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Abstract
This paper presents a dynamical appearance model based on sparse representation and dictionary
learning for tracking both endocardial and epicardial contours of the left ventricle in
echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we
exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour
estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs
multiscale sparse representation of local image appearance and learns online multiscale
appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-
frame sequentially. The weights of multiscale appearance dictionaries are optimized
automatically. Our region-based level set segmentation integrates a spectrum of complementary
multilevel information including intensity, multiscale local appearance, and dynamical shape
prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired
from both healthy and post-infarct canines. The segmentation results agree well with expert
manual tracings. The ejection fraction estimates also show good agreement with manual results.
Advantages of our approach are demonstrated by comparisons with a conventional pure intensity
model, a registration-based contour tracker, and a state-of-the-art database-dependent offline
dynamical shape model. We also demonstrate the feasibility of clinical application by applying the
method to four 4D human data sets.
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1. Introduction
Quantitative analysis of 4D echocardiographic images such as myocardial motion analysis
(e.g., Tobon-Gomez et al. (2013); Craene et al. (2012); Compas et al. (2012); Yan et al.
(2007); Ledesma-Carbayo et al. (2005); Hashimoto et al. (2003); Jacob et al. (2002);
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Papademetris et al. (2001); Kaluzynski et al. (2001); Shi et al. (1999)) provides important
cardiac functional parameters (e.g., ejection fraction, wall thickening, and strain) for heart
disease diagnosis and longitudinal therapy efficacy assessment. Segmentation of the left
ventricular contours from echocardiographic sequences plays an essential role in such
quantitative cardiac functional analysis. Due to gross intensity inhomogeneities,
characteristic artifacts (e.g., attenuation, shadows, and signal dropout), and poor contrast
between regions of interest, robust and accurate automatic segmentation of the left ventricle,
especially the epicardial border, is very challenging in echocardiography.

The inherent spatiotemporal coherence of echocardiographic data provides useful constraints
for echocardiographic segmentation and has motivated a spatiotemporal viewpoint of
echocardiographic segmentation. The key observation is that the inherent spatiotemporal
consistencies regarding image appearance (e.g., speckle pattern) and shape over the
sequence can be exploited to guide cardiac border estimation. The spatiotemporal viewpoint
is naturally supported by the fact that cardiologists also use a movie during clinical decision-
making as the speckle pattern associated with deforming tissue can be observed in a movie
whereas in a still frame the speckle pattern is not always useful (Noble and Boukerroui,
2006).

One intuitive way to perform spatiotemporal analysis is to extend spatial models, such as
active contours (Kucera and Martin, 1997; Mikic et al., 1998; V. Chalana and Kim, 1996;
Malas-siotis and Strintzis, 1999), Markov random fields (Dias and Leitão, 1996; Friedland
and Adam, 1989; Herlin et al., 1994), and space-frequency (Angelini et al., 2001; Mulet-
Parada and Noble, 2000), to the temporal domain and enforce temporal continuity of the
cardiac border during the segmentation process. While these methods may render more
consistent border estimates, they typically only impose a weak temporal constraint and
mainly rely on low level image features, such as intensity, gradient, and local phase, to
discriminate different regions or detect edges. It is well established that low level edge cue
and region information are often not sufficient for a reliable and accurate segmentation of
echocardiography (Noble and Boukerroui, 2006). Optical flow (Mikic et al., 1998) and
Kalman filter (Jacob et al., 2002) have also been used to enforce temporal continuity.

