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Abstract
Diffusion-weighted MRI has the potential to provide important new insights into physiological
and microstructural properties of the body. The Intra-Voxel Incoherent Motion (IVIM) model
relates the observed DW-MRI signal decay to parameters that reflect blood flow in the capillaries
(D*), capillaries volume fraction (f), and diffusivity (D). However, the commonly used,
independent voxel-wise fitting of the IVIM model leads to imprecise parameter estimates, which
has hampered their practical usage.

In this work, we improve the precision of estimates by introducing a spatially-constrained
Incoherent Motion (IM) model of DW-MRI signal decay. We also introduce an efficient iterative
“fusion bootstrap moves” (FBM) solver that enables precise parameter estimates with this new IM
model. This solver updates parameter estimates by applying a binary graph-cut solver to fuse the
current estimate of parameter values with a new proposal of the parameter values into a new
estimate of parameter values that better fits the observed DW-MRI data. The proposals of
parameter values are sampled from the independent voxel-wise distributions of the parameter
values with a model-based bootstrap resampling of the residuals.

We assessed both the improvement in the precision of the Incoherent Motion parameter estimates
and the characterization of heterogeneous tumor environments by analyzing simulated and in-vivo
abdominal DW-MRI data of 30 patients, and in-vivo DW-MRI data of three patients with
musculoskeletal lesions. We found our IM-FBM reduces the relative root mean square error of the
D* parameter estimates by 80%, and of the f and D parameter estimates by 50% compared to the
IVIM model with the simulated data. Similarly, we observed that our IM-FBM method
significantly reduces the coefficient of variation of parameter estimates of the D* parameter by
43%, the f parameter by 37%, and the D parameter by 17% compared to the IVIM model (paired
Student’s t-test, p<0.0001). In addition, we found our IM-FBM method improved the
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characterization of heterogeneous musculoskeletal lesions by means of increased contrast-to-noise
ratio of 19.3%.

The IM model and FBM solver combined, provide more precise estimate of the physiological
model parameter values that describing the DW-MRI signal decay and a better mechanism for
characterizing heterogeneous lesions than does the independent voxel-wise IVIM model.

Keywords
Diffusion-weighted imaging; Intra-voxel incoherent motion; Spatial homogeneity prior; Bayesian
estimation; Graph min-cut

1. Introduction
Diffusion-weighted MRI (DW-MRI) of the body is a non-invasive imaging technique
sensitive to the incoherent motion of water molecules inside the area of interest. This motion
is known to be a combination of a slow diffusion component associated with the Brownian
motion of water molecules, and a fast diffusion component associated with the bulk motion
of intravascular molecules in the micro-capillaries. These phenomena are characterized
through the so-called, Intra-Voxel Incoherent Motion (IVIM) model with the slow diffusion
(D); the fast diffusion (D*) as decay rate parameters; and the fractional contribution (f) of
each motion to the DW-MRI signal decay (Le Bihan, 2008; Le Bihan et al., 1988; Koh et al.,
2011).

IVIM model parameters have recently shown promise as quantitative imaging biomarkers
for various clinical applications in the body including differential analysis of tumors
(Sigmund et al., 2011; Re et al., 2011; Klauss et al., 2011; Chandarana et al., 2011; Gloria et
al., 2010; Lemke et al., 2009), the assessment of liver cirrhosis (Luciani et al., 2008; Patel et
al., 2010), and Crohn’s disease (Freiman et al., 2012a).

A key limitation of the IVIM model is that it is an independent voxel-wise model. It models
only signal decay related to intra-voxel incoherent motion of the water molecules, while
both inter- and intra-voxel incoherent motion of water molecules are related to the DW-MRI
signal decay. Moreover, the utility of IVIM parametric imaging with DW-MRI is
diminished by a lack of verified methods for producing reliable estimates of both fast and
slow diffusion parameters from the DW-MRI signal (Koh et al., 2011).

Specifically, reliable estimates of IVIM model parameters are difficult to obtain because of
1) the non-linearity of the IVIM model; 2) the limited number of DW-MRI images as
compared to the number of the IVIM model parameters, and; 3) the low signal-to-noise ratio
(SNR) observed in body DW-MRI.

In current practice, there are four approaches that will increase the reliability of incoherent
motion parameter estimates to varying degrees.

1. Approximate the non-linear DW-MRI signal decay by a log-linear model with the
apparent diffusion coefficient (ADC) as the decay rate parameter (Stejskal and
Tanner, 1965). However, this simplified model precludes the independent
characterization of slow diffusion and fast diffusion components - a process
essential to accurately quantifying biological phenomena taking place inside the
body.

2. Increase the DW-MRI SNR by acquiring multiple DW-MRI images from the
patient; next, average these results, and then use the averaged DW-MRI signal to
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estimate IVIM model parameters. However, this requires substantially increased
acquisition times - an undesirable outcome, especially in children, who generally
have difficulty in remaining still for long periods of time (Koh et al., 2011).

3. Increase the DW-MRI SNR by averaging the DW-MRI signal over a region of
interest (ROI), effectively yielding more reliable IVIM parameter estimates as used
by Zhang et al. in their DW-MRI acquisition optimization study (Zhang et al.,
2012). Unfortunately, by averaging the signal over a ROI, the estimated parameters
do not reflect critical heterogeneous environments such as the necrotic and viable
parts of tumors.

