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Abstract
Here we present a novel atlas-based geometry pipeline for constructing three-dimensional cubic
Hermite finite element meshes of the whole human heart from tomographic patient image data. To
build the cardiac atlas, two superior atria, two inferior ventricles as well as the aorta and the
pulmonary trunk are first segmented, and epicardial and endocardial boundary surfaces are
extracted and smoothed. Critical points and skeletons (or central-line paths) are identified,
following the cardiac topology. The surface model and the path tree are used to construct a
hexahedral control mesh via a skeleton-based sweeping method. Derivative parameters are
computed from the control mesh, defining cubic Hermite finite elements. The thickness of the
atria and the ventricles is obtained using segmented epicardial boundaries or via offsetting from
the endocardial surfaces in regions where the image resolution is insufficient. We also develop a
robust optical flow approach to deform the constructed atlas and align it with the image from a
second patient. This registration method is fully-automatic, and avoids manual operations required
by segmentation and path extraction. Moreover, we demonstrate that this method can also be used
to deformably map diffusion tensor MRI data with patient geometries to include fiber and sheet
orientations in the finite element model.
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1. Introduction
Many advances in computational modeling and biomechanics over the past two decades
have taken advantage of smooth high-order cubic Hermite finite elements (Bradley et al.,
1997; Legrice et al., 2001; Hunter et al., 2003; Kerckhoffs et al., 2006), which allow cardiac
geometry to be discretized accurately with comparatively few degrees of freedom. Owing to
advances in non-invasive imaging technology, it is now a feasible goal to create patient-
specific models to provide insight into disease processes like ventricular arrhythmia, atrial
fibrillation and congestive heart failure. Generating accurate geometries from medical
images (Zhang and Bajaj, 2004; Zhang et al., 2005) is well-studied when the resultant
geometry is composed of linear (especially tetrahedral) elements but is more challenging for
high-order C1-continuous finite elements.

Most work on generation of high-order cardiac geometries from image data have focused on
relatively simple geometries such as the chest wall, lungs, and cardiac ventricles (Lamata et
al., 2011), and relied on user-input parameter values that cannot always be anticipated a
priori (Bradley et al., 1997). Cubic Hermite models were previously used to register DTI and
strain data and solve the inverse cardiac mechanics problem (Wang et al., 2009).
Additionally, though some cubic Hermite models of the heart have been constructed with
more complicated topologies such as the valve annuli (Stevens and Hunter, 2003),
construction of such meshes can be labor-intensive. The construction of an accurate four-
chamber geometric model based on cubic Hermite splines would require a tremendous
amount of user input to create the hexahedral mesh connectivity that represents the topology
of four chambers and great vessels.

Here we describe a novel atlas-based geometry pipeline for constructing three-dimensional
cubic Hermite finite element meshes of the human heart from non-invasive medical images,
taking into account details of the whole heart structure, including four chambers and all
major blood vessels. Note that valve annuli are not yet considered in the model. Our
algorithm makes use of minimal user interaction to create the cardiac atlas based on the
skeleton of a patient’s heart. Once this atlas is obtained, we can create cardiac meshes for
different patients using deformable registration. The key contributions include: (1) a novel
atlas-based geometry pipeline to construct cubic Hermite models for the whole heart; (2) a
unique 1D center-line path tree to represent the complex cardiac topology and decompose
the heart into simple components, which are meshed individually and connected to build the
atlas; and (3) a robust and fully-automatic optical flow approach to deform the constructed
atlas to match with new patients’ images, as well as register diffusion tensor MRI data to
include fiber and sheet orientation into finite element models. The constructed Hermite
meshes are suitable for cardiac mechanical and electrical function analysis, due to their
convergence advantages over linear elements for nonlinear large deformation biomechanical
simulation (Costa et al., 1996) and monodomain modeling of cardiac action potential
propagation (Rogers et al., 1996).