Statistical models for learning offline shape, appearance, and motion priors from databases
have received considerable attention in echocardiographic segmentation in recent years.
Following the seminal work of Cootes et al. on statistical shape and appearance modeling
(Cootes et al., 2001a,b), a number of spatiotemporal statistical models have been proposed
for learning dynamical priors offline from databases. Bosch et al. (2002) proposed a 2D
Active Appearance Motion Model (AAMM) which treats a 2D sequence as a single image
to implicitly include motion information. Lorenzo-Valdés et al. (2004) proposed learning a
spatiotemporal probabilistic atlas for cardiac MR segmentation. Dynamical shape models
are proposed to explicitly learn cardiac dynamics. Examples include a second-order
autoregressive model by Jacob et al. (2002), a second-order nonlinear model by Sun et al.
(2005), a subject-specific dynamical model (SSDM) based on multilinear shape
decomposition by Zhu et al. (2009), and a one-step forward prediction method based on
motion manifold learning by Yang et al. (2008). While these statistical models have
advantages in different aspects, an important common limitation stems from the assumption
that different subjects have similar shape or motion patterns or their clinical images have
similar appearance. This assumption may not hold for routine clinical images, especially for
disease cases, due to natural subject-to-subject tissue property variations and operator-to-
operator variation in acquisition (Noble and Boukerroui, 2006). The problem of forming a
database that can handle a wide range of normal and abnormal heart images is still open.
The dependence on databases places substantial constraints on the adaptability, deployment,
and performance of these methods, especially in a physiological research setting.
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Sparse representation is a rigorous mathematical framework for studying high-dimensional
data and ways to uncover the structures of the data (Baraniuk et al., 2010). Recent advances
in this area have not only caused a small revolution in the community of statistical signal
processing (Baraniuk et al., 2010) but also led to several state-of-the-art results in computer
vision applications such as face recognition (Wright et al., 2009), signal classification
(Huang and Aviyente, 2006), texture classification, and edge detection (Mairal et al., 2008a;
Peyré, 2009; Skretting and Husøy, 2006). Although images are naturally high dimensional,
in many applications images belonging to the same class lie on or near a low dimensional
subspace (Wright et al., 2010). Sparsity has proven to be a powerful prior for uncovering
such degenerate structure. Based on this prior, the subspace of a class can be spanned in the
sense of sparse representation by a dictionary of base vectors that can be learned from
training examples. The dictionary naturally encodes the signal patterns of the class. It has
been established that learned dictionaries outperform predefined ones in classification tasks,
in particular for distorted data and compact representation (Rodriguez et al., 2007). Sparse
representation has also recently been applied to medical image analysis settings such as
shape prior modelling (Zhang et al., 2012a,b,c), nonrigid registration (Shi et al., 2012), and
functional connectivity modelling (Wee et al., 2012).

In this paper, we present a dynamical appearance model (DAM) for echocardiographic
contour tracking based on multiscale sparse representation and dictionary learning. Our
approach exploits the inherent spatiotemporal coherence of individual echocardiographic
data (as illustrated in Figure 1) for segmenting both endocardial and epicardial boundaries of
the left ventricle. A schematic overview of the proposed approach is provided in Figure 2.
The proposed segmentation method leverages a spectrum of complementary multilevel
information including intensity, multiscale local appearance, and shape. We employ
multiscale sparse representation of high-dimensional local image appearance and encode
local appearance patterns with multiscale appearance dictionaries. We introduce an online
multiscale appearance dictionary learning process interlaced with sequential segmentation.
The local appearance of each frame is predicted by the DAM in the form of multiscale
appearance dictionaries based on the appearance observed in the preceding frames. As the
frames are segmented sequentially, the appearance dictionaries are dynamically updated to
adapt to the latest segmented frame. The multiscale dictionary learning process is supervised
in a boosting framework to seek optimal weighting of multiscale information and generate
dictionaries that are both reconstructive and discriminative. Sparse coding with respect to
the predictive dictionaries produces a local appearance discriminant that summarizes the
multiscale discriminative local appearance information. We also include intensity and a
dynamical shape prediction to complete the complementary information spectrum that we
incorporate into a region-based level set segmentation formulation in a maximum a
posteriori (MAP) framework.