4. Bayesian model fitting, proposed by Neil et al. (Neil and Bretthorst, 1993), and
recently used by Koh et al. (Koh et al., 2011) aims to increase the reliability of
IVIM parameter estimates by calculating the probability distribution function of
each parameter rather than by calculating point estimates, as is done using
maximum-likelihood estimators. However, this method considers the information
at each voxel independently, effectively ignoring its spatial context. Moreover, it
requires numerical integration of the marginal posterior probabilities over the
possible ranges of parameter values, which are sensitive both to discretization/
sampling effects and to the chosen integration limits (Behrens et al., 2003).

In this work, we present a new model of DW-MRI signal decay that accounts for both inter-
and intra-voxel incoherent motion of the water molecules (IM) by introducing a model of
spatial homogeneity to the IVIM model of DW-MRI signal decay. Essentially, our IM
model produces estimates of Incoherent Motion model parameters for all voxels
simultaneously, rather than solving for each voxel independently. As a result, we increase
the reliability of the incoherent motion parameter estimates from the DW-MRI data without
acquiring additional data or losing spatial sensitivity. Figure 1 depicts the graphical models
previously used to estimate the fast and slow diffusion parameters from DW-MRI data (a–c)
compared to the model proposed in this work (d).

Bayesian estimation of Markov Random Field (MRF) models with spatial homogeneity as a
prior term has been widely used in computer vision applications since its introduction by
Geman and Geman (Geman and Geman, 1984). The equivalence between MRFs and Gibbs
distributions established by Hamersley and Clifford (Winkler, 2003) also enabled the
modeling of variety of computer vision problems such as energy minimization tasks within
the Bayesian framework (Geman and Geman, 1984).

The optimization of MRF-related energy functions is challenging, however, due to the large
number of variables that must be optimized simultaneously, especially when compared to
the relatively fewer number of variables that are optimized with simple, independent voxel-
wise approaches. Besag proposed the iterative conditional modes (ICM) algorithm as an
approximation algorithm for discrete MRF optimization (Besag, 1986). That is, the ICM
enforces spatial homogeneity by approximating the solution for each voxel independently
while fixing the solutions for its neighborhood. Thus, the ICM tends to converge slowly to a
sub-optimal solution in the discrete setting (Lempitsky et al., 2010). In the case of a binary
field (i.e., the Ising model), graph min-cut techniques are able to pinpoint the globally
optimal solution of the energy minimization problem. Further, several combinatorial
approximation algorithms were proposed for setting more than two possible labels (i.e., the
Potts model). We refer the reader to Szeliski et al. (Szeliski et al., 2008) for a review and
comparison of different combinatorial algorithms for the multiple labels case. For inference
in continuous MRF models in which each node represents a continuous random variable, the
Markov Chain Monte Carlo (MCMC) and the continuous version of the ICM algorithm are
commonly used.
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In the specific context of parametric MRI, Schmid et al. proposed a Gaussian MRF model
with MCMC optimization to increase the reliability of parameter estimates in quantitative,
dynamic contrast-enhanced MRI (DCE-MRI) (Schmid et al., 2006). More recently, Kelm et
al. proposed a similar Gaussian MRF model with ICM-based optimization in both DCE-
MRI (Kelm et al., 2009) and in magnetic resonance spectroscopy (MRS) (Kelm et al., 2012).

To solve the challenging problem of inference of the Incoherent Motion model parameters
imposed by incorporating additional spatial homogeneity prior to the previously used IVIM
model, we also introduce the “fusion bootstrap moves” (FBM) solver, an efficient new
iterative combinatorial solver that, when applied to our new IM model, generates precise
parameter estimates. Our FBM solver iteratively updates parameter estimates by applying
binary graph-cut solver to fuse the current estimate of parameter values with a new proposal
of the parameter values into a new estimate of parameter values that better fit the observed
DW-MRI data (Lempitsky et al., 2010). The proposals of parameter values are sampled
from the independent voxel-wise distributions of the parameter values with a model-based
bootstrap resampling of the residuals (Davidson and Flachaire, 2008).

This paper extends work previously presented at the MICCAI 2012 conference (Freiman et
al., 2012b) by offering a more detailed description of the method and additional
experiments. Following the Introduction, the paper is organized into 6 sections (2–7). In
Section 2, we briefly describe the DW-MRI signal decay model employed, and we review
the conventional approach to IVIM parameter estimation. In Section 3, we introduce the
spatial homogeneity prior followed by a description of the FBM solver. In Section 4, we
describe the experimental methodology, the DW-MRI data for our simulation, and in-vivo
experiments. In Section 5, we present results for simulated DW-MRI data as well as in-vivo
DW-MRI data from normal abdominal organs of 30 subjects and 3 musculoskeletal lesions
studies. In Section 6, we discuss study results as well as limitations; and last, we summarize
our findings and the impact of our work in Section 7.

