by:

Ti,j(x) =

1

Nf

Nc∑

k=1

{

[(ci − cj)σk(x)−Nf(PσkS(u)− ũk)(x)]2 − [Nf(PσkS(u)− ũk)(x)]2, |Ωj | 6= 0
−[Nf(PσkS(u)− ũk)(x)]2, |Ωj | = 0

(3.5)
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for x ∈ Ωi, and Ti,j(x) = 0 for x 6∈ Ωi. However, this approach was not found to perform better
than that given following (2.7). See Algorithm 2 above for the details of determining S(u).

To establish an optimality condition for (3.1) with respect to u for fixed sensitivities {σi},
define the functionals F : L2(Ω)→ R ∪ {∞},

F(u) =
1

2

Nc∑

i=1

∫

Ω
|Pσiu− ũi|2dx +

κ

2

∫

Ω
u2dx (3.6)

and G : L2(Ω)→ R∪{∞} as in (2.13) so that the dependence on u in J is given by F(u)+G(u).
Note that these operators satisfy the conditions of the Fenchel Duality Theorem, and the desired
optimality condition is thus given by (2.14) [20], where the convex conjugates F∗ and G∗ in
(2.14) are given as follows; see Appendix A for details. First, G∗ is given in (2.16). Then,
F∗ : L2(Ω)→ R ∪∞ is given by:

F∗(v) =
1

2

∫

Ω







(

v +
Nc∑

i=1

σiũi

)[

κI +
Nc∑

i=1

σiPσi

]−1(

v +
Nc∑

i=1

σiũi

)

−
Nc∑

i=1

ũ2
i






dx (3.7)

That the operator κI +
∑Nc

i=1 σiPσi is invertible is established as follows.

Theorem 2 Suppose that {σi} ⊂ L∞(Ω). Then for every κ > 0 the operator κI +
∑Nc

i=1 σiPσi

is invertible on L2(Ω).

Proof: Define the bilinear form F on L2(Ω)× L2(Ω) and the linear form G on L2(Ω):

F (u, ū) =

∫

Ω

[

κuū +
Nc∑

i=1

uσiPσiū

]

dx, G(ū) =

∫

Ω
vūdx, u, ū, v ∈ L2(Ω) (3.8)

Since
∑Nc

i=1 σiPσi is non-negative, F is coercive. Since {σi} ⊂ L∞(Ω), F is also bounded. Given
any v ∈ L2(Ω), G(ū) is bounded. Thus, the claim follows with the Lax Milgram Lemma [5].

As seen in Appendix A the functionals (3.6), (2.13), (3.7) and (2.16) lead to the following
formulation of the optimality system (2.14):







[

κI +
Nc∑

i=1

σiPσi

]

u−∆Nw =
Nc∑

i=1

σiũ

−µ∇u + ⌊∇u⌋ǫ∇w = 0

u ∈ L2(Ω), ∆Nw ∈ Sµ (3.9)

3.2 Numerical Methods

The discretization of the optimality conditions in Subsection 3.1 involves the same con-
structions detailed in Subsection 2.3. As with (2.20), the numerical solution to (3.2) is given as
Si = {Si,}, Si, ≈ σi(x), which solves:

[νBh + D(U)PhD(U)]Si = D(U)Ũ i (3.10)

where, in parallel to (2.35) and (2.36), Ph is defined as follows:

Ph = Qh + VhV T
h (3.11)

Here, the discrete counterparts to (2.35) and (2.36) are

Qh =
1

Nf
KT

h Kh, Kh = (Ik, Ik, . . . , Ik
︸ ︷︷ ︸

Nf

), k = N2/Nf (3.12)
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and [9]
Vh = [V 1, . . . ,V Nr

], V i · V j = δij (3.13)

V l =

√

N

2

1

Nd







{

cos(2πkl · x− 1

2

) : 1 ≤  ≤ N · 1
}

, l = 1, . . . ,Nr/2

{

sin(2πkl · x− 1

2

) : 1 ≤  ≤ N · 1
}

, l = Nr/2 + 1, . . . ,Nr

(3.14)

The matrices on the left side in (3.10) can be stored in sparse format except for the term with
Ph, and this term can be stored in sparse format if Ph is replaced by Qh:

C = [νBh + D(U )QhD(U)] (3.15)

Thus, the matrix on the left in (3.10) is partitioned as:

C + D(U )VhV T
h D(U) = C + XXT, X = D(U )Vh (3.16)

