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Abstract
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion
magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be
compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we
present a method to compensate this movement by combining independent component analysis
(ICA) and image registration: First, we use ICA and a time-frequency analysis to identify the
motion and separate it from the intensity change induced by the contrast agent. Then, synthetic
reference images are created by recombining all the independent components but the one related
to the motion. Therefore, the resulting image series does not exhibit motion and its images have
intensities similar to those of their original counterparts. Motion compensation is then achieved by
using a multi-pass image registration procedure. We tested our method on 39 image series
acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and
consisting of 58 perfusion images each. We validated our method by comparing manually tracked
intensity profiles of the myocardial sections to automatically generated ones before and after
registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and
combined ICA based registration approaches and previously published motion compensation
schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme
that first optimizes a translation and then for non-linear transformation performed best and
achieves registration of the whole series in 32 ± 12s on a recent workstation. The proposed scheme
improves the Pearsons correlation coefficient between manually and automatically obtained times-
intensity curves from .84 ± .19 before registration to .96 ± .06 after registration.
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1. Introduction
Perfusion quantification by using first-pass gadolinium-enhanced myocardial perfusion
magnetic resonance imaging (MRI) has proved to be a reliable tool for the assessment of
myocardial blood flow that ultimately can be used for the diagnosis of coronary artery
disease that leads to reduced blood supply to the myocardium. In a typical imaging protocol,
images are acquired over 60 seconds to cover some pre-contrast baseline images and the full
cycle of contrast agent first entering the right ventricle (RV), then the left ventricle (LV),
and finally, the agent perfusing the LV myocardium (Fig. 1). Then, to measure the blood
flow, the image intensity of areas in the myocardium is tracked over time (cf. Jerosch-
Herold (2010)).

In order to perform an automatic assessment of the intensity change over time, it is desired
that no movement occurs in the images taken at different time points and that the heart is
always imaged at the same contraction phase. While the latter can be achieved by ECG
based triggering, the 60 seconds acquisition time span is too long for average people to hold
their breath, and therefore, breathing movement is normally present in the image series. An
additional challenge to motion compensation is posed by the contrast agent passing through
the heart that results in a strong intensity change over time.

To acquire images that exhibit little motion, it is possible to ask the patients to breath
shallow which results in a breathing pattern that exhibits only a low amplitude but the
movement is rather irregular and no movement pattern exists that could be exploited for
motion compensation.

It is also possible to ask the patients to hold their breath, but here, when a patient cannot
hold it anymore a deep gasp occurs that results in a high amplitude motion that requires the
accommodation of larger deformations for motion compensation, and it also results in a
large through-plane motion which can not be dealt with by a 2D in-plane registration. The
large gasp may also lead to image artifacts associated with parallel imaging, and it may
occur during a critical phase of myocardial enhancement, particularly for patients with slow
myocardial perfusion.

These problems can be avoided by letting the patient breathe normal, which results in a
regular, almost periodic breathing movement of low amplitude with highly reduced through-
plane motion when compared to the deep gasps that may occur for breath-held studies.
Acquisition during normal free breathing also reduces incidence of missed ECG triggers or
breath-hold induced arrhythmias, it improves patient comfort, simplifies the acquisition
workflow, and the acquisition time is no longer limited by breath-held duration. Finally, the
quasi-periodicity of the breathing can be exploited when the motion is compensated for to
enable a later automatic analysis of the myocardial perfusion.

1.1. State of the art
Various image registration methods have been proposed to automatically compensate
breathing movement in series of perfusion images in general.

All these methods have to deal with two challenges: The motion to be compensated, and the
rather strong intensity change that are induced by the contrast agent. Some approaches rely
on linear registration only and to overcome the problem of intensity change, they optimize
similarity measures drawn from information theory, e.g., (normalized) mutual information
(MI), as used by Wong et al. (2008), or (normalized) cross correlation (CC) as used by
Breeuwer et al. (2001) or Gupta et al. (2003). Other options include the use of contour
masks obtained from gradient images and potential maps (Delzescaux et al. (2003)) or the
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removal of the area of high intensity change by masking (Dornier et al. (2003)), or
employing independent component analysis (ICA) to create synthetic images that are then
used as references for image registration (Milles et al. (2007)). However, since the breathing
movement results in the heart moving within the barely moving chest, the all-over
movement pattern is highly non-linear, and masking is needed to extract a region of interest
(ROI) around the heart that must be small enough to not contain non-moving body parts but
big enough to accommodate the full movement range of the heart itself. In addition, linear
registration does not account for the non-linear deformations of the myocardium itself.

Employing non-linear registration can compensate for the non-linear deformations and it
doesn’t require the extraction of a bounding box. Yet, employing straightforward approaches
that require the registration of images from different perfusion phases still have to deal with
the additional challenge of changing intensities. For example Xue et al. (2009) relied on CC,
and MI was employed by Ólafsdóttir (2005) to compensate breathing movement in
myocardial perfusion series. However, both MI and CC are global measure in the sense that
they rely on a consistent material-intensity mapping over the whole image domain and do
not account for the local intensity change as it can be seen in perfusion series. For MI Likar
and Pernus (2001) and Studholme et al. (2006) proposed methods to minimize the effects of
these local intensity variations during registration, but these methods are tailored only to
accommodate slowly varying intensities that may result from field inhomogeneities or tissue
degeneration. They are not well suited for the strong local changes resulting from a contrast
agent passing through the heart ventricles and the myocardium. Also, non-linear registration
is already an ill-posed problem that has many local minima, and the complexity of the above
criterions may add even more local minima. In addition, these measures are usually
computationally demanding.

As an alternative to these global image similarity measures, a highly local similarity
measure based on normalized gradient fields (NGF) has been proposed by Haber and
Modersitzki (2005) and used for motion compensation in myocardial perfusion in Wollny et
al. (2010b,a). However, as NGF is a highly local measure, it can hardly be used to register
images with large movements that would require to correct for large deformations.
Consequently, in Wollny et al. (2010b) NFG was combined with the sum of squared
differences (SSD) and only images in temporal succession were registered so that only
relatively small changes had to be accommodated, and in Wollny et al. (2010a) the measure
was used to register images that were already identified as being closely aligned.

Because of the complications of non-linear registration that result from the intensity change
over time it is desirable to reduce the need for the registration of images of different
perfusion phases or to avoid it altogether.

One method to achieve this is to register only images in direct temporal succession, and
align all images to one reference by accumulating the obtained transformations (see, e.g.,
Xue et al. (2009), Tautz et al. (2010), and Wollny et al. (2010b)). However, this
accumulation of transformation may also result in the accumulation of small registration
errors and may, therefore, result in considerable large errors in the overall alignment for
frames that are “far away” from the common reference.