2. The Intravoxel incoherent motion model
The Intra-Voxel Incoherent Motion (IVIM) model of DW-MRI signal decay assumes a
signal decay function of the form (Le Bihan, 2008; Le Bihan et al., 1988):

(1)

where mi,v is the expected signal of voxel v at b-value=bi, s0,v is the baseline signal at voxel
v; Dv is the slow diffusion decay associated with extravascular water molecules’ motion; 
is the fast diffusion decay associated with the intravascular water molecules’ motion; and fv
is the fraction between the slow and fast diffusion compartments.

Given the DW-MRI data acquired with multiple b-values, the observed signal (Sv) at each
voxel v is a vector of the observed signal at the different b-values: Sv = {sv,i}, i = 1 … N.

We model the IVIM model parameters at each voxel v as a continuous-valued four-
dimensional random variable (i.e. ). Commonly, the IVIM model
parameters Θv are estimated from the DW-MRI signal Sv using an independent voxel-wise
maximum-likelihood estimator:

(2)
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Assuming the non-central χ-distribution noise model that is suitable for parallel MRI
acquisitions used in DW-MRI (Dietrich et al., 2008; Brion et al., 2011), p(sv,i|Θv) takes the
following form:

(3)

where, σ being the noise standard deviation of the Gaussian noises present on each of the
acquisition channels; k being the number of channels used in the acquisition; and Ik−1 being
the (k − 1)th order, modified, Bessel function of the first kind. Using a Gaussian
approximation of the non-central χ-distribution, and taking the negative log of the
maximum likelihood estimator; the maximum likelihood estimation takes the form of a
least-squares minimization problem:

(4)

The IVIM model parameters Θv are estimated from the DW-MRI signal Sv by solving the
least-squares minimization problem (Eq. 4) for each voxel independently using the
Levenberg-Marquardt algorithm (Lemke et al., 2011; Yamada et al., 1999).

3. Spatial homogeneity prior and the Fusion Bootstrap Moves solver
3.1. Spatial homogeneity prior

Taking the Bayesian perspective, our goal is to find the parametric maps Θ that maximize
the posterior probability associated with the maps given the observed signal S and the spatial
homogeneity prior knowledge:

(5)

Based on the Hammersley-Clifford theorem (Winkler, 2003), by using a spatial prior in the
form of a continuous-valued Markov random field, the posterior probability p(S|Θ)p(Θ) can
be decomposed into the product of node and clique potentials:

(6)

where p(Θv|Sv) is the data term representing the probability of voxel v to have the DW-MRI
signal Sv given the model parameters Θv, vp ~ vq is the collection of the neighboring voxels
according to the employed neighborhood system, and p(Θv,p, Θv,q) is the spatial
homogeneity prior in the model.

By taking the negative logarithm of the posterior probability (Eq. 6), the maximum a
posteriori (MAP) estimate Θ is equivalent to the minimization of:

(7)

where φ(Sv; Θv) and ψ(Θv,p, Θv,q) are the compatibility functions:
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(8)

The data term φ(Sv; Θv) is given by taking the negative logarithm of Eq. 3, and the spatial
homogeneity term is defined using the robust L1-norm:

(9)

where α ≥ 0 weights the amount of spatial homogeneity enforced by the model, and W is a
diagonal weighting matrix that accounts for the different scales of the parameters in Θv.

3.2. The Fusion Bootstrap Moves solver
The very high dimensionality of the parameters’ vector Θ of the energy function in Eq. 7
(e.g., the number of voxels in the image multiplied by the number of the signal decay model
parameters) makes energy optimization very challenging.

To robustly minimize the energy in Eq. 7, we developed a new solver that harnesses the
power of the combinatorial binary graph-cut approach (previously used for discrete MRF
optimization) to address the persistent challenges associated with continuous MRF
optimization. Our “fusion bootstrap moves (FBM)” algorithm, inspired by the fusion-moves
algorithm (Lempitsky et al., 2010), iteratively updates parameter estimates by applying a
binary graph-cut solver to fuse the current estimate of parameter values with a new proposal
of the parameter values into a new estimate of parameter values that better fit the observed
DW-MRI data. The proposals of parameter values are sampled from the independent voxel-
wise distributions of the parameter values with a model-based bootstrap resampling of the
residuals (Davidson and Flachaire, 2008; Freiman et al., 2011).

Since fusion of the two possible proposals at each iteration is optimal, efficient reduction in
the overall model energy (Eq. 7) is guaranteed. By applying the proposal drawing and
optimal fusion steps iteratively, the algorithm will robustly converge – at least to a local
minimum. Next, we describe these steps in detail.

3.2.1. Proposal Drawing—We utilize the model-based bootstrap technique (Davidson
and Flachaire, 2008) to draw a new proposal from the empirical distribution of the
incoherent motion parameter values as follows: For each voxel v, the raw residuals between
the observed signal (Sv) at voxel v and the expected signal (Mv = {mv,i}, i = 1, … N) at each

b-value bi, given the current model estimate ( ), are defined as:

(10)

The model-based bootstrap resampling is defined as:

(11)

where  is the resampled measures at b-value bi, i = 1 … N, εv̂,i are the rescaled
version of εv,i that accounts for heterogeneous errors leverages (Freiman et al., 2011), and
tv,i is a two-point Rademacher distributed random variable with p(tv,i = 1) = 0.5 and p(tv,i =
−1) = 0.5 defined for each voxel and b-value independently (Davidson and Flachaire, 2008).