2. Atlas-Based Geometry Pipeline
Three patients who gave informed contact underwent electrocardiogram-gated 64-slice CT
with an iodine-based contrast agent as part of clinical evaluation for atrial fibrillation.
Contiguous slices of 1.25mm were obtained along the axis of the scanner, with in-plane
resolutions of 0.7mm by 0.7mm for Patient 1. For Patients 2 and 3, the resolutions are
0.48mm ×0.48mm ×0.65mm. As shown in Fig. 1, we used images from one patient (Patient
1) to construct the atlas. Four cardiac chambers and all major vessels were manually
segmented using ITK-SNAP (www.itksnap.org) with intensity gradients as a guide
(Yushkevich et al., 2006). From the segmented images, the luminal surface was extracted
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via isocontouring coupled with geometric flow smoothing (Zhang et al., 2009) for the two
atria, the aorta and the pulmonary trunk. Due to the lack of resolution and contrast with
current in-vivo imaging technology, it is often difficult to extract their thicknesses from
clinical images. For the ventricles, the epicardial and endocardial boundary surfaces were
extracted and smoothed. After the surface models were obtained, the skeleton (or center-line
path) for each component was extracted with some user interaction, defining the cardiac
topology. The hexahedral control mesh was constructed via a skeleton-based sweeping
method (Zhang et al., 2007), and solid cubic Hermite finite element parameters were derived
from the control mesh directly.

For images from the subsequent two patients, instead of repeating these steps, we made use
of the atlas model from the first patient to generate new patient meshes automatically. For
each new patient, a robust optical flow approach was developed to deform the hexahedral
control mesh of the constructed atlas to match it with the new patient’s images. This avoids
the manual operations required for segmentation and path extraction.

3. Atlas Construction via Sweeping
For the first patient, we obtain a surface model from the segmented images, see Fig. 2, and a
cubic Hermite atlas is constructed via the following steps: path extraction, control mesh, and
cubic Hermite construction.

3.1. Path Extraction
Reeb-graphs (Reeb, 1946) have been used to analyze surface topologies and construct
medial axes or skeletons (Lazarus and Verroust, 1999). As reviewed by Cornea et al.
(2005a), there are a lot of techniques developed for skeleton extraction, including
topological thinning (Borgefors et al., 1999), distance field based methods (Zhou and Toga,
1999), potential field based methods (Cornea et al., 2005b), thinning via medial geodesic
function (Dey and Sun, 2006) and others (Verroust and Lazarus, 2000). Here we chose the
critical point theory of the distance function (Zhang et al., 2007) to define a novel skeleton
(or central path) tree for the whole cardiac model, following the blood flow path inside the
heart and the cardiac anatomy structure. The primary principle we comply with is the
“equidistant rule”, which means the skeleton point in a certain cross section should be the
centroid of that cross section. Owing to the quasi-tubular anatomical structure of the four
chambers, we can conveniently calculate the centroid at an arbitrary axial cross section
perpendicular to the central line given that the corresponding isocontouring surface and
normal vector are designated. In case that the shape of a cross section is quite different from
a regular circle, adjustments are made to select better skeleton points. With the collection of
skeleton points for each cross section, we obtained the 1D path tree with each color
representing the skeleton of one component, see Fig. 3(a).

3.2. Hexahedral Control Mesh Construction
In the sweeping method (Zhang et al., 2007), a templated quadrilateral mesh of a circle was
projected onto each cross section along the skeleton, then the corresponding vertices in
adjacent cross-sections were connected to form a hexahedral control mesh. A hexahedral
cubic Hermite control mesh should satisfy the following three requirements: (1) no
intersection is allowed between any two cross sections; (2) each axial cross section should
be perpendicular to the skeleton; and (3) in order to achieve a G1-continuous surface around
extraordinary nodes, the boundary node shared by two patches in the control mesh should be
collinear with its two neighbors across the shared boundary, and the boundary node shared
by three or more patches should be coplanar with all of its neighboring boundary nodes
(Wang and Zhang, 2010). This is because, for an open knot vector, a cubic Hermite curve is

Zhang et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tangent to the control polygon at the first and the last control nodes. Here, a boundary node
is a node lying on the boundary surface. For a boundary node, if it is shared by four
elements, then it is regular; otherwise it is an extraordinary node.