Then C + XXT can be inverted using the Sherman-Morrison-Woodbury formula [6]:

(C + XXT)−1 = C−1 + C−1X(I + XTCX)−1XTC−1 (3.17)

This formula is implemented in MATLAB in the present work using backslash. In order that
(3.17) be computationally useful, it is crucial that the dimension of the full matrix (I +XTCX)
be small, i.e., that only a few reference points be used as in Fig. 6c. If whole center-lines
are used, as in Fig. 6a, the dimension of (I + XTCX) becomes too large for direct inversion
methods to be used. Thus, considering the discussion in Section 1 of Fig. 6, it is computationally
advantageous to use only the few low frequencies in Fig. 6c, even if the whole lines of Fig. 6a
are measured. If conditions for the convenient use of (3.17) are not met, (3.10) must be solved
iteratively.

The segmentation computations in (2.9) - (2.11) are carried out by evaluating each function
at the cell centroids x = x. See Algorithm 2 above for the details of determining S(U).

The optimality system (2.40) is solved using a generalized Newton method. The system,











κI +
Nc∑

i=1

σiPσi −∆N

[

−µI +
(|∇u| > ǫ)

⌊∇u⌋ǫ
∇u∇wT

]

∇ ⌊∇u⌋ǫ∇











[

δu
δw

]

=

−









[

κI +
Nc∑

i=1

σiPσi

]

u−∆Nw −
Nc∑

i=1

σiũi

−µ∇u + ⌊∇u⌋ǫ∇w









(3.18)

is simplified by first eliminating the second equation to obtain:

{

κI +
Nc∑

i=1

σiPσi −∇ ·
[

1

⌊∇u⌋ǫ

(

µI − (|∇u| > ǫ)

2⌊∇u⌋ǫ
[

∇upT + p∇uT
])]

∇
}

δu =

−
[

κI +
Nc∑

i=1

σiPσi

]

u +
Nc∑

i=1

σiũi + µ∇ ·
( ∇u

⌊∇u⌋ǫ

)

(3.19)

and the eliminated equation becomes:

δp =
1

⌊∇u⌋ǫ

(

µI − (|∇u| > ǫ)

2⌊∇u⌋ǫ
[

∇upT + p∇uT
])

∇δu + µ
∇u

⌊∇u⌋ǫ
− p (3.20)
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where p = ∇w ∈ H0(div) as with (2.23). Also the term ∇upT has been symmetrized with
[∇upT + p∇uT]/2. As with (2.22) and (2.23), (3.19) and (3.20) are discretized as follows:

{

κI +
Nc∑

i=1

D(Si)PhD(Si)+

∇T
h

[

D

(
1

⌊∇hU⌋ǫ

)(

µI −D

(
(|∇U | > ǫ)

2⌊∇U⌋ǫ

) [

∇hUP T
µ + P µ∇hUT

])]

∇h

}

δU =

−
[

κI +
Nc∑

i=1

D(Si)PhD(Si)

]

U +
Nc∑

i=1

D(Si)Ũ i − µ∇T
h

[

D

(
1

⌊∇U⌋ǫ

)

∇hU

]

(3.21)
and:

δP = D

(
1

⌊∇U⌋ǫ

)(

µI −D

(
(|∇U | > ǫ)

2⌊∇U⌋ǫ

)[

∇hUP T
µ + P µ∇hUT

])

∇hδU

+µD

(
1

⌊∇U⌋ǫ

)

∇hU − P

(3.22)

As shown in [10], using the truncation P µ of (2.27) in (3.21) guarantees that δU provides a
descent direction for the cost functional with fixed modulations. The matrices on the left in
(3.21) can be stored in sparse format except for the term with Ph, and this term can be stored
in sparse format if Ph is replaced by Qh:

A =

{

κI +
Nc∑

i=1

D(Si)QhD(Si)+

Nc∑

i=1

∇T
h

[

D

(
1

⌊∇hU⌋ǫ

)(

µI −D

(
(|∇U | > ǫ)

2⌊∇U⌋ǫ

)[

∇hUP T
µ + P µ∇hUT

])]

∇h

}
(3.23)

so the matrix on the left in (3.21) can be partitioned as:

A +
Nc∑

i=1

D(Si)VhV T
h D(Si) = A + Y Y T, Y = (D(S1)Vh, . . . ,D(SNc

)Vh) (3.24)

Thus, A + Y Y T can be inverted using the Sherman-Morrison-Woodbury formula [6]:

(A + Y Y T)−1 = A−1 + A−1Y (I + Y TAY )−1Y TA−1 (3.25)

This formula is implemented in MATLAB in the present work using backslash. As in the
discussion of (3.17), for (3.25) to be computationally useful, it is crucial that the dimension of
the full matrix (I +Y TAY ) be small, i.e., that only a few reference points be used as in Fig. 6c.
Otherwise, (3.21) must be solved iteratively.