The new proposal of the IVIM model parameters  is then estimated for each voxel
independently using Eq. 4.
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It should be noted that simply drawing samples from a pre-defined artificial distribution of
the parameters is not appropriate as the actual distribution of the parameters is spatially
variant (Freiman et al., 2011). Therefore, samples drawn from a pre-defined artificial
distribution will slow the optimization as they have a greater chance of being rejected by the
graph-cut optimization, compared to samples drawn from the spatially-variant distribution
with the bootstrap process.

3.2.2. Proposal fusion—We use the binary graph-cut technique (Lempitsky et al., 2010)
to find the optimal fusion of the current assignment Θ0 and the new proposal Θ1 for the
IVIM model parameters values that form a new estimate of the parameters maps Θ* which
have the lowest possible energy among the possible fusions of Θ0 and Θ1 as follows:

Let G = (V, E) be an undirected graph where each voxel v is represented as a graph node;
the two proposals Θ0 and Θ1 are represented by the terminal nodes vs and vt; and graph
edges consist of three groups: E = {(vp, vq), (vp, vs), (vp, vt)}. Edge weights w(vp, vs) and
w(vp, vt) represent the likelihood of the model parameters Θ0 and Θ1 given the observed
signal Sv,p, respectively:

(12)

Edge weights w(vp, vq) penalize for adjacent voxels that have different model parameters:

(13)

The optimal fusion between Θ0 and Θ1 that forms the new estimate of the parameter maps
Θ* is then found by solving the corresponding graph min-cut problem. Finally, the result Θ*

is assigned as Θ0 for the next iteration.

Figure 2 depicts the graph set-up for the minimization of energy in Eq. 7.

4. Experimental methodology
4.1. Hyper-parameter optimization

The spatial homogeneity prior model defines three hyper-parameters: 1) the standard
deviation of the signal noise; 2) the parameter weighting matrix W, and; 3) the spatial
smoothness prior weight α. The standard deviation of the signal noise is estimated from a
pre-defined background region for each dataset. All other parameters were previously
determined and have been used subsequently for all experiments. Following the
methodology of Kelm et al. (Kelm et al., 2009), we determined the values of the diagonal of
the parameter weighting matrix as follows: We assessed the scale difference in the IVIM
parameter mean values of the main abdominal organs reported by Yamada et al. (Yamada et
al., 1999). Next, we set the rescaling matrix W diagonal to {1.0, 0.001, 0.0001, 0.01} to
provide equal weight to each one of the incoherent motion model parameters. We assessed
the impact of spatial smoothness prior weight α on the simulated data as well as on
preliminary in-vivo DW-MRI data of healthy subjects. According to these preliminary
experiments, we set the value of α to 0.01. We used this value in all of the DW-MRI data
analyses presented in this manuscript.
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4.2. Precision and accuracy of the incoherent motion parameter estimates from simulated
DW-MRI data

We conducted a Monte-Carlo simulation study to analyze the estimation errors in incoherent
motion quantification from DW-MRI using both the original independent voxel-wise IVIM
analysis and our spatially-constrained model. To assess the efficacy of our FBM solver, we
have also compared the graph min-cut based fusion against two versions of the ICM
algorithm (Besag, 1986): 1) A continuous ICM in which energy minimization is performed
for each voxel on the continuous domain with the current estimate of the incoherent motion
parameters of the neighboring voxels as constraints (IM-ICMC) (Kelm et al., 2009) with the
BOBYQA derivative-free, non-linear optimization algorithm proposed by Powel (Powell,
2009), and; 2) a discrete version in which the ICM strategy is used to reach an approximate
solution for each fusion problem, but otherwise leaving the entire fusion framework
unchanged (IM-ICMD) (Lempitsky et al., 2010). We initialized all solvers for our spatially-
constrained model with the results of the independent voxel-wise IVIM estimation.

We constructed a simulated heterogeneous tumor example (Kelm et al., 2009) as follows:
We defined three-dimensional reference parametric maps with 100 × 100 × 5 voxels with
the following parameters: Border: Θ = {200, 0.35, 0.03, 0.003}, middle part: Θ = {200, 0.25,
0.02, 0.002}, innermost part: Θ = {200, 0.15, 0.01, 0.001}. We computed simulated DW-
MRI images from the parametric maps using Eq. 1 with 7 b-values in the range [0, 800] s/
mm2. We then corrupted the simulated data by non-central χ-distributed noise with single
coil noise σ values in the range of 2–16 defined on the same scale as the assumed s0, which
implies an assumed SNR range of 100–12.5. Fig. 3 depicts the model parameter maps and
the simulated noisy DW-MRI images with different b-values at SNR of 25.