One-to-one sweeping requires that the source and target surfaces have the same topology.
The cardiac model has four chambers connecting with surrounding arteries, therefore, we
first decompose the cardiac topology into branches or components based on the central-line
path tree in Fig. 3(a).

Branch construction—For each branch, the one-to-one sweeping method was used to
construct the control mesh. The cross-section template introduced in (Zhang et al., 2007)
induces a large valence number at the tip, see Fig. 4(a), which is undesirable in cubic
Hermite finite element interpolation. As an improvement, a new circle-square template is
introduced in Fig. 4(b). In this new template, the center point in Fig. 4(a) is replaced with a
square with the same number of nodes as in the boundary circle. Then one-to-one
connection is made between the square and the circle. This template limits the valence to be
within four, and provides elements with better quality.

As shown in Fig. 4(b), the number of peripheral nodes can only be 2n (n≥2). The center
point locates on the skeleton. To generate a conformal mesh with consistent boundary with
the image, each green node was projected radially to the epicardial boundary, and each blue
node is projected radially to the endocardial boundary. Red nodes are adjusted
proportionally via smoothing, see Fig. 4(d). This procedure is repeated for each cross section
along the skeleton. For most cross sections, only the yellow region in Fig. 4 is needed.
However, the inner green region is required for enclosing the tips of each chamber. By
connecting the corresponding control nodes in adjacent cross-sections, we obtained a
hexahedral control mesh for one branch. Notice that in the process of sweeping, we translate
the cross-section template to the selected locations on the skeleton, and rotate it to make its
normal vector lie along the central-line path.

Ventricular construction—In contrast to one branch construction, the biventricular
geometry has two inner surfaces and one outer boundary. To mesh the ventricular walls, we
designed another template (Fig. 5). The two inner black points are located on the skeleton,
and a middle line is defined to separate the two inner surfaces. For each cross section, we
first create a sweeping template similar to Fig. 5(b). Then, taking the black center points as
the references, green points are radially projected to the epicardial boundary, and blue points
are projected to the corresponding endocardial boundaries. The middle line is also adjusted
by moving the corresponding red points to the middle of the septum. The final control mesh
is obtained by connecting the corresponding nodes in adjacent cross-sections. The circle-
square template in Fig. 4 is used to enclose the left and right ventricular apexes.

Branch connection—To obtain a hexahedral control mesh for the whole heart, we need
to connect all the separated branches or components one by one following the cardiac
topology. For each connecting procedure, a mother branch and a daughter branch are
chosen. Typically, the mother branch is a chamber or artery with a larger diameter, and the
daughter branch is relatively smaller.

For example, the left atrium in Fig. 6(a) is the mother branch and one small artery in Fig.
6(b) is the daughter branch. First, we choose one segment on the mother branch which is
close to the daughter branch and has half the number of nodes as on the cross-section of the
daughter branch. Then these nodes are duplicated. Half of them are moved up, and half of
them are moved down, resulting in an open mouth on the left atrium, see Fig. 6(a). Now the
open mouth has the same topology as the cross-section of the daughter branch. Then,
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connecting the mouth with the daughter branch produces an integrated control mesh (Fig.
6(c)). This mesh will be considered as the mother branch in the next connecting procedure.
Following this way, all the components were connected together to obtain a hexahedral
control mesh for the whole heart (Fig. 3(b)).