In Wollny et al. (2010a), the quasi-periodicity of free breathing was used to identify key
frames that are already closely aligned, and registered using NGF. Then synthetic references
were created by linearly combining images from the registered key frames and used for the
registration of the remaining images. Yet, at the beginning of the series when the contrast
agent passes through the right and left heart ventricle, the linear combination of images
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failed to model the fast change of intensities properly in some cases, resulting in bad motion
compensation for this early phase of the perfusion sequence.

To completely eliminate the need for the registration of images from different perfusion
phases, Li and Sun (2009) used prior knowledge to first obtain an approximation of ground
truth and then used this pseudo ground truth (PGT) as reference for non-linear registration to
reduce motion. Running this two-step scheme in a multi-pass fashion will eventually lead to
full motion compensation. Li et al. (2011) later extend the method to be based on an initial
semi-automatic segmentation of the heart ventricles and enhanced optimization methods.

Milles et al. (2007), and in its extension Milles et al. (2008), and Gupta et al. (2010) also
completely eliminated the need to register images from different perfusion phases by
employing ICA to identify three feature images (baseline, peak RV enhancement, peak LV
enhancement) and combine these to create synthetic references. Then linear registration was
used to compensate for breathing motion, hence the extraction of a ROI around the heart
was required and done based on the identified RV and LV enhancement peaks. However,
Gupta et al. (2010) reported that the method failed to properly identify the feature images if
large movement was present. Also, in Wollny et al. (2010a) it was reported that this
approach failed for perfusion series acquired free breathing, and in Wollny et al. (2011) an
extension to the method was given to enable its application to free breathing acquired data.
Since the approach we present in this article builds on the idea of using ICA to create
reference images, we will discuss the method in section 2 in more detail.

Finally, learning based methods can be used for motion compensation, e.g. Stegmann et al.
(2005). However, these methods usually need large training sets to generate the model that
is later used for registration.

1.2. Our contribution
First, we will give a detailed review of the ICA based analysis and motion compensation
method presented by Milles et al. (2006, 2007, 2008), and Gupta et al. (2010), discuss its
advantages and where it fails. Then, we will present enhancements to these methods by
replacing the ranking scheme for the IC labeling presented by Milles et al. (2006) by a more
robust approach that is based on wavelet analysis to identify the independent component
(IC) related to motion and select the optimal number of ICs. In order to enable linear
registration and/or to speed up computation in the non-linear registration we provide a
alternative approach to segment a bounding box around the LV myocardium that is based on
the IC feature images. We follow Gupta et al. (2010) by creating synthetic reference images
based on the ICA, and omitting the identified motion component when combining the ICs to
create reference images that are free of motion. Instead of compensation for translation only,
we either employ non-linear registration only, or as refinement step after linear registration.
Some of these enhancements were sketched in Wollny et al. (2011) and will be presented
here in more detail. Experiments on clinical data and a validation and comparison to other
methods conclude the article.

2. ICA based motion compensation revisited
Using ICA in order to analyze myocardial perfusion series has been first proposed by Milles
et al. (2006). The method presented there did not target motion compensation but a direct
analysis of the perfusion process by identifying key components of the perfusion series -
baseline, peak RV enhancement, peak LV enhancement, myocardial perfusion, and outliers -
and reconstructing the series from these components. Further perfusion analysis was then
directly executed at this reconstructed data set. In order to label the components, a ranking
for a voting system was presented and is replicated in Table 1. With this ranking scheme,
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Milles et al. (2006) reported success rates for labeling of real data of 87.8% for LV and RV,
98.0% for Baseline and 65.3% for Myocardium.

Unfortunately, Milles et al. (2006) did not give a clear indication on how this voting is
actually applied, nor any explanation why for the outliers the histogram symmetry of IC
should be high, why the maximum weight value for the outliers should be smaller for
outliers than for all the other components, or why the time point of the maximum of LV and
RV should be before the time point of the maximum of the outlier component. Especially
the latter two properties do not hold in a free breathing setting.

In Milles et al. (2007) (and in extension in Milles et al. (2008)) a linear registration scheme
was proposed that used a three-component ICA, identifies Baseline, RV and LV
enhancement by using the first three rows of Table 1, and uses these components to create
synthetic references that are free of motion. The linear registration allowed only translational
movement and optimized cross correlation in a two-pass registration scheme that uses a sub-
sampled version of the images in the first pass and full resolution images in the second pass.
However, for data sets that are acquired free breathing, a three component ICA will not
properly separate RV and LV. Instead, the motion and one of the two ventricle cavity
enhancements may be merged into one component, making proper identification of the RV
and LV impossible (Fig. 3). In addition, images created from these components retain most
of the motion and can, therefore, not be used as reference images to compensate for the
motion.

In a further extension to Milles et al. (2008), Gupta et al. (2010) suggested to use a five
component ICA to run the motion compensation algorithm using the ranking proposed
above to identify the ICs corresponding to LV, RV, baseline, myocardial perfusion and
motion. Since the identification and labeling of the component related to myocardial
perfusion proved to be difficult only the components related to LV, RV, and baseline were
used for reference image creation, and the motion component was explicitly dropped. It is
not clear from the text, however, whether this implies that in the end only a four component
ICA was applied, or a five component ICA was run and both the motion component and the
myocardial component were discarded. Finally, to achieve motion compensation the same
linear registration was applied that was used in Milles et al. (2008), with an additional final
registration pass at the full image resolution. Gupta et al. (2010) noted that for series
containing large movements the algorithm failed.

To summarize: ICA provides an elegant way to create motion free synthetic reference
images for motion compensation in myocardial perfusion images, yet for a successful
application of the method, a proper labeling of the components is imperative. The labeling
approach proposed by Milles et al. (2006, 2008) doesn’t provide such labeling in a free
breathing setting or when strong motion is present.

In Wollny et al. (2011) we proposed a method to overcome some of these difficulties by
using non-linear registration to eliminate the need to segment a bounding box around the
LV, and by using a heuristic based on mixing weight curve length to select an optimal
number of ICs, to identify the motion related IC, and drop it from reference image creation.
The drawback of this method is that it can not be applied to perfusion series that were
acquired with initial breath-holding.

3. Method
In the following, our main focus will be on free breathing acquired perfusion series.
Nevertheless, most assumptions also hold for data sets that were acquired with initial breath
holding, and we will discuss differences when applicable.
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We propose a new motion compensation method that is run in a multi-pass scheme and
composed of the following steps (Fig. 4): First, an ICA is run for various numbers of ICs.
For each number, the components related to motion are identified, and that number of ICs is
used for further processing that results in the lowest non-zero number of motion
components. If no motion component could be identified, one last registration pass will be
run using reference images created from all ICs and the multi pass scheme stops. If more
than one motion component was identified the component with the highest signal energy in
the mixing weight curve will be labeled as major motion component. Then, motion-free
reference images are created from the ICs leaving out the major motion component, and the
original images are registered to the synthetic references. If a predefined maximum number
of registration passes is run then the motion compensation algorithm stops here. Otherwise
the next pass is started by running ICA using the registered images as input.