We estimated the model parameters Θ from the noisy DW-MRI data for each voxel using
the following four methods: 1) the voxel-independent approach (IVIM) (Le Bihan, 2008; Le
Bihan et al., 1988; Koh et al., 2011); 2) our spatial homogeneity prior model with ICM
based continuous optimization (IM-ICMC) (Kelm et al., 2009); 3) our spatial homogeneity
prior model with ICM fusion strategy (IM-ICMD) (Lempitsky et al., 2010), and; 4) our
spatial homogeneity prior model with graph min-cut fusion strategy (IM-FBM). The noise
parameter σ was estimated using a pre-defined background region. Stopping criteria for all
methods (IM-ICMC, IM-ICMD, IM-FBM) was defined as an energy improvement of less
than 0.1% from the initial energy or 500 iterations. Following the methodology of Kelm et
al. (Kelm et al., 2009), we calculated the estimator bias, the standard deviation and the
relative root mean square (RRMS) error between the reference and estimated parameters for
each parameter. We also compared the increase in running time (due to the Bayesian model
estimation) in both the FBM and the ICM approaches to the running time of the independent
voxel-wise IVIM approach.

4.3. Precision of the Incoherent Motion parameter estimates from in-vivo DW-MRI data
We obtained DW-MRI images of 30 subjects - 18 males and 12 females with a mean age of
14.7 (range 5–24, std 4.5) that underwent MRI studies due to suspected inflammatory bowel
disease between Sept. 2010 and Sept. 2011. Radiological findings of the study subjects’
abdominal organs (i.e., liver, kidneys and spleen) were normal.

We carried out MR imaging studies of the abdomen using a 1.5-T unit (Magnetom Avanto,
Siemens Medical Solutions, Erlangen, Germany) with a body-matrix coil and a spine array
coil for signal reception. Free-breathing single-shot echo-planar imaging was performed
using the following parameters: repetition time/echo time (TR/TE) = 6800/59 ms; SPAIR fat
suppression; matrix size = 192×156; field of view = 300×260 mm; number of excitations =
1; slice thickness/gap = 5 mm/0.5 mm; 40 axial slices; 8 b-values =
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5,50,100,200,270,400,600,800 s/mm2. A tetrahedral gradient scheme, first proposed in
Conturo et al. (Conturo et al., 1996), was used to acquire 4 successive images at each b-
value with an overall scan acquisition time of 4 min. Diffusion trace-weighted images at
each b-value were generated using geometric averages of the images acquired in each
diffusion sensitization direction (Mulkern et al., 2001).

We estimated the model parameters Θ from the in-vivo DW-MRI data for each voxel using
both the independent voxel-wise approach IVIM and our IM-FBM approach. We calculated
the averaged model parameter Θ values obtained using the four different methods over three
regions of interest (ROI) - each manually annotated in the liver, spleen, and kidney (Fig. 4).
Next, we determined whether there is a statistically significant difference among the average
model parameter values estimated with the different estimation methods using a two-tailed,
paired Student’s t-test, (p<.05 indicating a significant difference). We calculated the
precision of the parameter estimates by means of the coefficient of variation (CV) of the
parameter estimates at each voxel in the respective IVIM and IM-FBM maps of each patient
using model-based wild-bootstrap analysis (Davidson and Flachaire, 2008; Freiman et al.,
2011). For each patient, we averaged the CV values over the same three ROIs mentioned
above. We examined the statistical significance of the difference in the precision of the
parameter estimates for the IVIM and IM-FBM maps using a two-tailed paired Student’s t-
test (p<.05 indicating a significant difference). We performed the statistical analyses with
standard statistical software (Matlab™ R2010b; The MathWorks, Natick, MA, USA).

4.4. Characterization of heterogeneous lesions
We analyzed the characterization of heterogeneous musculoskeletal lesions characterization
with our IM-FBM method compared to the IVIM method by means of the contrast-to-noise
ratio (CNR) among components of the lesions. Specifically, we examined DW-MRI data of
3 patients with musculoskeletal lesions (2 diagnosed with left femoral osteosarcoma (OS1,
OS2), and 1 diagnosed with popliteal cyst (PC) with internal debris in the posterior right
calf).

The MRI data was acquired using a 3-T unit (Skyra, Siemens Medical Solutions, Erlangen,
Germany). The DW-MRI protocol was as follows: Free-breathing single-shot echo-planar
imaging of the lower extremities was performed using the following parameters: repetition
time/echo time (TR/TE) = 10425/70 ms; SPAIR fat suppression; matrix size = 128 × 108;
field of view = 207×173 mm; number of excitations=5; slice thickness/gap = 4 mm/0.0 mm;
40 axial slices; 5 b-values = 0,50,100,500,800 s/mm2. In addition, post contrast T1-weighted
MRI images were acquired.

For all cases, an experienced radiologist (K.E.) identified the peripheral rim component and
the central part component on the post-contrast, T1-weighted images based on their
respective enhancement patterns. Fig. 5 depicts the left femoral osteosarcoma components
on the post-contrast, T1-weighted image; on the T2-weighted image; and on the diffusion-
weighted image.