The above numerical formulations are applied algorithmically as follows.

Algorithm 3: Parallel image reconstruction

Input: {Ũ i}, ǫ, γ, M , δ, κ, µ, ν
Output: U , {Si}

Initialization: set Ũ =
∑Nc

i=1 Ũ i/Nc and U = (Ũ −min{Ũ})/(max{Ũ} −min{Ũ})
as well as Si = 1, i = 1, . . . , Nc
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Outer Iteration: start with t0 = ‖U‖, t = 2δ · t0
while (t > δ · t0)

save Û = U

compute S(U) with Algorithm 2
solve (3.10) using (3.17) where in initial iterations U is replaced by S(U )
determine the support of U from S(U ) by setting 0 = ck = min{ci} and 1 = ci6=k

normalize Si = Si/σ, i = 1, . . . , Nc, σ = max{(Si) : S(U) 6= 0, i = 1, . . . ,Nc}
Inner Iteration: start with s0 = ‖U‖, s = 2δ · s0, P = 0

in initial outer iterations with µ = 0, later with the input value of µ
while (s > δ · s0)

solve (3.21) for δU using (3.25) and set U = U + δU

set δP with (3.22) set P = P + δP and set P µ according to (2.27)
update s = ‖δU‖

end

update t = ‖U − Û‖
end

Computational results using this algorithm are shown in the next subsection.

3.3 Computational Results

Here as in Subsection 2.4, given images are artificially modulated and aliased, for varying
numbers of virtual coils, and Algorithm 3 is used to reconstruct the original image; thereby a
reconstruction can be compared to a known desired result. The parameterization (2.29) is used
for Nc coils according to:

σi(x) =
1

[1 + α‖x− xi‖2]
3

2

, i = 1, . . . ,Nc

xi = (1
2 , 1

2) + r(cos(θi), sin(θi)), θi = θ0 +
2π(i− 1)

Nc

(3.26)

Note that the distribution of the virtual coil centers {xi}, equally spaced around a circle of
radius r, corresponds to the geometry seen in Fig. 1b. The criterion for the selection of θ0 is
that the conditioning of the matrix

∑Nc

i=1 D(Si)PhD(Si) be as favorable as possible. Direct
calculations with a variety of values for Nc, Nf and Nr leads to the choice θ0 = π

2 + π
2Nc

when
aliasing is vertical as seen in Figs. 4 – 6 [9].

The purpose of Fig. 11 is to demonstrate with a simple phantom example the difficulty of
parallel image reconstruction when the number of coils is equal to the folding factor Nc = Nf

and when no reference points are used Nr = 0. Specifically, the parameters used for the three
cases considered in Fig. 11 were, respectively, Nc = Nf = 2, Nc = Nf = 4 and Nc = 8 > 4 = Nf ,
where Nr = 0 holds in every case. Also, for each example, modulations (3.26) were used with
parameters r and α from (2.30). After multiplying these modulations by the exact phantom
image in Fig. 9b and applying a subsampling projection such as seen in Fig. 4, i.e., without
reference points, data images {Ũ i} were obtained, and no noise was added to these artificial
data. Such data images were used as input for Algorithm 3 along with ǫ = 10−3, κ = 10−4,
ν = 102, M = 5, γ = 0.5 and δ = 10−3. Also, the dimension of the images is N = 128, but the
domain is normalized to (1, N)2 so that h = 1. For simplicity, the input µ = 0 was used for these
noise-free examples, and the results were not improved with µ > 0; nevertheless, the role of the
segmentation was found to be crucial for convergence in these cases. The reconstructed images
U are shown in the top row of Fig. 11 with the intensity scale [0, 1], while the reconstruction
error images ∆U of (2.31) are shown in the bottom row of Fig. 11 with the intensity scale [−1, 1].
The case of Nc = Nf = 2 is shown in the first column of Fig. 11. Although this result is positive,
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Figure 11: For the three reconstructions demonstrated in the three columns, the exact image is shown in
Fig. 9b, and virtual data for Algorithm 3 were simulated using the modulations in (3.26). Reconstructions
are shown in the top row and the corresponding reconstruction error images are shown in the bottom
row. In each case, Nr = 0. The top left image (a) and bottom left image (b) correspond to the case Nc =
Nf = 2. The top middle image (c) and bottom middle image (d) correspond to the case Nc = Nf = 4.
The top right image (e) and bottom right image (f) correspond to the case Nc = 8 > 4 = Nf .