3.3. Cubic Hermite Mesh Construction
One solid Hermite patch was constructed for each hexahedral element in the control mesh:
the inner and outer surfaces are 2D bi-cubic Hermite, and the thickness direction is
interpolated linearly. Eqn 1 derives a 1D Hermite curve

(1)

where h00 = 2u3 − 3u2 + 1, h10 = −2u3 + 3u2, h01 = u3 − 2u2 + u, h11 = u3 − u2, and u ∈ [0,

1] is the variable. P0 and P1 are two endpoints.  and  are the first derivatives at the two
endpoints. Similarly, the parametric form of a 2D Hermite surface can be written as

(2)

where

Here , and . Derivative parameters like tangent vectors were computed
using a sequence of three control points in each direction. For each element, the peripheral
direction is referred to u (u ∈ [0, 1]), and the axial direction along the central-line path is
referred to v (v ∈ [0, 1]). Linear interpolation is conducted along the wall thickness
direction. Fig. 7 shows one constructed bi-cubic-linear solid Hermite model. Each element is
subdivided into 4×4 sub-elements using the bi-cubic-linear Hermite interpolation for
visualization.

The constructed bi-cubic-linear Hermite is C1-continuous over the heart surface except the
local region around extraordinary nodes, which is C0-continuous. These extraordinary nodes
are induced when connecting two separated branches. To obtain G1-continuity for them, we
would need to adjust control nodes surrounding each extraordinary node.

4. Deformable Registration Using Optical Flow
After constructing one Hermite atlas for the first patient, we set his/her image data as the
static image S (or the reference image), and set a new patient’s image data as the moving
image M (or the target image). To construct the cubic Hermite model for the new patient,
instead of going through each step as explained in Section 3, we deform the atlas control
mesh to match it with the moving image M by minimizing the difference between S and M.
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In this way, we can construct the cubic Hermite model automatically for any new patient,
avoiding the manual interaction required by segmentation and path extraction. In addition,
this registration method provides an efficient approach to build an atlas database for the
human heart.

As reviewed by Zitová and Flusser (2003), there are four non-rigid registrátion techniques
developed for medical image data: elastic registration, level-set method, optical flow
method, and diffusion-based registration. In elastic registration, external forces are
introduced to stretch the image while internal forces de-fined by stiffness or smoothness
constraints are applied to minimize the amount of bending and stretching (Bajcsy and
Kovacic, 1989; Davatzikos et al., 1996). One of its advantages is that the feature matching
and mapping function design can be done simultaneously. Its performance on localized
deformation was improved by Christensen et al. (1996). The level-set method is a numerical
technique for tracking interfaces and shapes, which can easily follow shapes with topology
change (Osher and Fedkiw, 2003) and combine segmentation together with registration
(Moelich and Chan, February 2003; Droske and Ring, 2006). The optical flow method
assumes that the corresponding intensity value in the static image and the moving image
stays the same, and then estimates the motion as an image velocity or displacement. This
method is suitable for deformation in temporal sequences of images (Horn and Schunck,
1981; Barron et al., 1994). The diffusion-based registration considers the contours and other
features in one image as membranes, and the other image as a deformable grid model, with
geometrical constraints (Thirion, 1998; Andresen and Nielsen, 2001). This approach relies
mainly on the notion of polarity, as well as the notion of distance.

4.1. Algorithm
An enhanced optical flow algorithm was developed based on Thirion’s diffusing model, also
known as the “demons” algorithm (Thirion, 1998; Wang et al., 2005). The flowchart to
calculate the displacement for each node in the atlas control mesh is shown in Fig. 8. The
demons set Ds is pre-computed from S, and Ds can be either the whole image grid or the
contour of the image. Before registration, a global transformation (movement and/or
rotation) is applied to the moving image M for better matching results. To obtain precise
displacements between two images from different patients or different devices, a scaling
factor needs to be included in the algorithm to compensate the differences in intensities
between the static and moving images. Then the displacement of Ds is calculated iteratively
using the “demons 1” algorithm. Trilinear interpolation is applied for points not on the 3D
regular grids. After each iteration, a stopping criterion is required to determine when the
“demons 1” ends. If, for each mesh node, the maximum difference of its displacement is less
than a pre-defined threshold such as 0.01, which is roughly 10% of the minimum span
among X, Y and Z coordinates, the “demons 1” stops. In each iteration, a regularization of
the deformation field follows this optical flow calculation, using a Gaussian filter in which
the variance of σ2 is set as 1.0. The Gaussian filter plays an essential role as a smoothing
operation to remove noise and preserve the geometry continuity, when the displacement is
calculated merely using the local information. In addition to “demons 1”, our deformable
registration algorithm also provides “demons 2” to fit the boundary better (see Fig. 8).
“demons 1” and “demons 2” are discussed in detail as follows.