We calculated the incoherent motion parametric maps using the IVIM approach and our IM-
FBM approach. The internal components were annotated manually on the f map computed
with our IM-FBM approach. We evaluated the improvement in the contrast-to-noise ratio
(CNR) by means of Hedges’ g effect-size (Hedges, 1981). Specifically, we looked at the
differences in f values among the internal components that resulted from the IVIM and IM-
FBM approaches, respectively.
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5. Experimental results
5.1. Precision and accuracy of the incoherent motion parameter estimates from simulated
DW-MRI data

Fig. 6 depicts the parametric maps estimated from the simulated DW-MRI data using the
IVIM approach as well as our Bayesian approach with spatial homogeneity prior optimized
using 1) the continuous ICM method (IM-ICMC); 2) the discrete ICM method (IM-ICMD)
and; 3) the FBM method (IM-FBM).

Fig. 7 presents the relative bias; the relative standard deviation of the estimates error; and
the relative root mean square error (RRMS) plots of the incoherent motion parameter
estimators as a function of the SNR using the IVIM approach as well as our Bayesian
approach with spatial homogeneity prior that were then optimized using the ICMC, the
ICMD, and the proposed FBM methods. The introduction of the spatial homogeneity prior
reduced the relative bias, the relative STD and the relative RRMS of the parameter
estimates, with the exception of the relative bias in f estimates using our IM-FBM approach.
We observed the greatest improvement in the bias of the estimates in the D* parameter
where the bias was reduced from ~40% with the IVIM method to 10% using the IM-FBM
method, and to ~5% using the IM-ICMC and IM-ICMD methods in realistic SNRB0 of 20.
With our IM-FBM approach, the relative standard deviation of the estimates error and
overall RRMS were reduced by 80% for the D* parameter, and by 50% for the D and f
parameters compared to the IVIM approach in a realistic SNRB0 scenario of 20.

The running time required to reconstruct the parametric maps of one slice of 100 × 100
voxels on a single processor machine Intel® Xeon® at 2.40GHz with cache size of 12MB
were as follows: 1.372 sec for the entire slice (0.137 ms per voxel) using the IVIM
approach; 52.9 sec for the entire slice (5.29 ms per voxel) using the IM-ICMC approach;
112.8 sec for the entire slice (11.28 ms per voxel) using the IM-ICMD approach; and 142.12
sec for the entire slice (14.21 ms per voxel) using the IM-FBM approach.

5.2. Precision of the Incoherent Motion parameter estimates from in-vivo DW-MRI data
Fig. 8 depicts a representative example of the incoherent motion parametric maps of the
upper abdomen calculated using the two methods (i.e., IVIM and the proposed IM-FBM).
By incorporating the spatial homogeneity prior, the quality of the images improved (3rd row)
compared to the voxel-wise, independent approach (2nd row) that resulted in more detailed
maps. We also analyzed the signal decay in a noisy point inside the liver vasculature, which
is expected to have a significant percentage of the fast-diffusion component (green point in
Fig. 8a). While the IVIM model failed to depict the fast-diffusion component in the signal
decay, our IM-FBM model successfully captured the fast-diffusion component (Fig. 8c).

Table 1 summarizes the average values of the incoherent motion parameters for each organ’s
ROI, as estimated by the two methods along with the level of significance of the difference
(two-tailed paired Student’s t-test, N=30, p<0.05).

Fig. 9 depicts the bar plots of the CV over the 30 subjects for the incoherent motion
parameters. Our IM-FBM approach reduced the CV of the D* parameter estimates by 43%;
the CV of the f parameter estimates by 37%; and the CV of the D parameter by 17%. The
improvement in CV was significant for all parameters (p<0.0001).

5.3. Characterization of heterogeneous lesions
Fig. 10 depicts the incoherent motion parametric maps calculated using the IVIM and our
IM-FBM approach. Similar to the results of the simulation and in-vivo experiments, the IM-

Freiman et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FBM approach produced smoother, more realistic parametric maps with improved
sensitivity to details seen especially in the f, and D* maps.

Fig 11 compares the results of the IVIM and IM-FBM approaches with bar plots that show
the CNR between the lesion’s internal components on the f maps. By using our IM-FBM
approach, we achieved an average improvement in the CNR between the two internal
components of 19.3% over the IVIM approach.

6. Discussion
Incoherent motion quantification from DW-MRI has a promising role as a quantitative non-
invasive imaging biomarker for various clinical applications. However, the commonly used
independent, voxel-wise fitting of the IVIM model does not account for inter-voxel
interactions. Moreover, the low-quality of the incoherent motion parameter estimates using
the IVIM model has hampered its utilization in clinical studies and in patient management
(Koh et al., 2011).

In this work, we introduced a new model of DW-MRI signal decay that accounts for both
inter- and intra-voxel incoherent motion by formulating a Bayesian incoherent motion model
with spatial homogeneity prior. As a result, our model significantly improved both the visual
quality and the precision of incoherent motion parameter estimates without increasing
overall scanning times.

Inferring model parameters with a spatial prior is a challenging task, however. Previously,
Schmid et al. used MCMC optimization to reliably infer kinetic model parameters from
DCE-MRI (Schmid et al., 2006), and Kelm et al. used ICM-based optimization to infer
model parameters in both DCE-MRI (Kelm et al., 2009) and MRS (Kelm et al., 2012).