If one desires to run linear registration, or in order to speed up non-linear registration by
restricting it to the region around the heart, a bounding box estimation may be run in the first
pass, after the labeling of the motion component.

3.1. ICA and motion component labeling
As the first step of the algorithm an ICA is run. ICA decomposes measured mixed signals X
into a set of statistical independent sources S and their corresponding weights W (Comon
(1994)). Given a domain Ω := [1, n] × [1,m] ⊂ ℤ2, and an Image I : Ω → ℝ of dimension n
× m, with Ii,j := I(i, j) the intensity of the pixel at (i, j) ∈ ℤ2, image I can be written as a
vector x := (I1,1, I2,1, …, In,1, …, In,m). Furthermore, given N images {I(k)|k = 1, …, N} an
image series can be written as X := (x1, x2, …xN)T. With x̄ := [x̄1, x̄2, …, x̄N], and x̄k the
average image intensity of image I(k) an ICA model of such a data set is formulated as:

(1)

With C the number of retained components, the matrix S ∈ ℝmn × C defines the ICs, and W
∈ ℝC × N the mixing matrix. S can also be written as a vector (s1, s2, …, sC)T of row vectors
si ∈ ℝmn and W as a vector (w1, w2, …, wC) of column vectors wc ∈ ℝN. The rows si of S
can be interpreted as feature images and the columns wc ∈ ℝN of W are the mixing weight
curves of the individual ICs (Fig. 3).

3.1.1. On the optimal number of ICs—As suggested by Milles et al. (2006), a
perfusion series is actually composed of five major components: the baseline, the LV cavity
enhancement, the RV cavity enhancement, the myocardial perfusion, and the movement
component. In a free breathing setting, this movement is quasiperiodic over the whole
acquisition time, and in a series acquired with initial breath holding, the movement is
quasiperiodic after the onset of the breathing motion. Hence, a separation into five
components should be the optimal approach for the application of ICA. However, as Gupta
et al. (2010) noted and as we confirmed in experiments, sometimes the perfusion component
can not be separated well, and instead the movement component is split into two different
ICs which results in more than one mixing curve exhibiting periodic behavior (Fig. 5 (left),
solid lines). Here, reducing the number of components can result in an unambiguous
separation of the motion component (Fig. 5 (right)).

In other cases, intensity change patterns resulting from the imaging process or the perfusion
of additional tissue create more components that can be identified without introducing
ambiguity for the motion related component, resulting in a better separation of the
movement if more than five components are used (Fig. 6).
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To ensure the best separation of the movement from the other components we target to find
the highest number of ICs that result in the lowest positive number of motion components.

3.1.2. Normalization—As a result of ICA the ICs are already normalized to have a unit
variance. Additionally, we normalize the mixing matrix W like follows: First, we shift the

values of the mixing curves  to have a zero mean ,

and we create the mean image  that retains the extracted information.

Then, all ICs s are sign corrected so that the mixing curves  start with a negative value. As
a result eq. (1) reads now

(2)

with the primed quantities being the corrected versions of the originals.

A typical representation of the resulting mixing matrix is shown in Fig. 7. Specifically, in
the feature images related to RV and LV enhancement, the corresponding cavities are
represented with high intensities (Fig. 7 (right)), and the RV and LV peak enhancements
correspond to the first large maximums in the corresponding mixing weight curves (Fig. 7
(left), solid lines). Often this maximum is also the global maximum, but this is not
guarantied.

3.1.3. Considerations on the time-frequency behavior of IC mixing curves—In
order to properly identify the ICs as belonging to motion, we use a component-wise wavelet
based time-frequency analysis of the IC mixing matrix W (Mallat (1999)). Compared to a
Fourier analysis, a wavelet based analysis provides not only a frequency spectrum, but also
time-based information, which makes it possible to apply the method not only to completely
free breathing data, but also data that starts with breath-holding.

The time-frequency analysis is based on applying a discrete wavelet transform (DWT)
individually to the mixing curves resulting from the ICA. The result of the DWT is a series
wavelet coefficients that are attributed to frequency bands or levels, and time ranges - the
higher the frequencies are that are covered by certain band, the higher is the time resolution
of the analysis - which is expressed by more coefficients being attributed to the according
frequency band.

For practical purposes, the size of the input vector to a DWT needs to be of power of two,
and with a complete DWT, the number of wavelet levels is L := log2(N). For further
explanation we will assume that the acquired series consists of 64 images. This is a little
more than the size of the series that usually result from a 60s acquisition sequence and the
input data needs to be padded with zeros to achieve the required size.

With 64 images that are acquired triggered at the heart beats, a DWT of the mixing weight
curves results in log(64) = 6 wavelet levels. These levels correspond to the following
frequency ranges (given in events per heart beat (EPH)):

(3)

with α referring to the scaling function that is used to cutoff the analysis for low frequencies
(Mallat (1989)). The number of coefficients per level Nl are {32, 16, 8, 4, 2, 1} respectively.
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Note, that the standard notation for wavelet coefficients the counting of the levels starts at
the highest frequency range.

Our main purpose for using DWT is to select the best number of ICs and to identify the
component related to motion properly. Therefore, consider that the resting heart rate is about
75 heart beats per minute and a healthy respiratory rest breathing rate is about 12 per minute
(Tortora and J-Grabowski (2002)). Hence, a breathing cycle amounts to about six frames in
the heart-beat triggered image acquisition, and the significant coefficients representing this
movement should be found in the second wavelet frequency level lmov = 2. Since the
movement pattern also includes higher frequency components, the coefficients of the first
wavelet level will also be significant. However, since signal separation in ICA is not perfect,
the higher level wavelet coefficients may also be non-zero, but usually not significantly
larger than the low level coefficients (Fig. 8 (f)).

The myocardial perfusion, LV and RV enhancement, are, on the other hand, processes that
require more time, and the significant wavelet coefficients corresponding to these processes
can be found in the higher wavelet levels, i.e. in the four levels that cover the frequency

range  EPH (Fig. 8(c,d,e)). Note, however, that the fast increase of the RV
enhancement curve also results in notable coefficients at the beginning of the second
wavelet level (Fig. 8(d)).

Finally, the baseline component has generally small coefficients (Fig. 8 (b)) and they are
distributed over all wavelet levels.