The “demons 1” algorithm calculates the demons force using the gradient value from the
static image S, in order to match with the moving image M. Usually, the optical flow
formula was applied to calculate the “demons” force at each grid point in a greyscale image,

Zhang et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

where s, m are the intensity values in the static image S and the moving image M,

respectively. ∇⃗s is the gradient, and  is the displacement vector also called the
“passive” force.

The original algorithm (Thirion, 1998) may not be efficient, especially when image varies
little among neighbouring grid points in a local region. Based on Newton’s third law of
motion, Rogelj and Lovaicic introduced a new force (Rogelj and Kovacic, 2003). The
advantage of this accelerated algorithm was that it made use of the information from both
static and moving images, which could speed up the rate of convergence. Another force
named as an “active” force is introduced based on the information from M,

(4)

The term “passive” force denotes the contribution to the force from the static image S.
Similarly, the term “active” force denotes the influence from the moving image M. The
reason why the second term was named “active” is that the equation iteratively calculates
the deformation to match with the moving image M and it was active to track the

corresponding point in M. Combining both the “passive” force  in Eqn (3) and the “active”

force  in Eqn (4), the total force at a specific grid point can be calculated as

(5)

Eqn (5) is suitable for 3D image analysis with a complete grid of demons, and can deal with
large deformation between two images. However, “demons 1” may not be able to capture
the boundary precisely. Therefore, we introduce “demons 2” to improve the performance of
the registration algorithm along the boundary. For each contour point P in S, the “passive”
force (Thirion, 1998) is obtained using

(6)

where m is the intensity value of P in the moving image M, and  is the oriented normal of
the contour point P in S (from inside to outside). K(m) is the demon function for P, as shown

in Fig. 9. Here , and , where k is a constant integer and usually set
as one.

Similar to “demons 1”, Eqn (6) only considers the contribution from the static image S. To
include the contribution from the moving image M, we add an “active” force,

(7)
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where  is the oriented normal of the contour point P in M (also from inside to outside).
Combining both “passive” and “active” forces, we can obtain the total demon force for each
contour point P,

(8)

Generally, using Eqn (8) can give better convergence than only using Eqn (6). Both
“demons 1” and “demons 2” play an important role in our deformable registration algorithm
which will be validated using 2D and 3D images.

4.2. Validation and Results
As a 2D validation, we first align different slices for the same patient, Patient 2. As shown in
Fig. 10, we extracted the isocontour from slice 66, and used the deformable registration
algorithm to obtain the registered isocontour for slice 73. Comparing the five important
components in these two slices, we can observe that “demons 1” can capture the overall
feature of the objects but it may not capture all the detailed features, see Fig. 10(c, e).
Combining “demons 1” and “demons 2” captures all the deformed features very well, see
Fig. 10(d, f). Fig. 10(g) shows the registration result of slice 63.

We also tested our registration algorithm on images of different patients: from Patient 1 to
Patient 3 (Fig. 11). For these images, the intensity range may vary a lot and the object
position and orientation may also be different from one image to another. To overcome these
problems, in our flowchart we introduce a global transform and a scaling intensity factor
before the deformable registration. The movement is (−30mm, −30mm) and the rotation is
5°. Smoothing is applied after each registration. From these matching results, we can
observe that our deformable registration algorithm is also robust in capturing and matching
detailed features between different patients.