The MCMC approach relies on Markov Chain Monte-Carlo simulation to estimate the prior
distributions for all unknown parameters simultaneously, which is very time-consuming. In
contrast, the ICM approach only approximates the fully Bayesian assumption by estimating
the model parameters at each voxel with the current values of the local neighborhood as
constraints. Similar to the ICM approach, our FBM solver does not require prior
specification of the prior distribution of the entire set of parameters. However, it does apply
the fully Bayesian assumption by utilizing global optimization steps with the binary graph-
cut approach.

As the simulation experiments demonstrated, our FBM approach provides superior estimates
of the incoherent motion model parameters (i.e., a lower standard deviation of errors and
overall RRMS) than does the ICM approach in both its continuous and discrete versions.
The estimated distribution of residuals using FBM is, moreover, reliable in the presence of
realistic levels of noise (SNR = 20) for all parameter values, as it provides globally optimal
parameter updates; whereas, ICM provides only locally optimal parameter updates. The
local estimates of ICM were inferior in all cases except for estimates of the f parameter at
very high noise levels, where the local nature of the updates may provide some insensitivity
to noise.

Compared to the ICM approach, our method was subject to greater bias in estimating
parameters owing to a bias in the wild-bootstrap process used to draw samples from the
distribution of parameters. In practice, however, the ability to reach precise estimates is
more critical to generating detailed maps and thus, to assessing differences among patient
groups.
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We showed improved quality of the incoherent motion parametric maps on in-vivo DW-
MRI data of 30 patients using the CV as the quantitative precision measure. We also
demonstrated improved characterization of heterogeneous lesions by means of CNR on DW-
MRI data of 3 patients with musculoskeletal lesions. Our method achieved an average
improvement of 19.3% in the CNR compared to the IVIM approach, which suggests the
improved capability of the f parameter to distinguish among lesion components.

Our FBM approach has two major advantages: First, it does not assume any specific noise
model in estimating the distribution of residuals, and thus can accommodate both acquisition
noise and motion-related artifacts. Second, our method does not involve the calculation of
derivatives, and thus can be coupled directly with robust spatial priors including the L1
norm employed in this study. The Bayesian estimation that is used in both our FBM and
ICMD approaches requires ~100 fold increase in running time on a single processor
compared to the IVIM approach. The ICMC approach provided much faster running time,
but at the cost of reduced precision. Fortunately, the computation can be performed offline
and accelerated using the multi-core machines to which we have access. The radiologist can
also limit map calculations to relatively small regions of interest to keep the overall
computation time as small as possible.

While we used the FBM method to optimize a Bayesian model of incoherent motion from
DW-MRI data; it can be applied to other parametric MRI reconstruction problems as well,
including the estimation of kinetic parameters from DCE-MRI and quantitative T1 from T1-
weighted MRI.

Our study had several limitations. First, since this manuscript focuses on the technical
aspects of reliable estimation of incoherent motion maps, we showed improvements in
parametric map quality in both simulated experiments and in the in-vivo data of 30 study
subjects. In addition, we demonstrated improvements in the characterization of
heterogeneous musculoskeletal lesions on the f maps of 3 patients. Although our ability to
estimate incoherent motion parameters with greater precision and to better characterize
heterogeneous lesions has been established in this study, the actual clinical impact has yet to
be determined. This requires a large clinical study that utilizes a head-to-head comparison of
the decisions reached with IVIM and IM-FBM parametric maps, respectively, in defined
patient populations.

Second, this study population was limited by the number of patients and by their age range.
As a result, our assessment of DW-MRI data was restricted to the abdominal organs in 30
pediatric patients and to musculoskeletal lesions in 3 pediatric patients.

Third, the DW-MRI acquisition protocols for the study data were limited to those protocols
routinely used by our institution. As a result, we employed a fixed set of b-values for the 30
patients who underwent abdominal scan, and a different set with a reduced number of b-
values for the musculoskeletal lesions data. An additional study should evaluate the impact
of the b-values selected (i.e., by means of values and number of b-values) on the estimated
parameters as demonstarted by Lemke et al (Lemke et al., 2011) and Zhang et al. (Zhang et
al., 2012).

Fourth, while our experiments show that the maps produced with our method are not “over-
smoothed”, the actual amount of qualitative and quantitative smoothing (i.e., the value of the
hyper-parameter α) should be determined in the setting of a new clinical study aimed at
exploring the utility of IM-FBM maps in specific clinical applications.
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7. Conclusion
The role of incoherent motion parameters as quantitative imaging biomarkers for various
clinical applications is becoming increasingly important. However, current techqniqes for
estimating the incoherent motion parameters from DW-MRI data do not provide reliable or
specific enough parameter estimates.

In this work, we improved the reliability of incoherent motion measurements from DW-MRI
data significantly by introducing a model of DW-MRI signal decay that accounts for both
inter- and intra-voxel incoherent motion by incorporating a spatial homogeneity prior.

In addition, we developed a novel method to infer the parameters in the new model by
updating parameter estimates iteratively with a binary graph-cut solver that fuses the current
estimate of parameter values with a new proposal of the parameter values. This is drawn
using model-based residual bootstrap resampling into a new estimate of parameter values
that better fit the observed DW-MRI data.