In images series acquired free breathing, for the component(s) attributed to motion the
wavelet coefficients in the motion related levels will be evenly distributed among the time
indices. In the case of breath holding followed by breathing, these coefficients will be close
to zero for low time indices and high for later indices. In addition, the coefficient in the
highest wavelet level will also be large, representing the constant value of the mixing curve
during the breath-holding phase of the image acquisition (Fig. 9).

3.1.4. Labeling of components and identification of the optimal number of ICs
—Based on above observations, the following procedure can be formulated to label the
motion components:

First, we evaluate the DWT for all mixing curves 

(4)

resulting in the wavelet coefficients

(5)

Based on the temporal distribution of the coefficient of the motion related wavelet level we
decide now whether the perfusion sequence was acquired free breathing or with initial
breath holding (for details see Appendix A).

For further component labeling we then evaluate for all coefficient series f(c)
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(6)

Now we base the proper labeling of the movement component(s) on the sum of the low
frequency coefficients

(7)

and the sum of the high frequency coefficients

(8)

In  we ignore the coefficient , since for acquisition patterns that includes breath
holding this coefficient will also be high.

Now, if , then the component c will be labeled as motion with two exceptions: If c
is the component with the lowest mixing value range it will be labeled as baseline, and if a
free breathing acquisition pattern was estimated, but the component was labeled to exhibit
motion at the beginning of the series according to (A.1), it is not labeled as motion, since in
this case, the high values of the coefficients stem from the steep RV enhancement curve.

As a result of this labeling process, we obtain a set Cmov of movement components, a set
Crem of remaining components, and most of the time one component cb labeled as baseline.

Based on the number of components that have been labeled as to contain motion, we
proceed like follows: If no component was labeled as containing motion, then the series is
considered to be free of motion. If one or more ICs were labeled as related to motion, we
label this component as the main motion component that exhibits the largest value

. If this value Emov is smaller than the value  of the base line
component, then the series is also considered to be free of motion.

To rate the quality of the signal separation obtained by the ICA, we use the number of
identified motion components: a lower positive number is better.

In order to obtain the optimal number of ICs, we run the ICA followed by the wavelet
analysis described above for various numbers of components C. The number of components
C that results in the lowest positive number of motion components is used for further
processing.

Finally, out of the remaining components Crem we label he ICs related to RV and LV
enhancement based on the maximum mixing curve gradient and the time point of this
maximum. Since the motion components were already labeled, only slowly changing
components are left. For these, RV enhancement comes first and has the steepest
enhancement, then comes LV enhancement, and finally perfusion. To compose the steepness
and the time point of the enhancements into one value, we evaluate

 which weights the mixing curve gradient value against its
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time index and, hence, gives a preference to local gradient maxima that occur earlier. Then,
the RV and LV ICs can be labeled based on

(9)

However, if the RV cavity is very small, as it may happen at the apical level, the LV
enhancement curve may actually be a lot more prominent and steeper than the RV
enhancement curve. Therefore, in a final step we test if the maximum mixing curve gradient
of the supposed RV enhancement curve comes indeed before the one attributed to LV
enhancement, and switch labeling of this is not the case.

For this labeling to succeed, the set of remaining components Crem must contain at least two
components. If this is not the case, we consider the ICA to be of low quality, since LV
enhancement and RV enhancement should both be separated as well, unless RV cavity can
be identified at all as it may be the case at the apical level. The result of such an ICA can not
be used for an LV bounding box estimation, and hence it can only be used if non-linear
registration is to be applied, or a registration scheme using linear registration is running in
the second or later pass, when the region of interest was already segmented and cropped.

3.2. LV bounding box estimation
Given the properly labeled RV and LV enhancement components one can segment a region
of interest around the LV myocardium. This segmentation is required, if linear registration is
to be executed, and it also can be used to speed up non-linear registration by restricting
image processing to this region of interest.

We base our segmentation on the difference of the RV and LV feature images that result
from the preceding ICA instead of using the original images related to peak enhancement as
proposed by Milles et al. (2008), and instead of using thresh-holding, we base the
segmentation on a k-means classification (see Appendix B for a detailed description).

Given that the segmentation succeeded, we define the LV bounding box as squared and
centered around the geometric center of the LV, cLV and the length of its sides is set to 2s|
cRV − cLV| with s being a scaling parameter. Because the breathing movement results in
highly non-linear deformations of the interior of the chest, using linear registration requires
a very accurate estimation of this bounding box and hence of the parameter s. In non-linear
registration, a bounding box is only useful to speed up computations and it is better to set the
scaling parameter to a larger value in order give enough freedom to the non-linear
registration.

If the segmentation failed, then linear registration can not be run, but non-linear registration
can still be achieved.

3.3. Image registration
In order to register the perfusion series, we create synthetic reference images for each time
point by linearly combining all ICs and the mean image X̄′ that resulted from the
normalization of the mixing curves, but we exclude the IC labeled as main motion
component. By this method, the movement is removed from the reference image series, but
the intensity change is preserved, resulting in reference images that exhibit the same
intensity distributions as their original counterparts. Therefore, the sum of squared
differences can be used as registration criterion.

Because initially, the feature images and the mean image retain a blurriness that results from
the breathing motion, the reference images created by above method are also quite blurry
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(Fig. 10(left)). Therefore, in order to achieve good registration results it is better to use a
multi-pass registration scheme.

Based on the freedom given to the transformation Treg that is used to achieve registration a
variety of registration approaches can be applied to achieve motion compensation. In the
simplest case, one may compensate only for translation as do Milles et al. (2008). However,
the accuracy of this linear registration approach is limited since it does not compensate for
the local deformations of the heart.

Alternatively, one can employ non-linear registration, and, thereby, avoid the burden of
optimal bounding box creation, and also aim at achieving higher accuracy by compensation
for non-linear deformation of the heart. Our non-linear registration approach utilizes a B-
Spline model for the transformation (Kybic and Unser (2003)), and a regularization that is
based on the separate norms of the second derivative of each of the deformation components
(Rohlfing et al. (2003)) weighted by a factor κ. In the first pass, we restrict the freedom of
the non-linear registration by employing a high weight on the regularization, and by using a
large knot spacing for the B-spline based transformation. In the subsequent passes, when the
reference images are a lot less blurred (Fig. 10(right)), we employ a lower weight for
regularization and a smaller B-spline knot spacing.

Finally, it is also possible to first run linear registration followed by non-linear registration
to refine the initial alignment.