it is desirable for practical applications that the subsampling factor be higher. So the case of
Nc = Nf = 4 is shown in the second column of Fig. 11. Apparently, the reconstruction of the
image of Fig. 3a with the data of Fig. 5 is not practical. This negative result already suggests
the importance of using enough coils so that Nc > Nf holds. Thus, the case of Nc = 8 > 4 = Nf

is shown in the third column of Fig. 11. While this result is more positive than that in the
second column, it is clearly not satisfactory. On the basis of these examples it is concluded that
it is advantageous for Nc > Nf and Nr > 0 to hold.

For all the examples shown in Fig. 12, Algorithm 3 was used to reconstruct the exact image
U∗ shown in Fig. 3a using simulated data with Nc = 8, Nf = 4 and Nr = 54, where these
reference points are contained in a 9× 9 square centered at the origin in frequency space. The
modulations are given by (3.26) with parameters r and α from (2.30). The data images {Ũ i}
were obtained by multiplying the exact image by the indicated modulations and applying the
subsampling projection as illustrated in Fig. 6c. For the first column of Fig. 12, no noise was
added to these data, but for the other two columns, 5% noise was added with n = 0.05 in
(2.32). For the third column of Fig. 12, only L2 regularization was used without assistance
from TV regularization or from segmentation. On the other hand, along with segmentation,
µ = 10−4 and µ = 3 ·10−4 were used for the first and second columns of Fig. 12 respectively. All
other parameters were the same as those used for the examples of Fig. 11. The reconstructed
images U and the reconstruction error images ∆U of (2.31) are shown respectively in the top
and bottom rows of Fig. 12 with the same format as in Fig. 11. For the first, second and
third columns of Fig. 12, the quantitative errors are d2(U ,U ∗) = 0.033, 0.041 and 0.055 and
d∞(U ,U∗) = 0.18, 0.24 and 0.37 respectively. Note that errors are larger and the effect of noise
is stronger in the middle horizontal strip of the images, and this effect diminishes as α in (3.26)
is reduced, i.e., as the slope of the sensitivities becomes smaller.

To demonstrate the effect of using even less information, Fig. 13 shows the results of using
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Figure 12: In all three examples shown here, Algorithm 3 was used to reconstruct the exact image
shown in Fig. 3a using simulated data with Nc = 8, Nf = 4 and Nr = 54. The upper left image (a) is the
reconstruction obtained with noise-free data, and the corresponding reconstruction error image is shown
in the lower left image (b). The upper middle image (c) is the reconstruction obtained with 5% noise in
the data, and the corresponding reconstruction error image is shown in the lower middle image (d). The
upper right image (e) is the reconstruction obtained with neither TV regularization nor segmentation
and with 5% noise in the data, and the corresponding reconstruction error image is shown in the lower
right image (f).

Nr = 20. Specifically, these reference points are contained in a 5×5 square centered at the origin
in frequency space. All other parameters are the same as those used for the examples of Fig. 12,
and the formats of the two figures are also the same. For the first, second and third columns of
Fig. 13, the quantitative errors are d2(U ,U∗) = 0.041, 0.047 and 0.057 and d∞(U ,U∗) = 0.26,
0.28 and 0.34 respectively. Note that the errors in Figs. 12 and 13 are comparable, even though
the number of reference points is reduced in Fig. 13.

Nevertheless, as Nr or Nc are decreased further, as seen in Fig. 14, significant errors emerge,
particularly in the purely L2-regularized reconstructions appearing in the top row, but also
in the TV-regularized reconstructions appearing in the bottom row. Specifically, the results
shown in the first, second and third columns of Fig. 14 were obtained using Nr = 54, 20 and 6,
respectively, where these reference points are contained in 9×9, 5×5 and 3×3 squares centered
at the origin in frequency space. In all cases, Nc = 6 and Nf = 4 were used, and all other
parameters are the same as those used for the examples of Figs. 12 and 13. The quantitative
errors for the L2 regularized reconstructions in Figs. 14a, b and c are d2(U ,U ∗) = 0.074, 0.078
and 0.087 and d∞(U ,U ∗) = 0.56, 0.51 and 0.52 respectively. The quantitative errors for the
TV regularized reconstructions in Figs. 14d, e and f are d2(U ,U∗) = 0.052, 0.056 and 0.076 and
d∞(U ,U∗) = 0.35, 0.32 and 0.56 respectively. Note that the TV-regularized reconstructions
are superior, but they also begin to manifest artifacts as one sees in an exaggerated fashion in
Fig. 11.