This paper is an extended version of the work that has been partially presented in our
conference papers Huang et al. (2012a, b). In this paper, we elaborate our work with further
details of theories, optimization, implementation, computational efficiency, and limitations
that are either only summarized or not covered in our conference papers due to page limits.
The other salient extensions are as follows. Instead of evaluating only the segmentation
quality, we also apply our results to the estimation of ejection fraction which is more
clinically relevant. In addition to comparison against pure intensity models, we also compare
our method to a nonrigid-registration-based contour tracker that purely exploits temporal
consistency. We present an in-depth analysis of parameter sensitivities to provide insights
into parameter selection. We also extend the application of our method to 4D human data
acquired from the apical long-axis window to investigate the feasibility of clinical
application.
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2. Materials and Methods
2.1. Local Image Appearance

The intensity of echocardiographic images involves substantial characteristic artifacts such
as attenuation, speckle, shadows, and signal dropout due to the orientation dependence of
acquisition (Noble and Boukerroui, 2006). Moreover, the contrast between regions of
interest is poor and spatially varying. These characteristics make gray value insufficient for
echocardiographic segmentation. A local image (i.e., a patch or block) centered at a spatial
point, as shown in Figures 1 and 3, is a more reliable characterization of the point. Such
local images present important local appearance information such as intensity patterns and
anatomical structures to a degree depending on the scale. Finer scale local images (e.g., the
smaller patches in Figure 1) characterize mainly local intensity patterns. Coarser scale local
images (e.g., the larger patches in Figure 1) are dominated by anatomical patterns.

In echocardiographic images, blood and different tissues present certain local appearance
differences. The intra-class coherence and interclass difference are illustrated by the yellow
and blue patches in Figure 1. Apart from these, the huge intra-class intensity inhomogeneity
and appearance variations are usually the main challenges. The local images are naturally
high dimensional, but those belonging to the same class still lie on or near a low dimensional
subspace. Sparsity has proven to be a powerful prior for uncovering such degenerate
structure. Sparse representation with over-complete dictionaries has sufficient
expressiveness to represent the intra-class local appearance variations. The subspace of a
class can be spanned in the sense of sparse representation by a dictionary of base vectors
learned from training examples. The dictionary encodes the signal patterns of the class and
summarizes intra-class coherence and variations. Furthermore, there is strong temporal
coherence in echocardiographic images. That is, the appearance of a local region is
relatively constant over the image sequence especially in two consecutive frames. Such
spatiotemporal coherence of echocardiographic data as shown in Figure 1 provides a reliable
spatiotemporal constraint for cardiac segmentation and forms the basis of our dynamical
appearance model.

2.2. Multiscale Sparse Representation
Let Ω denote the 3D image domain. We describe the local appearance of each pixel u ∈ Ω in
frame It with an appearance vector yt(u) constructed by concatenating orderly the pixels
within a block centered at u. A block having n pixels is written as a vector yt(u) ∈ ℝn. To
leverage the complementary multiscale local appearance information, we describe the pixel

u ∈ Ω with a series of appearance vectors  at different appearance scales k = 1,
…, S. We extract local images of different physical sizes from images smoothed to different
degrees. The local images are subsampled to construct the appearance vectors. Figure 3
illustrates the construction of multiscale appearance vectors. More implementation details of
multiscale representation are presented in section 2.5.

Under a sparse linear model, an appearance vector y ∈ ℝn can be represented as a sparse
linear combination of the atoms from an appearance dictionary D ∈ ℝn×K which is allowed
to be over-complete (K > n). That is, y ≈ Dx, and ║x║0 is small. The vector x containing
very few nonzero entries is a sparse representation of y with respect to D. The appearance
dictionary D can be learned from training examples. The atoms of the dictionary encode
typical patterns of a specific appearance class, and the dictionary spans in the sense of sparse
representation the subspace of that class. We approximate the coherence of an appearance
class at a certain scale with a learned appearance dictionary. Given appearance vector y,
dictionary D and a sparsity factor T, the sparse representation x can be solved by sparse
coding:
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(1)

Exact determination of sparsest representation has proven to be NP-hard (Davis et al., 1997).
Approximate solutions are considered instead and several efficient pursuit algorithms have
been proposed which include the matching pursuit (MP) (Mal-lat and Zhang, 1993) and the
orthogonal matching pursuit (OMP) (Pati et al., 1993; Davis et al., 1994; Tropp, 2004)
algorithms.