4. Experiments and Validation
4.1. Image data

13 first-pass contrast-enhanced myocardial perfusion imaging data sets were acquired and
processed under clinical research protocols and all subjects provided written informed
consent. Six data sets are rest studies, five data sets are stress studies, and for the remaining
two sequences this information was lost due to too aggressive anonymization. Two distinct
pulse sequences were used for image acquisition: a hybrid GRE-EPI sequence and a true-
FISP sequence. Both sequences were ECG-triggered and used 90-degree-saturation recovery
imaging of several slices per R-R interval acquired for 60 heartbeats. The pulse sequence
parameters for the true-FISP sequence were 50-degree readout flip angle, 975 Hz/pixel
bandwidth, TE/TR/TI = 1.3/2.8/90 ms, 128 × 88 matrix, 6 mm slice thickness. The GRE-EPI
sequence parameters were 25-degree readout flip angle, echo train length = 4, 1500 Hz/pixel
bandwidth, TE/TR/TI = 1.1/6.5/70 ms, 128 × 96 matrix, 8 mm slice thickness. The spatial
resolution was about 2.8 mm × 3.5 mm. Parallel imaging using the TSENSE (Kellman et al.
(2001)) method with acceleration factor = 2 was used to improve temporal resolution and
spatial coverage.

For all but one patient, a half dose of contrast agent (Gd-DTPA, 0.1 mmol/kg) was
administered at 2.5 ml/s, followed by saline flush. For one patient the dose was administered
at a higher rate which resulted in a significantly higher contrast. For 12 patient data sets the
images series were reconstructed to a final matrix size of 256 × 192 (3/4 phase FOV) using
zero filling for interpolation, and for one patient the final matrix size was 128 × 128 instead.
This low resolution series and the series with a higher contrast resulted from acquisition
protocols that are no longer in use. Nevertheless, we include this data here to test the
robustness of the algorithm with respect to varying input. All data sets were acquired using a
free breathing protocol, still, one rest study and one stress study exhibited a somewhat
erratic breathing pattern while the others showed the expected quasiperiodic motion, and in
all data sets the RV and LV cavity could be identified visually. Motion correction was
performed for three short-axis slices of these 13 patients covering different levels of the LV
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myocardium (basal, mid, and apical levels) totaling in 39 slice sequences. Out of the 60
images per slice sequence, the first two frames were acquired as proton density weighted
images for use in correcting the surface coil intensity variation. These frames were acquired
at a lower excitation flip angle and without the saturation recovery preparation, and were
omitted from the motion compensation resulting in 58 perfusion images per slice sequence.

In order to also test our method on perfusion series that were acquired breath holding, we
replaced approximately the first 40 frames of some of the original series with the registered
images thereby simulating perfusion series with initial breath holding followed by normal
breathing. Our main purpose for these series was to test the IC labeling scheme in a breath-
holding setting, therefore, we did not run an additional segmentation based validations for
these simulated breath holding series.

4.2. Methods implemented and tested
We run our motion compensation experiments by using a variety of methods. Firstly, we run
tests by using the ICA based method described above executing (1) non-linear registration
only (ICA-SP), (2) linear registration by optimizing a translation (ICA-T), which is similar
to Gupta et al. (2010) but employs the new labeling scheme. Then, we will run (3) ICA-T
followed by at least one pass of spline based non-linear registration (ICA-T+SP).

In addition to these methods, we will compare to methods presented elsewhere. Specifically,
we will compare to (4) motion compensation exploiting the quasiperiodicy of the breathing
movement (QUASI-P), Wollny et al. (2010a), (5) serial registration with the accumulation
of transformations (SERIAL), Wollny et al. (2010b), and (6) pseudo-ground-truth based
registration (PGT) Li and Sun (2009) with some variations: Since this approach requires
already linearly aligned input images, we used the output of ICA-T as input images, we
replace the demons based non-linear registration by the same spline based approach that is
used for ICA-SP, and instead of using Gaussian elimination to solve the PGT estimation
problem, we used the L-BFGS algorithm (Fletcher (2000)).

4.3. Software and Parameters
All methods have been implemented using the same image processing software and made
available (Wollny (2010)). For the independent component analysis the FastICA algorithm
was used (Hyvarinen (1999)) as implemented in Ottosson et al. (2009). The FastICA
algorithm was first run in deflation mode, if this didn’t result in a usable signal separation,
symmetric mode was run and the provided result was used regardless of the convergence of
the algorithm. The maximum of iterations was set to 400.

For the discrete wavelet transform we relied on the implementation in Galassi et al. (2009)
and used the centered Daubechies wavelet family of maximum phase with five vanishing
moments (Daubechies (1988)). For the ICA based methods the optimization of the objective
function was achieved using the rank-1 method of the shifted limited-memory variable
metric algorithm (VAR1) by Vlcek and Luksan (2006) as implemented in Johnson (2011)
when running non-linear registration (breaking conditions: maximum of 300 iterations, or
0.001 absolute x-tolerance, or 0.001 relative objective function value), and the simplex
algorithm of Nelder and Mead (1965) implemented in Galassi et al. (2009) when running
linear registration (breaking condition for the simplex algorithm was set to 0.01, and its start
step size to 0.001).

For QUASI-P a gradient decent provided significantly better results than VAR1 and we used
the method implemented in Galassi et al. (2009), a start step size of 0.01, and a stopping
condition of 0.001.
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The parameters used to run the non-linear registrations are given in Table 2. In addition,
SERIAL used a weighted sum of normalized gradient fields (NGF) (1.0) and the sum of
squared differences (SSD) (1.0) as registration criteria.

Li and Sun (2009) does requires three parameters for ground truth estimation that are not
given in the article. After conversation with the authors, we set these parameters to α = 0.1,
β = 4, and ρ = 0.85.

If linear registration was to be run - stand alone or followed by non-linear registration —
then the bounding box amplification parameter was set to s = 1.3, and if only non-linear
registration was to be run it was set to s = 2.0. For all additional parameters that are not
given here, the default values as implemented in the respective software libraries were used.

All experiments and timings were run on a AMD Phenom II X6 1035T processor (2.6GHz),
Gentoo/Linux 64 bit. The software was compiled with GNU g++ (Gentoo 4.5.3-r1), and
optimization flags −O2 −march=native −mtune=native −funroll-loops - ftree-vectorize.

4.4. Validation
Time-intensity curves of sections of the myocardium are the prominent feature on which a
medical indication would be based. Therefore, we will base our validation on the

comparison of manually acquired time-intensity curves  of 12 sections s ∈ of the

myocardium compared to automatically obtained ones before  and after  registration
(Fig. 11). For a better comparison the time-intensity curves were normalized linearly so that

the manual obtained series  cover an intensity range of [0,1].