As a 3D validation, we tested our registration algorithm on the left ventricle from Patient 1
to Patient 2 and Patient 3 (Fig. 12). In Fig. 12(a-b), the movement is (-22mm, −8mm, 0mm)
and no rotation. In Fig. 12(c-d), the movement is (-5mm, -30mm, 0mm) and the rotation is
15°. As shown in Table 1, the deformed Patient 1 result matches 96% surface area and 93%
volume of Patient 2, 103% surface area and 107% volume of Patient 3. The percentages
shown in Table 1 is obtained using the area (or volume) of Patient 1 divided by that of
Patient 2 (or 3), so it is possible to be over 100% when the numerator is larger than the
denominator. The root mean square (RMS) distance from the deformed mesh to the target
mesh is 5.1mm for Patient 2, and 4.2mm for Patient 3. Here our algorithm aims to only align
global features but not all the details, considering noise existing in the image data and blur
boundaries between the left ventricle and its surrounding tissues.

For the control mesh, we set Patient 1 as the static image, and Patients 2 and 3 as the moving
image. Both “demons 1” and “demons 2” are used to deform Patient 1’s control mesh to
obtain the control mesh for Patients 2 and 3, as shown in Fig. 13. For Patient 2, the
movement is (-22mm, −8mm, 0mm) and no rotation. For Patient 3, the movement is (-5mm,
−30mm, 0mm) and the rotation is 15°. The detailed information, such as the bounding box,
the surface area and the RMS distance from the deformed mesh to the target mesh, is shown
in Table 2. From Fig. 13 and Table 2, we can observe that our deformable registration
algorithm is able to capture the global feature difference between patients, such as the size,
shape, ventricle orientation, and the tip of atria. However, more patients should be required
for statistical validation.
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4.3. Limitation
One limitation is that the mesh is generated on a single patient, and the influence of this
patient on the results is unknown. Also the registration is image-based, not landmark-based,
so there is no guarantee that material points follow the precise anatomical positions. While
we cannot prove that the results of deformable registration always provide the best possible
fit, they could be used as an initial estimate to help create new patient-specific models more
efficiently and with less intervention. It will also be necessary to build an atlas library that
can account for differences in patient anatomy such as variant numbers of pulmonary veins
to take full advantage of this approach.

5. Diffusion Tensor Reorientation
Deformable image registration can also be applied to diffusion tensor (DT) reorientation.
Given the static/host image S, the moving/target image M, and the DT field for S, we can
obtain the reoriented DT field for M using our optical flow approach as described in Section
4. Fig. 14 shows the pipeline for DT reorientation. With the static and moving images shown
in Fig. 15, we use the image registration technique to deform S to match with M, and
meanwhile obtain the displacement field for all grid points. The next step is to find the
transformation matrix F that transforms a grid point in S to M (Alexander et al., 2001),

(9)

where I is the identity matrix, and u, v, w are three components of the displacement field.
For each grid point in S, we have a diffusion tensor matrix D (3×3) from the given DT field,

(10)

With F and D, either the finite strain (FS) or the preservation of principal direction (PPD)
reorientation strategies (Alexander et al., 2001; Peyrat et al., 2007) can be applied to obtain
the rotation matrix R. If we want to preserve the geometric features of the diffusion tensor
field, the FS strategy is preferred; on the other hand, if we want to study the mechanical
deformation due to the registration process, the PPD strategy is preferred. However, the PPD
method is sensitive to the noise of the displacement field. Therefore in this paper, we choose
the FS method, in which R can be obtained using R = (FFT)−1/2F. Then the reoriented DT D
′ can be calculated using D′ = RDRT.