A cardiac shape st in It is embedded in a level set function Φ t(u). We define

 and , where ψ1 and ψ2 are constants. The estimation

of shape st is equivalent to discriminating the two band regions 

and  that are outside and inside the boundary. The two
regions form two classes of local appearance. Given the knowledge of the preceding shape
Φ t-1, we define the region of interest at time t as

. The constants ζ 1 and ζ2 are chosen to be

large enough such that . Then we only need to discriminate the pixels 
to estimate st.

Suppose at a certain appearance scale,  are two dictionaries adapted to appearance

classes  and  respectively. They exclusively span in terms of sparse representation the
sub-spaces of the corresponding classes. That is, they can be used to reconstruct typical
appearance vectors from the corresponding classes. The reconstruction residue . of an
appearance vector yt(u) with respect to dictionary  is defined as

(2)

, c ∈ {1,2} where , is the sparse representation of yt with respect to . It is

logical to expect that  When  and  When . This
observation establishes the basis of sparse-representation-based discrimination and applies
to all the local appearance scales.

Suppose J pairs of complementary dictionaries , z = 1,…, J, are learned. Coding
image It with the series of learned dictionaries produces a series of reconstruction residues

(  and ) which form the multiscale discriminative appearance
information. Combining the complementary multiscale information, we introduce a local
appearance discriminant

(3)

∀u ∈ Ω, where , , and  otherwise. βz's are the weighting
parameters of the J dictionary pairs that are optimized in the boosted dictionary learning
process. This scalar indicates the likelihood that the point u is inside or outside the shape st.
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2.3. Boosted Multiscale Dictionary Learning
Learning a dictionary D ∈ ℝn×K from a finite training set of signals Y = [y1,…, yM] ∈ ℝn×M

is to solve a joint optimization problem with respect to the dictionary D and the sparse
representation coefficients X = [x1,…, xM] ∈ ℝK×M:

(4)

Effective algorithms for solving the dictionary learning problem (4) include the K-SVD
(Aharon et al., 2006), the MOD (Engan et al., 1999), and a stochastic algorithm (Mairal et
al., 2009). The K-SVD has been widely used because of good convergence property. The
main iteration of the K-SVD contains two stages: sparse coding and dictionary update. In the
sparse coding stage, D is fixed and problem (1) is solved using the OMP to find sparse
representations X. In the dictionary update stage, the atoms of the dictionary D are updated.

To obtain the appearance discriminant At defined in (3), the series of complementary

appearance dictionary pairs  and the corresponding weighting parameters βz need
to be learned. Leveraging the inherent spatiotemporal coherence of individual data, we
introduce an online learning process to dynamically adapt multiscale dictionaries to the
evolving appearance when the image sequence is segmented sequentially as illustrated in
Figure 2. Three issues are important in this setting. First, the true distribution underlying the
data Y is not known. A uniform distribution is usually assumed to place equal emphasis on
all the training examples. Our observation is that there are harder and easier parts of the
appearance space and more emphasis should be placed on the harder part to enforce the
learned dictionaries to include the most discriminative patterns. The relative easier and
harder parts can be different at different appearance scales. Second, the generic dictionary
learning formulation (4) gets trapped in a local minimum and learns only the scale that
corresponds to the size of local images (Mairal et al., 2008b). We decompose the multiscale
information into a series of appearance dictionaries each of which is learned at a single
scale. Third, the weighting of different appearance scales need to be optimized to achieve
the best joint discriminative property of the multiscale dictionaries. To address these issues
and strengthen the discriminative property of the learned appearance dictionaries, we
propose a boosted multiscale appearance dictionary learning process supervised in an
AdaBoost (Freund and Schapire, 1995) framework. The K-SVD dictionary learning
algorithm is invoked to enforce the reconstructive property of the dictionaries. The boosting
supervision strengthens the discriminative property and optimizes the weighting of
multiscale information.