In order to estimate these time-intensity curves, for all data sets in each slice the LV-
myocardium was segmented and the center of the LV as well as the RV insertion point from
the short-axis images were identified. Since it is difficult to identify the LV center directly,
we selected three points on the outer wall of the LV myocardium, evaluate the circle passing
through these points and use the center of this circle as LV center. Using the LV center as
angular point and beginning at the RV insertion point, the myocardium was segmented
clock-wise into 12 segments enclosing equal angles (Fig. 11, left). Finally, time-intensity
curves were evaluated based on the average pixel intensities of these segments (Fig. 11,
right).

For comparison of the curves before and after registration we evaluated Pearsons correlation
coefficient R2 between the manually obtained time intensity curves and the time intensity
curves that were obtained by using the segmentation of one reference slice as mask for all
frames. Here, higher correlation indicates a better registration.

Secondly, the Normalized Mean Squared Error (NMSE)

(10)

is used as a quality measure, and it is evaluated before  and after

 registration; smaller values indicate better motion compensation.

Finally, we consider the average standard deviation of the intensity in the 12 segments si of
the myocardium σsi,t:= Σt∈Θ σ(si) as obtained by using the myocardial mask of one reference
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frame of the motion-corrected sequence. Here, smaller values also indicate a better
registration.

For the automatic extraction of the time-intensity curves, we choose the reference frame 30,
since it lies in the middle of the series and should reduce the effect of accumulating errors
when applying SERIAL, without having any specific influence on the other methods.
Because all segmentations were done before the image registration was executed, the masks
for the myocardium within the reference frame have to be transformed using the registration
transformation. Only for SERIAL the original mask can be used for the automatic analysis.
Therefore, for all other algorithms it also has to be considered that the masks for automatic
intensity-time curve extraction are subject to registration errors.

Other measures have been presented in the literature that quantify the registration quality
based on comparing manual segmentations features before and after registration, see e.g.
Milles et al. (2008); Xue et al. (2008). As discussed in Wollny et al. (2010a), a validation
based on comparing manually segmented shapes is not a reliable option for our target
application. Specifically, the accurate tracking of the myocardium through time in perfusion
studies is not an easy and repeatable task because it is difficult to track inner boundary of the
ventricle properly: on one hand, at the beginning of the series the myocardium and the left
ventricular cavity exhibit the same intensities, and on the other hand the papillary muscles
and the myocardium often also exhibit the same intensities throughout the series.
Segmentation errors, however, will show up in any segmentation based quality assessment,
but may have no influence on the tracking of the time-intensity curves, the feature the final
analysis of the perfusion series is based on. For the sake of completeness we will provide
two measures that rate the registration accuracy based on segmentations, the dice index (DI)
between the manually obtained myocardial shape and the reference shape that is propagated
through the series (higher values are better), and the boundary root mean square error
(BRMSE) of the according myocardial contours and the propagated reference contour
(smaller values are better).

All measures given here will be evaluated for all 58 frames of each series, and the means are
evaluated over all sections of all slices of all data sets. Since the samples can be matched
based on section, frame, slice, and data set the one-sided t-test for paired samples is used to
test the significance improvements of the observed validation measures (Sokal and Rohlf
(1995)).

5. Results
Using the parameters given above, we were able to achieve a significant reduction of motion
with all tested methods for all slices, including the data sets with a more erratic breathing
pattern. For all cases, the RV and LV labeling scheme was successful as was the
segmentation of the LV bounding box. The quantification of the registration quality by the
measures given above is summarized in Table 3. The full results of the significance tests for
the differences between the methods are given in the accompanying material.

With the automatic ICA based mask creation the size of the region to be processed was
reduced to an average of 90 × 90 pixel for non-linear registration only, and 58×58 for all
approaches that include linear registration.

The best motion compensation results were obtained by running ICA-T+SP, i.e. by running
an initial ICA-based two-pass linear registration optimizing a translation only, followed by
an at-most three-pass non-linear registration. This approach performed best across all
measures resulting in consistently better validation measures as compared to the remaining
methods across all validation measures (Table 4). Only for Pearsons correlation coefficient
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R2 and BRMSE and when comparing to ICA-SP, the difference in the results is of only low
significance.

As second best methods, ICA-SP and ICA-T-PGT perform equally well and result in better
motion compensation than the remaining three tested methods SERIAL, QUASI-P, and
ICA-T. These three methods give a mixed picture regarding the validation measures and no
clear ranking can be given.

In addition we tried to run PGT without initial linear registration, but this generally doesn’t
result in proper motion compensation proofing that this algorithm indeed requires initial
linear registration.

The run-times of the linear registration scheme are very low - as it can be expected. Motion
compensation that first utilizes linear registration still have a very low run-time and even
ICA-SP achieves the registration at a rate below one frame per second, despite the multi-
pass scheme. This low run-time can be attributed to the automatic extraction of a region of
interest around the LV that is used to reduce the computational load during registration and
to the use of the shifted limited-memory variable metric algorithm used for optimization.
However, for SERIAL and QUASI-P this optimization algorithm did not yield as good
results as using gradient decent which is known for its slow convergence. In addition,
SERIAL and QUASI-P, both always run at the full image resolution, since both methods
don’t offer any means to automatically extract regions of interest.

Running the ICA based motion compensation algorithm for the simulated breath-holding
data also resulted in a proper identification of the ICs related to motion and RV/LV and
proper motion compensation, showing that this method is also applicable to data that was
acquired with initial breath holding.

Finally, no significant differences of the performance of the motion compensation
algorithms could be observed between rest and stress studies.

6. Discussion
Image registration is an established method to compensate for breathing motion in
myocardial perfusion data sets, and the use of ICA as proposed in Milles et al. (2008)
provides an elegant way to create synthetic reference images for such a registration that
exhibit intensity distributions that are close to counterparts from the original series thereby
simplifying image registration.

Milles et al. (2008) focused on identifying the features that need to be retained, i.e. RV/LV
enhancement and baseline, However, for sequences that were acquired free breathing, the
labeling scheme sketched by Milles et al. (2006) and used by Gupta et al. (2010) is not
suitable, because its presumptions about the maximum weight values and its time point do
not generally hold. Also, Gupta et al. (2010) reported that the labeling method fails if strong
motion is present.

Still, ICA is well suited to separate a quasiperiodic motion component from the other
features of myocardial perfusion series, namely LV/RV enhancement, perfusion, and
baseline — regardless whether this motion takes place during the whole image acquisition
sequence (free breathing), or only at the end of the acquisition sequence (initial breath
holding). However, to properly identify the ICs in such a setting it is better to shift the focus
to the feature that needs to be removed — the motion.
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Therefore, we presented a new labeling scheme based on a discrete wavelet analysis of the
mixing value curves that first focuses on the identification of the motion component(s) and
the number of ICs the results in the best separation of signals. By identifying the IC(s)
corresponding to the breathing motion that is quasiperiodic over the whole acquisition time
or part of the series and then eliminating it from the reference image creation, we were able
to create series of reference images that are free of motion. Note, that Gupta et al. (2010) did
not normalize the mixing curves to have a zero mean. Therefore, by leaving out one
component in the reference image creation, an intensity bias is introduced into the synthetic
reference image and consequently they had to use a more complex registration criterion,
namely cross correlation. Since we normalize the mixing value curves to have a zero mean
and create an additional feature image that retains the extracted information, we avoid the
introduction of this intensity bias in the synthetic reference images when the motion
component is dropped from the mix. As a result we obtain synthetic references that truly
exhibit similar intensity distributions like the original images, and we can use the sum of
squared differences as registration criterion.