Using the above method, raw DT-MRI measurements in an ex vivo human organ donor
heart were registered to the CT images of a patient (resolution: 0.49mm × 0.49mm ×
1.25mm). The explanted donor heart was subjected to a DT-MRI scan (3T Discovery MR
750, GE Medical Systems, Milwaukee, WI) which utilized a novel three-dimensional fast
spin echo pulse sequence with variable density spiral acquisition to efficiently eliminate
eddy current and motion artifacts (Frank et al., 2010). The field of view was 12cm with a
resolution of 0.93mm×0.93mm×2mm resolution (128 × 128 × 56 voxels). Diffusion
gradients were applied in 32 non-collinear directions with a b value of 1000s/mm2. The scan
took 2 hours with a TR of 1000ms. Image reconstruction requiring a special least squares
algorithm to correctly invert the non-uniformly sampled data was performed in parallel on a
Linux cluster.
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First, biventricular control meshes of each heart were manually constructed and fitted to
their respective image data, see Fig. 16(a), in which the red mesh is from S and the blue
mesh is from M. Then the optical flow registration is applied to the control mesh from S
(red) to deform it and match with the control mesh from M (blue). From Fig. 16(b), we
observe that these two meshes match to each other very well (with 94% surface area
matched and the RMS distance = 5.0mm), which validate our image registration technique
in this example. Then the displacement field obtained from the registration is used to
reorient the DT-MRI measurements to account for the geometric differences between the
two anatomies. Fig. 16(c) is a rendering of the raw DT-MRI measurements (represented by
glyphs) overlaid with the control mesh extracted from S, while Fig. 16(d) is a rendering of
the warped DT-MRI measurements overlaid with the deformed control mesh. The major
axis of the glyph represents the fiber direction; the semi-major axis represents sheet
direction; the minor axis represents the sheet-normal direction. A close-up of a transmural
section of myocardium (location in the control meshes outlined in red) demonstrates the
action of the displacement field and reorientation strategy at corresponding material points.
The coloring corresponds to the vertical (z) component of the primary eigenvector (the fiber
direction), so that the variation of fiber orientation is easier to see than by just the orientation
of the glyphs themselves.

Discussion
A previous study in canine hearts (Vadakkumpadan et al., 2012) suggests error from atlas-
based DT-MRI mapping impacts simulated activation sequence only slightly. It is unknown
whether these results extrapolate to human hearts, or whether the error in fiber orientation is
significant in mechanical simulations. A statistical analysis of the human cardiac fiber
architecture from DT-MRI was reported by Lombaert et al. (2011). Moreover, the authors
report differences in error among distinct registration and reorientation strategies. As a
consequence, multiple DT-MRI data sets are required to validate our approach and compare
it to other registration and reorientation strategies. Finally, the image contrast (intensity) is
used in the DTI registration method. Since the two images are from MRI and CT
respectively, there might not be a simple correspondence. Mutual information is used in this
case.

6. Conclusion
In this paper, we have developed a novel atlas-based geometry pipeline to construct cubic
Hermite finite element models from image data. From the segmented images of one patient,
the surface model and the 1D center-line path tree were extracted, and a hexahedral control
mesh was constructed via a skeleton-based sweeping method. Given images of another
patient, instead of going through each step again during the atlas construction, a robust
optical flow method was developed to deform the constructed atlas to match with the new
patient’s images. In this way, an atlas-based cardiac database can be built efficiently and
automatically. For different patients, the cardiac topology may have different anatomic
details. By using this registration method, we can also build new atlases. For a new cardiac
topology, we can first search in the database which atlas is the most similar one, then we
deform that one to construct a new atlas. Moreover, the image registration can be applied to
diffusion tensor reorientation. As part of our future work, we will test our pipeline on more
patients’ data and build a larger database by collaborating with VA Medical Center in
University of California, San Diego.
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Figure 1.
A schematic diagram of the atlas-based geometry pipeline.
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Figure 2.
Segmented heart with four chambers, the aorta and the pulmonary trunk.
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Figure 3.
A whole heart model with four chambers and all major blood vessels. (a) The central-line
path tree; (b) the control mesh; and (c) the cubic Hermite model in an exploded view.
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Figure 4.
Branch template. (a) The cross-section template provided in (Zhang et al., 2007); (b) the
new circle-square template; (c) the circle-square template with epicardial and endocardial
boundaries; and (d) the circle-square template conformal to the epicardial (green points) and
endocardial (blue points) boundaries. The black point is the center, and the red points locate
at the square edges.
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Figure 5.
Ventricular template. (a) Locate two inner center points (black) on the skeleton and
determine the middle-line points (red); (b) the sweeping template; (c) the sweeping template
with one epicardial (green) and two endocardial (blue) boundaries; and (d) project green
points to the epicardial boundary, and blue points to the two endocardial boundaries.
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Figure 6.
Branch connection. (a) The chamber body with an open mouth; (b) one daughter branch; and
(c) the left atrium model after branch connection.
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Figure 7.
A bi-atrial model. (a) Control mesh; and (b) bi-cubic-linear Hermite model.
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Figure 8.
Flowchart of the optical flow scheme.