The proposed dictionary learning algorithm following the structure of the AdaBoost is
detailed in Algorithm 1. Given training samples of appearance vectors belonging to two

classes  and , k = 1,…, S,

from the coarsest scale to the finest scale, it learns a series of J dictionary pairs , z
= 1,…, J and the corresponding weighting parameters βz. Each dictionary pair is learned
from a single appearance scale. The multiple scales are reused in cyclic order if J > S. Each
pair of dictionaries are learned by the K-SVD algorithm, which is taken as a weak learning
process making a weak hypothesis. J weak learners are employed to reach a strong
hypothesis. Each weak learner faces a different distribution of the data that is updated based
on the error made by the preceding weak learners, while the first weak learner makes the
initial guess that the data obeys a uniform distribution. The appearance scale varies across
the weak learners such that the error made at a certain scale can hopefully be corrected at the
other scales. The weighting parameters of the multiscale information are optimized

Huang et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



automatically through this boosting process. For t > 2,  are well initialized with

 and updated with a smaller number of iterations than the initial learning

process.  are initialized with training examples. Figure 4 shows examples of the
learned appearance dictionaries at different scales for the two local appearance classes inside
and outside the endocardial border. The coarser scale dictionaries encode more high level
anatomical patterns, while the finer scale dictionaries encode more low level speckle
patterns.

Algorithm 1 Multiscale Appearance Dictionary Learning

Require: appearance vector samples  and , k = 1,…, S, initial

dictionaries , and sparsity factor T.

  , .

 for z = 1,…,J do k = S if z%S = 0; k = z%S, otherwise.

  Resampling: Draw sample sets  from  and  from  based on distributions

 and .

  Dictionary Update: Apply the K-SVD to learn  from  and :

  Sparse Coding: , solve for the sparse representations with respect to  and

 using the OMP, and get residues  and .

  Classification: Make a hypothesis

. Calculate the

error of . Set βz = ∈z/(1 − ∈z).

  Weight Update: 

 end for dictionary pairs , weighting parameters βz, z = 1,…,J.

2.4. Left Ventricular Segmentation
The proposed method segments the echocardiographic sequence frame-by-frame
sequentially and dynamically updates multiscale dictionaries on the fly as illustrated in
Figure 2. Similar to the database-dependant offline dynamical shape models (Jacob et al.,
2002; Sun et al., 2005; Zhu et al., 2009), we also assume a segmented first frame for
initialization. It can be achieved by an automatic method with expert correction or pure
manual segmentation. In this study, we initialize the process with a manual tracing of the
first frame that is obtained using a 4D Surface Editor provided by the BioImage Suite
software (Papademetris et al., 2005). In the surface editor, the user sets control points of 2D
B-splineparameterized contours slice by slice. To reduce the propagation of errors, we
utilize the periodicity property of cardiac dynamics to perform bi-directional segmentation
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similar to Zhu et al. (2010). Suppose {I1,…, IN} is the original sequence with end-diastolic
(ED) frames I1 and IN, and end-systolic (ES) frame Is. We simultaneously segment two
subsequences: a forward subsequence {I1, …, Is} and a backward subsequence {I1, IN, …,
Is+1}. The endocardial and epicardial borders of the left ventricle are segmented separately
but in the same way. Figure 5 illustrates the procedure of region-based level set
segmentation of a current frame given the learned appearance dictionaries.

2.4.1. MAP Estimation—We estimate the shape in frame It that is embedded in a level set
function Φ t given the knowledge of Φ̂1:t-1 and I1:t. We integrate a spectrum of
complementary multilevel information including intensity It, multiscale local appearance
discriminant At, and a dynamical shape prediction . The level set function is estimated by
maximizing the posterior probability:

(5)

The shape regularization includes a temporal smoothness term  and a spatial
smoothness term p(Φt). Since Φt-1 and Φt-2 are both spatially and temporally close, we

assume a constant evolution speed during [t − 2,t]. Within the band domain  we
introduce an approximate second order autoregressive shape prediction

 to regularize the shape estimation. Here G(*) denotes Gaussian
smoothing operation used to preserve the smoothness of level set function. The temporal
regularization is given by

(6)

The spatial regularization is the standard level set smoothness constraint on the arc-length of
the propagating front

(7)

where δ(*) denotes a smooth Dirac function.