To label the components related to RV and LV enhancement we proposed an approach that
lowered the requirements for the RV and LV mixing value curves as compared to the
ranking proposed by Milles et al. (2006). They base the labeling on the global maximum of
these curves, and assume that the global maximum of the enhancement curves always
coincides with the enhancement peak, an assumption that does not hold if strong or free
breathing movement is present. Our approach identifies the maximum gradient weighted by
its time-position and only after the identification of motion related components and a
possible baseline component, thereby making RV and LV enhancement component labeling
more robust. With our labeling approach, motion and RV and LV enhancement components
were properly identified in all 39 free breathing image series as well as the data sets
simulating initial breath holding.

Our primary focus was to apply non-linear registration to achieve motion compensation,
therefore, the proper labeling of the RV and LV components and the segmentation of a
region of interest (ROI) around the LV based on the corresponding feature images comes as
a bonus that makes it possible to speed up registration by either restricting the registration to
this ROI, and/or by first running a linear registration algorithm. Other than Milles et al.
(2008), who based a bounding box creation on the RV/LV peak enhancement images that
may picture the cavities at extremal points of the breathing motion, we used the
corresponding IC feature images, since here the cavities are located at their average position.
We based the segmentation of the RV/LV cavities on a k-means classification instead of
thresholding so that we don’t have to make any assumptions about the intensities that are
required when setting a threshold. With this alternative labeling and segmentation scheme
we were able to successful identify motion and RV/LV enhancement and automatically
segment a LV bounding in all 39 slices of the 13 patient data sets that were acquired free
breathing and included rest and stress studies.

If only linear registration is to be run, the selection of a proper bounding box scaling
parameter s to set the size of the ROI becomes a delicate task: A small value may result in
the ROI not covering the LV myocardium completely, and a large value will result in a ROI
that contains non-moving body parts that hinder a proper linear alignment. If the linear
registration is followed by non-linear registration, then it is best to select a larger s to make
sure that the whole LV myocardium with its whole movement range is covered.

Our results show, that the results of motion compensation by applying linear registration can
be improved by running an additional non-linear registration. Also running the ICA based
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motion compensation by only applying non-linear registration performs better then
employing linear registration only.

Because initially, the synthetic references created by the ICA based motion compensation
scheme are quite blurry, it is best to apply the motion compensation algorithm in a the multi-
pass fashion. To achieve full registration employing non-linear based registration, it is best
to put a high penalty on the nonlinear transformations in the first registration pass, and give
more freedom to the transformation in subsequent passes, when the newly created reference
images are less blurry.

Running one of the proposed ICA based registration schemes has its advantage over running
QUASI-P. On one hand, with QUASI-P the final registration is dependent on the initial
registration phase: A failed registration here results in various badly created synthetic
references that result in a final bad registration. On the other hand, as reported in Wollny et
al. (2010a), since the reference image creation is based on the linear interpolation the
references may not model well the fast enhancement of RV and LV, resulting in bad
synthetic references and hence in a bad registration in this part of the series. Because in this
study we used more data sets, the latter problem of QUASI-P became more evident,
resulting in notable worse performance of the algorithm as compared to the results presented
in Wollny et al. (2010a). Also QUASI-P doesn’t provide automatic means to speed up
registration, like the ICA based approach does, which results in a relatively large run-times.

Since with the ICA based motion compensation scheme, for each original image of a
perfusion sequence a corresponding synthetic reference image is create, registration errors in
one frame have no influence on the performance of the motion compensation for the
reminder of the sequence. Hence an accumulation of errors, as it can be seen in SERIAL is
not possible and consequently the ICA based methods provide better motion compensation.

The pseudo-ground-truth (PGT) based registration scheme provides results that are of a
similar quality as the ICA-SP registration scheme. However, in the estimation of PGT it is
assumed that the pixel-wise second order derivative of the intensity change over time is low,
yet image acquisition itself may introduce intensity variations over time that don’t result
from the breathing movement (see, e.g., Fig. 11, right, manually obtained curve) Therefore,
the generation of a pseudo ground truth by also smoothing over time may overcompensate.
In addition, PGT requires an initial linear registration that in turns requires the proper
identification of a ROI around the LV myocardium. If no such region can be identified
automatically, a PGT based approach will require manual interaction or it will fail. In such a
case the purely non-linear motion compensation approach ICA-SP can still successfully be
applied on the full image scale.

Since the ICA based methods provide a simple way to automatically define a region of
interest around the LV myocardium, registration can be speed up significantly, and as a
result all ICA based methods are computationally less demanding than SERIAL and
QUASI-P. Given a successful estimation of such a region of interest an additional speedup
can be achieved by preceding the non-linear registration by linear registration.

We also tested our algorithm on simulated breath holding data which is still widely used in
the clinical routine. Here the wavelet based labeling scheme was also able to properly
identify the ICs resulting in successful bounding box creation and identification of the
motion component. With these prerequisite in tact, it was possible to run the motion
compensation scheme and achieve full motion compensation. This is an advantage over the
heuristic curve length based scheme presented in Wollny et al. (2011) that can only be
applied to free breathing acquired data.
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7. Conclusion
We presented a motion compensation scheme that loosely follows the approach presented by
Milles et al. (2008) in using an ICA to identify main features of the perfusion series and
create synthetic references from these features in order to achieve motion compensation by
image registration. Since Milles et al. (2008) IC labeling approach is not suitable for
perfusion sequences that were acquired free breathing, and tends to fail for sequences that
exhibit strong motion (Gupta et al. (2010)), we replaced their labeling scheme by a new,
more robust approach, that is based on an initial time-frequency analysis and first focuses an
the identification of motion that is then omitted in the creation of synthetic references.

Which this new labeling scheme we were able to identify the IC component related to
motion successfully in all free breathing acquired sequences and all simulated breath
holding sequences. Since we employ non-linear registration, this was sufficient to achieve
full motion compensation in all cases.