On the other hand, when the Cartesian subsampling is performed in both the vertical and
horizontal directions, Fig. 15 shows that successful reconstructions can be performed with more
noise and with considerably less information than that necessary for Figs. 12 - 14. Specifically,
the results shown in Fig. 15 were obtained using Nc = 4 coils and Nr = 8 reference points
contained in a 3 × 3 square centered at the origin in frequency space. Also the folding factor
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Figure 13: In all three examples shown here, Algorithm 3 was used to reconstruct the exact image
shown in Fig. 3a using simulated data with Nc = 8, Nf = 4 and Nr = 20. The upper left image (a) is the
reconstruction obtained with noise-free data, and the corresponding reconstruction error image is shown
in the lower left image (b). The upper middle image (c) is the reconstruction obtained with 5% noise in
the data, and the corresponding reconstruction error image is shown in the lower middle image (d). The
upper right image (e) is the reconstruction obtained with neither TV regularization nor segmentation
and with 5% noise in the data, and the corresponding reconstruction error image is shown in the lower
right image (f).

was Nf = 2 in both the horizontal and vertical directions. In this case, the operator Q is given
by the following instead of (2.35),

(Qu)(x1, x2) =
1

Nf

Nf∑

n=1

u(⌈x1 + (n− 1)/Nf⌉1, ⌈x2 + (n− 1)/Nf⌉1), ⌈x⌉1 = x− [x] (3.27)

For the first column of Fig. 15, no noise was added to the simulated data, but for the other two
columns, 10% noise was added with n = 0.10 in (2.32). For the third column of Fig. 12, only L2

regularization without the assistance of TV regularization or segmentation. On the other hand,
along with segmentation, µ = 10−4 and µ = 3 ·10−4 were used for the first and second columns,
respectively. All other parameters are the same as those used for the examples of Figs. 11 - 14.
The reconstructed images U and the reconstruction error images ∆U are shown respectively
in the top and bottom rows of Fig. 15. For the first, second and third columns of Fig. 15, the
quantitative errors are d2(U ,U∗) = 0.030, 0.040 and 0.048 and d∞(U ,U∗) = 0.19, 0.24 and
0.28 respectively.

Finally, Fig. 16 shows a comparison between the presently proposed methods and the au-
thors’ implementation of the methods used in [21] combined with an iteratively regularized
Gauss-Newton method as proposed in [4]. Results of the former methods are shown in the left
column and results of the latter methods are shown in the right column. As in Fig. 15 these
results were obtained using Nc = 4 coils and Nr = 8 reference points contained in a 3 × 3
square centered at the origin in frequency space. Also the folding factor was Nf = 2 in both
the horizontal and vertical directions. No additional noise was added to the simulated data.
For the first column in Fig. 16 only L2 regularization was used without assistance from TV
regularization or from segmentation, and all other parameters were the same as those used for
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Figure 14: In all three examples shown here, Algorithm 3 was used to reconstruct the exact image
shown in Fig. 3a using simulated data containing 5% noise and with Nc = 6 and Nf = 4. Also, the
number of reference points is Nr = 54, 20 and 6 for the results obtained in the first, second and third
columns, respectively. The images in the top row, (a), (b) and (c), are the reconstructions obtained with
neither TV regularization nor segmentation, and the images in the bottom row, (d), (e) and (f), were
obtained with TV regularization and segmentation.

the examples of Fig. 15. The regularization used for the result in the right column of Fig. 16 was
a spectral implementation of a high-order Sobolev penalty on sensitivities and an L2 penalty on
the reconstructed image. The reconstructed images are shown in the top row of Fig. 16 and the
reconstruction error images are shown in the bottom row. The quantitative errors for the first
column in Fig. 16 are d2(U ,U ∗) = 0.034 and d∞(U ,U∗) = 0.20. The quantitative errors for
the second column in Fig. 16 are d2(U ,U ∗) = 0.061 and d∞(U ,U ∗) = 0.36. As mentioned in
Section 1, the spectral regularization of sensitivities implicitly imposes an unnatural periodicity
which can lead to the artifacts seen in the second column of Fig. 16. On the other hand, the
results shown in Fig. 16 are a test of an extreme case in which very little data are given, and
both methods provide better results when Nc and Nr are higher. Furthermore, the authors’
MATLAB codes used to obtain the left and right columns of Fig. 16 differ by an order of magni-
tude in speed with the spectral approach being faster. Nevertheless, optimized implementations
on specialized hardware can narrow this gap in speed.