Using our IM model and FBM solver with simulated data, we were able to show
improvements in the in-vivo abdominal DW-MRI data of 30 patients as well as the in-vivo
DW-MRI data of 3 patients with musculoskeletal lesions. The IM model, combined with the
FBM solver, provides a more precise estimate of the physiological model parameter values
that describe the DW-MRI signal decay and a better mechanism for characterizing
heterogeneous lesions than does the independent, voxel-wise IVIM model.
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1. DW-MRI signal decay model that accounts for both inter- and intra-voxel
incoherent motion of water molecules by introducing a model of spatial
homogeneity

2. Fusion bootstrap moves solver to reliably infer the incoherent motion model
parameters

3. Increased precision of Incoherent Motion parameter estimates from in-vivo
DW-MRI

4. Improved characterization of heterogeneous tumor environment with Incoherent
Motion parametric maps
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Figure 1.
Illustration of the graphical models used to estimate the fast and slow diffusion parameters
from DW-MRI data. The first column (a, e) represents independent voxel-wise estimation of
intra-voxel incoherent motion; the second column (b, f) represents independent voxel-wise
estimation of intra-voxel incoherent motion with multiple DW-MRI images averaged; the
third column (c, g) represents estimation of intra-voxel incoherent motion parameters by
averaging the DW-MRI signal over a region of interest, and; the fourth column (d, h)
represents voxel-wise estimation of the DW-MRI signal decay model parameters that
accounts for both inter- and intra-voxel incoherent motion by introducing spatial
homogeneity prior.
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Figure 2.
Illustration of the graph configuration used to fuse the proposals of parameter values
proposals (Θ0, Θ1) into a new estimate of the parameter maps Θ* in an optimal manner with
the graph min-cut approach. (a) The graph set-up with unknown parameter estimates Θ, and;
(b) after the assignment of the new proposals to the variables Θ to form the new estimate of
the parameter maps Θ*.
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Figure 3.
The heterogeneous tumor example. The first row depicts the reference parametric maps of f,
D*, and D. The second row depicts representative simulated noisy DW-MRI images
generated from the reference parametric maps using Eq. 1.
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Figure 4.
Representative example of the regions of interest used to analyze the fit quality overlaid on
the DW-MRI image with b-value=5 s/mm2
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Figure 5.
MRI images of heterogeneous femoral diaphyseal osteosarcoma (OS1). There are 3 tumor
components: Red - peripheral rim of the soft tissue component (Spr); Green - central part of
the soft-tissue component (Sc); and Blue - intramedullary part of the tumor.
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Figure 6.
Heterogeneous tumor example results. The first row depicts the incoherent motion
parametric maps (f, D*, and D) calculated using the IVIM approach; the second row depicts
the maps calculated using the ICMC approach; the third row depicts the maps calculated
using the ICMD approach; and the fourth row depicts the maps calculated using the IM-
FBM approach. The Bayesian model (2nd–4th rows) yields smoother, more realistic maps
than does the IVIM approach (1st row). Images are presented in the gray-value range as in
Fig. 3 for comparison.
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Figure 7.
Performance of incoherent motion parameter estimators. The first row depicts the bias of
each of the estimators used to estimate the incoherent motion model parameters (i.e., IVIM,
IM-ICMC, IM-ICMD, and the proposed IM-FBM). The first row depicts the accuracy of
each estimator by means of overall relative bias; the second row depicts the precision of
each estimator by means of the relative standard deviation of the estimate errors; and the
third row depicts the overall RRMS of each estimator. The introduction of the spatial
homogeneity prior improved both the accuracy and precision of the parameter estimates.
Under a realistic SNRB0 scenario of 20, the proposed IM-FBM approach yielded the most
precise estimates for all parameters.
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Figure 8.
Representative DW-MRI and incoherent motion parametric maps of the upper abdomen. (a–
b) DW-MRI images, blood vessels inside the liver are encircled in red. (c) DW-MRI signal
decay plot of a voxel marked in green in (a). The IVIM model failed to depict the fast-
diffusion component in the signal decay due to the noise, while the IM-FBM model
successfully captured the fast-diffusion component. (d–f) The incoherent motion parametric
maps calculated using the IVIM approach. (g–i) The incoherent motion parametric maps
calculated using our IM-FBM approach. Our Bayesian model (3rd row) yields parametric
maps with more accurate structure compared to the IVIM approach (2nd row), especially
with respect to the f parameter. Specifically, the IVIM-f parametric map failed to determine
the presence of a fast-diffusion component due to the blood flow, while the IM-FBM
approach successfully captured a fast-diffusion component.
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Figure 9.
Bar plot of the CV of the incoherent motion parameters as estimated from 30 patients. The
CV was significantly lower (p<0.0001) when using our IM-FBM approach than when using
the IVIM approach for all parameters.
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Figure 10.
The incoherent motion parametric maps of an osteosarcoma tumor as calculated using the
IVIM approach (first row) and our IM-FBM approach (second row) with internal tumor
components encircled. The IM-FBM approach produced smoother, more realistic maps than
did the IVIM approach.
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Figure 11.
Bar plot of the CNR between the two lesion’s internal components on the f maps as
achieved by the IVIM approach (blue) and by our IM-FBM approach (red). With our IM-
FBM approach, we achieved an average improvement in the CNR between the two internal
components of 19.3% over the IVIM approach.
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