Nevertheless, our enhanced labeling scheme also made it possible to properly identify the
ICs related to RV and LV enhancement, and with the segmentation approach based on k-
means classification the LV and RV cavities could be segmented successfully and a
bounding box enclosing the LV myocardium could be created in all cases. Hence, it was
possible to speed up non-linear registration by restricting registration to the region of interest
around the LV myocardium (ICA-SP) or by preceding it with linear registration (ICA-T
+SP).

Our validation showed that the latter approach performed best for all considered validation
measures as compared to methods published elsewhere (Wollny et al. (2010a,b); Li and Sun
(2009)) and also required the lowest run-time of all methods implemented and tested here
that include non-linear registration.

Our proposed method works best with perfusion sequences that were acquired free
breathing, but it can also be applied to data that was acquired with initial breath-holding,
which is still the standard in most clinical applications.

Finally, ICA provides additional information about the perfusion cycle, like the time points
for RV and LV peak enhancement than may be of use in the further automatic analysis of
the perfusion data.

* ICA based non-rigid motion compensation scheme for free breathing and
breath holding acquired perfusion data

* validation based on the clinically relevant time-intensity curves

* performs comparable to or better than previously published approaches

* runs fully automated

* an implementation of the presented algorithm is available as free software

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

CC cross correlation

DWT discrete wavelet transform

ECG electrocardiogram

IC independent component

ICA independent component analysis

MRI magnetic resonance imaging

MI mutual information

NGF normalized gradient fields

LV left ventricle

RV right ventricle

ROI region of interest

SSD sum of squared differences

Appendix

Appendix A. Estimation of breathing pattern
First, for all fc we evaluate the mean time index for the breathing motion related wavelet
coefficient level lmov according to

(A.1)

Based on in which interval out of  this value falls, the component is
labeled as either to exhibit movement at the beginning, at the end, or continuously over time.

Then, we accumulate the coefficients sums  of the movement related frequency levels
according to their movement time frame label obtaining sums Sbegin, Scont, Send. Based on
which is the maximum of these sums it is decided whether the breathing movement was only
at the beginning, continuous, or only at the end of the acquisition series, and hence which
breathing pattern was used during acquisition time. Hereby we assume, that the acquisition
patterns breath holding - free breathing - breath holding and free breathing - breath holding -
free breathing are not used.
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Appendix B. RV and LV cavity segmentation
The segmentation of the RV and LV cavities is based on the difference wLV − wRV of the
RV and LV feature images. In this difference image, the RV cavity has a low intensity and
the LV cavity a high intensity.

In order to segment both objects, we first use morphological gray scale opening and closing
of radius 2 pixels to remove small holes and connections, then classify the intensities using
k-means of initially 7 classes. To segment the RV cavity we select the k-means class
corresponding to the lowest intensity label connected components and identify the largest
connected component as RV cavity.

For LV cavity segmentation we select the k-means class corresponding to the highest
intensity, also run a connected component labeling. Depending on the contrast agent dose
and timing of the imaging, more than one large connected component may result from this
labeling. Therefore, to identify the LV cavity, we do not only use the area of the connected
component to identify it, but also its distance to the already segmented RV cavity, i.e. given
the geometric center cRV of the RV cavity and the centers cL of the LV cavity candidates as

well as their areas AL, we use the quotient  as the distant measure to be
minimized.

Segmentation may fail, either because of a wrong identification of the LV/RV components,
or because k-means classification did not sufficiently separate the intensity ranges, which
usually results in very large segmented regions. Therefore, as an heuristic to judge success

of the segmentation, we measure if the area of the estimated cavity is below  of the whole
image area. If this is not the case then we retry segmentation using more classes in the k-
means algorithm. If the maximum of 13 classes is exhausted without proper segmentation
result, the segmentation is considered to have failed.
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Figure 1.
Images from a first-pass gadolinium-enhanced myocardial perfusion MRI study. From left
to right: pre-contrast, RV-peak, LV peak, and myocardial perfusion.
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Figure 2.
Manually tracked intensity change of a myocardial segment versus an automatically
obtained time-intensity curve of a free breathingly acquired data set. Note, that not even the
average of the automatically obtained time-intensity curve would result in a proper
assessment of the blood flow. Also note, that the manually tracked curve is not smooth in
itself - an effect that is the result of the image acquisition process.
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Figure 3.
Time curve representation of the mixing matrix for ICAs with three numbers of retained
components and the corresponding ICs.
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Figure 4.
Scheme of the registration algorithm. The bold lines indicate the data flow and the thin lines
represent the logical flow. The grayed texts in the gray area and dashed lines represent the
additional steps for bounding box creation that are not a requirement for a non-linear motion
compensation scheme. These steps may be executed to accelerate the registration and are
required if linear registration is to be run.
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Figure 5.
Left: Mixing matrix obtained using a five component ICA. Note, that the quasiperiodic
movement component is actually split into two components. Using a four component ICA
results in better separation (right).
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Figure 6.
Left: Mixing matrix obtained using a five component ICA. Note, that the shape of the
quasiperiodic movement component indicates that it is not completely separated from the
perfusion component. With a six component ICA this effect is reduced significantly (right).
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Figure 7.
Time curve representation of the mixing matrix for ICAs with four components after
normalization and sign correction (left), and corresponding RV (right, upper), and LV (right,
lower) components.
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Figure 8.
Visualization of the absolute values (vertical axis) of the wavelet coefficients (b–f) over time
(horizontal axis given in frames/heartbeats) of the mixing curves (a) of the perfusion series
features obtained by an optimal five component ICA. Note, how the movement component
(f) exhibits larger coefficients in the lower wavelet levels (depth axis), while the signal
energy for the LV (c), RV (d) and perfusion component (e) is located in the higher wavelet
levels.
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Figure 9.
Wavelet spectrum corresponding to the movement IC for a perfusion series that starts with
breath holding. Note, that the coefficients related to motion are close to zero at the
beginning, and that coefficient related to the highest wavelet level is also large.
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Figure 10.
Example synthetic references, note the blurriness of the reference in the first pass (left) and
the improved representation of features in the third pass (right).
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Figure 11.
Example segmentation of a slice of the myocardium (left). The RV insertion point is
indicated by a circle and based on its location and the center of the LV the myocardium is
segmented clock-wise into 12 segments that enclose equal angles. An example of the time-
intensity curves before and after registration as well as the corresponding manually obtained
curve is given on the right.
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Table 2

Registration parameters used in the schemes that include non-linear registration. “scale” refers to the value
used to scale the according parameter with each new registration pass.

Method SERIAL QUASI-P ICA-SP/PGT-SP ICA-T

regularization weight κ/scale 100 10 / − 105 / 0.5 -

knot spacing/scale 16 10 / − 16 / 0.5 -

multi-resolution-levels 3 3 3 3

passes 1 1 ≤ 3 ≤ 2
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