Thus, the developed approach for PMRI is accurate, and reconstructions from noisy data are
advantageous with the TV regularization used along with the segmentation approach. However,
since there is no trace of modulation or aliasing errors in the purely L2 regularized reconstruc-
tions, e.g., in Figs. 12 - 15, one finds, in contrast to Fig. 11, that additional regularization
methods are not crucial for anti-aliasing when Nr is sufficiently large and when Nc is sufficiently
larger than Nf , depending upon the subsampling strategy. Nevertheless, these regularization
methods improve image quality based upon direct processing of raw data as opposed to post-
processing reconstructions obtained by other means possibly with less quality.
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A Derivation of Primal-Dual Optimality System

For completeness, the Fenchel Duality Theorem is stated as follows; see [20] for the details.
Let J(u) = F(Λu) + G(u) be a decomposition of the cost J , where the operators F : Y →
R ∪ {∞}, G : V → R ∪ {∞} and Λ : V → Y satisfy the following. First Λ is a bounded linear
operator from V into Y . Then F and G are convex, lower semicontinuous functionals on Y and
V , and there exists a u0 ∈ V such that J(u0) < ∞, and F is continuous in Y at Λu0. Then
the minimization of J is characterized by infu∈V [F(Λu)+G(u)] = supp∈Y ∗ [−F∗(−p)−G∗(Λ∗p)]
where F∗ and G∗ are the convex conjugates defined for instance by F∗(p) = supq∈Y [〈q, p〉Y,Y ∗ −
F(q)]. Also, Λ∗ is the adjoint of Λ. Furthermore, the optimality system for this problem is
given by F(p) + F∗(−Λ∗p) = −〈p, λu〉Y,Y ∗ and G(u) +F∗(Λu) = 〈u,Λ∗p〉V,V ∗ .

In the present work, V = Y = L2(Ω) and Λ = I, so the pairings 〈·, ·〉Y,Y ∗ and 〈·, ·〉V,V ∗ are
both the inner product on L2(Ω). Then G and F are convex, lower semicontinuous functionals
defined by (2.13) and (2.12) or (3.6). For u0 = 0 the cost satisfies J(u0) <∞, and the residual
F is continuous in L2(Ω) at u0.

To obtain the desired optimality system, the convex conjugates are calculated first. The
convex conjugate of F in (3.6) is given as follows:

F∗(v) = sup
u∈L2(Ω)

Fv(u) :=

∫

Ω

[

uv − 1

2

Nc∑

i=1

|Pσiu− ũi|2 −
κ

2
u2

]

dx

The directional derivative of Fv(u) with respect to a perturbation ū is given by:

δFv

δu
(u; ū) =

∫

Ω

[

ūv −
Nc∑

i=1

(Pσiu− ũi)Pσiū− κuū

]

dx =

∫

Ω

[

v −
Nc∑

i=1

(σiPσiu− σiũi)− u

]

ūdx
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where Pũi = ũi. Under the conditions of Theorem 2 the operator κI+
∑

k=1 σkPσk is invertible,
so setting the critical

u∗ =

[

κI +
Nc∑

k=1

σkPσk

]−1 (

v +
Nc∑

l=1

σlũl

)

in Fv(u) gives the maximum of this convex functional:

Fv(u
∗) =

1

2

∫

Ω







(

v +
Nc∑

l=1

σlũl

)[

κI +
Nc∑

i=1

σiPσi

]−1 (

v +
Nc∑

l=1

σlũl

)

− ũ2
i






dx

as seen in (3.7). Also, for the case that Nc = 1 and P = I hold, this formula reduces to (2.15).
Next, the convex conjugate of G in (2.13) is given as follows:

G∗(v) = sup
v∈L2(Ω)