Zhang et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
K(m) function in demons 2. Sin and Sout are defined using the intensity information at the
boundary. The amplitude k is a constant integer which usually set as one.
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Figure 10.
Registration between slices 66 and 73, slices 66 and 63 for the same patient (Patient 2). (a)
Isocontour (pink) extracted from slice 66; (b) the original isocontour overlaid with slice 73
(before registration); (c) the deformed isocontour from 66 to 73 using “demons 1”; (d) the
deformed isocontour from 66 to 73 using “demons 1” and “demons 2”; (e–f) zoom-in
pictures; and (g) the deformed isocontour from 66 to 63 using “demons 1” and “demons 2”.
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Figure 11.
Registration from Patient 1 (slice 83) to Patient 3 (slice 15). (a) Isocontour (pink) extracted
from slice 83 of Patient 1; (b) the original isocontour (blue) overlaid with slice 15 of Patient
3 (before registration); (c) the deformed isocontour (green) overlaid with slice 15 of Patient
3 (after registration).
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Figure 12.
3D registration for left ventricle from Patient 1 (red) to Patient 2 (blue) in (a-b) and to
Patient 3 (blue) in (c-d). (a, c) Before registration; and (b, d) after registration.
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Figure 13.
Deformable registration of the control mesh. (a, b) Control mesh of Patient 1 (reference
model); (c, d) the registered control mesh for Patient 2; and (e, f) the registered control mesh
for Patient 3.
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Figure 14.
Pipeline for diffusion tensor reorientation.
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Figure 15.
The static image S and the moving image M. (a) One slice of S; and (b) one slice of M.
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Figure 16.
Diffusion tensor reorientation for a bi-ventricle data. (a) The control meshes of the ventricle
extracted from S (red) and M (blue), respectively; (b) the deformed control mesh from S
(red) and the control mesh extracted from M (blue); (c) the host control mesh with its
corresponding DT data extracted from S; and (d) the deformed target control mesh with the
DT’s reoriented by the FS strategy.
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Table 1

3D registration of the left ventricle from Patient 1 to Patients 2 and 3.

Images Area (mm2) Volume (mm3) RMS Distance* (mm)

Patient 1 (original) 26,379 213,691 -

Patient 1 (deformed) 19,317 (96%†) 113,569 (93%†) 5.1

Patient 2 20,044 122,241 -

Patient 1 (deformed) 18,902 (103%†) 109,880 (107%†) 4.2

Patient 3 18,344 102,869 -

*
The root mean square distance from the deformed mesh to the target mesh.

†
The percentage is the area (or volume) of Patient 1 divided by that of Patient 2 (or 3).
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Table 2

Deformable registration of the control mesh.

Patient 1 Patient 2 Patient 3

Bounding Box (mm) 145×150×126 106×104×90 105×104×90

Surface Area (mm2) 157,698 80,862 80,033

RMS Distance
*
 (mm) - 6.2 6.1

*
The root mean square distance from the deformed mesh to the target mesh.
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