Gv(u) :=

∫

Ω

[

uv − µφǫ(|∇u|2)
]

dx

For a fixed v ∈ L2(Ω), let the constant v̄ be chosen so that v0 = v − v̄ has zero average value
over Ω. Then using (2.18) let w = ∆−1

N v0, so that w also has zero average value over Ω. A
lower bound for G∗v (u) is first obtained by maximizing Gv(u) over the finite dimensional set
{u = −sw + r : r, s ∈ R}. For elements in this set, Gv(u) satisfies:

Gv(u) =

∫

Ω

[

uv̄ −∇u · ∇w − µφǫ(|∇u|2)
]

dx

If |∇w| > µ holds, let u = −sw + r be chosen with s > ǫ/µ and rv̄ > 0, so that |∇u| > ǫ holds,
and according to (2.3):
∫

Ω

[

uv̄ −∇u · ∇w − µφǫ(|∇u|2)
]

dx =

(

rv̄ +
ǫµ

2

)

|Ω|+ s

∫

Ω
|∇w|[|∇w| − µ]dx− sv̄

∫

Ω
wdx

where the last integral is zero. Note that the right side becomes infinitely large as s and rv̄
become infinitely large. Thus, the indicator function ISµ appears in (2.16). Henceforth it is
assumed that v ∈ Sµ, where Sµ is defined in (2.17), so v̄ = 0 and |∇w| ≤ µ hold. Now an upper
bound for Gv(u) is determined over the dense subset of L2(Ω) with u ∈ C∞(Ω). For elements
in this set, Gv(u) can be written as:

Gv(u) =

∫

|∇u|≤ǫ

[

u∆w − µ

2ǫ
|∇u|2

]

dx +

∫

|∇u|>ǫ

[

u∆w − µ|∇u| − µǫ

2

]

dx

=

∫

|∇u|≤ǫ

[

−∇u · ∇w − µ

2ǫ
|∇u|2

]

dx +

∫

|∇u|>ǫ

[

−∇u · ∇w − µ|∇u|+ µǫ

2

]

dx

≤
∫

|∇u|≤ǫ

[

|∇u||∇w| − µ

2ǫ
|∇u|2

]

dx +

∫

|∇u|>ǫ

[

|∇u||∇w| − µ|∇u|+ µǫ

2

]

dx

It will now be shown that both integrands can be bounded by ǫ|∇w|2/(2µ). The integrand of
the first integral is a quadratic function of |∇u| defined on |∇u| ≤ ǫ which achieves its maximum
value of ǫ|∇w|2/(2µ) at |∇u| = ǫ|∇w|/µ. Because of the non-negative slope (|∇w| − µ), the
integrand of the second integral is a linear function of |∇u| defined on |∇u| > ǫ which approaches
a maximum value as |∇u| → ǫ. Thus,

|∇u||∇w| − µ|∇u|+ µǫ

2
≤ ǫ|∇w| − ǫµ

2
≤ ǫ

2µ
|∇w|2

where the difference between the rightmost term and the term next to it is ǫ(|∇w|−µ)2/(2µ) ≥ 0.
These calculations show that

Gv(u) ≤ ǫ

2µ

∫

Ω
|∇w|2dx
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Also, setting u∗ = −ǫw/µ in Gv(u) gives:

Gv(u
∗) =

∫

Ω

[
ǫ

µ
|∇w|2 − µ

2ǫ
(
ǫ

µ
)2|∇w|2

]

dx =
ǫ

2µ

∫

Ω
|∇w|2dx

as seen in (2.16).
With these convex conjugates the primal problem is related to the dual problem as follows:

inf
u∈L2(Ω)

{

1

2

Nc∑

i=1

∫

Ω
|Pσiu− ũi|2dx +

κ

2

∫

Ω
u2dx

µ

2

∫

Ω
φǫ(|∇u|2)dx

}

= infu∈L2(Ω)[F(u) + G(u)] = supv∈L2(Ω)[−F∗(−v)− G∗(v)] =

sup
v∈Sµ







1

2

∫

Ω







(

v+
Nc∑

l=1

σlũl

)[

κI+
Nc∑

i=1

σiPσi

]−1(

v+
Nc∑

l=1

σlũl

)

− ũ2
i






dx+

ǫ

2µ

∫

Ω
|∇∆Nv|2dx







(A.28)
where Sµ is defined in (2.17). Here it can be seen from the last term that ǫ > 0 in (2.3) provides
a regularization in the dual problem, which motivates its use in [10].

Now the optimality system (2.14) is obtained with the constructions above. For F in (3.6)
and F∗ in (3.7) the equation F(u) + F∗(v) =

∫

Ω uvdx can be written as follows:

0 =
1

2

∫

Ω

{
Nc∑

i=1

[Pσiu− ũi]
2 +

κ

2
u2+

(

v +
Nc∑

l=1

σlũl

)[

κI +
Nc∑

i=1

σiPσi

]−1 (

v +
Nc∑

l=1

σlũl

)

− ũ2
i − 2uv






dx

=
1

2

∫

Ω

(

κu
Nc∑

i=1

σiPσiu + v −
Nc∑

l=1

σlũl

)[

κI +
Nc∑

i=1

σiPσi

]−1

×
(

κu +
Nc∑

i=1

σiPσiu + v −
Nc∑

l=1

σlũl

)

dx

which is the first equation in (3.9) with v = ∆Nw. Also, for the case that Nc = 1 and P = I
hold, this formula reduces to the first equation in (2.19) with v = ∆Nw.

For G in (2.13) and G∗ in (2.16) the equation G(u) + G∗(−v) = −
∫

Ω uvdx can be written as
follows in terms of ∆Nw = v ∈ Sµ:

0 =

∫

Ω

[

µφǫ(|∇u|2) +
ǫ

2µ
|∇(∆−1

N v)|2 + uv

]

dx =

∫

Ω

[

µφǫ(|∇u|2) +
ǫ

2µ
|∇w|2 −∇u · ∇w

]

dx

=

∫

|∇u|<ǫ

[
µ

2ǫ
|∇u|2 +

ǫ

2µ
|∇w|2 −∇u · ∇w

]

dx

+

∫

|∇u|≥ǫ

[

µ|∇u| − µǫ

2
+

ǫ

2µ
|∇w|2 −∇u · ∇w

]

dx

=

∫

|∇u|<ǫ

ǫ

2µ

∣
∣
∣
∣∇w − µ

ǫ
∇u

∣
∣
∣
∣

2

dx ( ≥ 0) (A.29)

+

∫

|∇u|≥ǫ

[

ǫ

2µ

∣
∣
∣
∣∇w − µ

ǫ
∇u

∣
∣
∣
∣

2

− µ

2ǫ
(|∇u| − ǫ)2

]

dx ( ≥ 0) (A.30)
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The non-negativity of the integrand in (A.29) is evident, and the non-negativity of the integrand
in (A.30) can be seen from the following estimate:

∫

|∇u|≥ǫ

[

ǫ

2µ

∣
∣
∣
∣∇w − µ

ǫ
∇u

∣
∣
∣
∣

2

− µ

2ǫ
(|∇u| − ǫ)2

]

dx (A.31)

≥
∫

|∇u|≥ǫ

µ

2ǫ

[(
ǫ

µ
|∇w| − |∇u|

)2

− (|∇u| − ǫ)2
]

dx (A.32)

=

∫

|∇u|≥ǫ
(µ− |∇w|)

[
ǫ

2µ
(µ− |∇w|) + (|∇u| − ǫ)

]

dx ≥ 0 (A.33)

Since each integrand in (A.29) and (A.30) is non-negative and the sum is zero, each integrand
must be pointwise zero. That the integrand in (A.33) must vanish means that |∇w| = µ must
hold when |∇u| ≥ ǫ holds. That the two integrals in (A.31) and (A.32) are zero implies, after
removing identical terms in each, that

0 =

∫

|∇u|≥ǫ
[|∇u||∇w| − ∇u · ∇w]dx

where the integrand is non-negative. Thus, ∇u · ∇w = |∇u||∇w| holds, i.e., ∇u/|∇u| and
∇w/|∇w| are parallel unit vectors, so |∇u|∇w = |∇w|∇u = µ∇u holds when |∇u| ≥ ǫ holds.
That the integrand in (A.29) is non-negative means that ǫ∇w = µ∇u holds when |∇u| < ǫ
holds, and it follows that ǫ|∇w| = µ|∇u| < ǫµ or |∇w| < µ holds. These conditions can be
summarized as follows:

(|∇u| ≥ ǫ⇒) |∇w| = µ, |∇u|∇w = µ∇u
(|∇u| < ǫ⇒) |∇w| < µ, ǫ∇w = µ∇u

or that max{ǫ, |∇u|}∇w = µ∇u, as seen in the second equation of (2.19) and (3.9).
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