The discriminant At summarizing the multiscale local appearance is the most important

information here. Based on its definition, it is reasonable to expect distinct At in  and 
and the homogeneity of At within each region. Similar to the Chan-Vese model (Chan and
Vese, 2001), the appearance discriminant likelihood is approximated with independent
identical distributed (i.i.d.) Gaussian distributions inside and outside the boundary:

(8)

The lowest level information is intensity which is helpful for estimating the endocardial
border. We split the band domain  into two band regions

 and 
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that are inside and outside the boundary. The conventional i.i.d. Rayleigh distributions of It
are assumed:

(9)

The Rayleigh model of speckle has proven a popular choice for ultrasound image
segmentation (Noble and Boukerroui, 2006) and has been incorporated into the level set
method of Sarti et al. (2005). This choice may not be optimal. There are several alternative
models including K-distribution, Rice distribution, and Nakagami distribution. In this study,
we focus more on the local appearance component which dominates the estimation problem.
Since the intensity is not helpful for the epicardial discrimination in this setting, p(It|Φt) is
dropped in the epicardial case.

2.4.2. Energy Functional—Combining (6), (7), (8), and (9), we introduce the overall
segmentation energy functional:

(10)

where Θ = [c1, c2, σ1, σ2] are parameters of the distributions of At and It. The parameters k,
ν, and γ control the balance among the weights of At, , and It. Using a regularized version
(Chan and Vese, 2001) of the Heaviside function

(11)

and the one-dimensional Dirac measure

(12)

we express the energy functional in the following way:

(13)

Huang et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.4.3. Optimization—Keeping Φt fixed, we have the maximum likelihood estimate of
Θ(Φt):

(14)

and

(15)

To minimize the energy functional (13) with respect to Φt, we keep ci fixed, substitute (15)
for σi, and deduce the associated Euler-Lagrange equation. Parameterizing the descent
direction by an artificial time τ > 0, we have the following evolution equation of Φt:

(16)

With appropriate discretization and numerical approximations, our algorithm iteratively
minimizes the energy functional (10) by taking the following steps:

a. Initialize  With Φ̂t-1, and set τ = 0;

b. Compute the maximum likelihood estimate of 

c. Update  using equation (16);

d. Reinitialize  to a signed distance function after every few iterations;

e. Stop if , otherwise set τ = τ + 1 and go to (b).

2.5. Implementation
We extract local images from smoothed images to approximate multiscale image
decomposition. At each scale, the image is smoothed to a different degree and local images
are extracted at a different physical size. From the coarsest appearance scale to the finest
appearance scale, the physical size of the extracted local images decreases linearly from ∼
15mm × 15mm × 5mm to ∼ 3mm × 3mm × 3mm. The local images are subsampled with 3D
sampling grids. The grid spacing corresponds to the size of smoothing kernel and ranges
from the original image voxel size at the finest scale to three times the original voxel size at
the coarsest scale. For computational simplicity, we round the grid spacing to a multiple of
the original voxel size and allow the appearance vector dimension to vary. The dimensions n
of the appearance vectors range from 180 to 45. Larger n is typically better because more
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information is preserved. However, the larger n the higher the computational cost. Our
current setting is reasonably accurate and robust but not too computationally expensive.

J determines the complexity of the learning model. Selection of J faces the overfitting-
underfitting trade-off. Small J tends to underfit the data, while large J tends to overfit the
data. Fortunately, the result is fairly constant over a wide range of J as shown in section 3.9.
We use J = 10 weak learners to learn 10 pairs of dictionaries. For simplicity, we set the
number of scales S = J. This selection is supported by the parameter sensitivity analysis in
section 3.9. Another two important parameters for sparse coding and dictionary learning are
the sparsity factor T and the dictionary size K. Fortunately, the results are fairly insensitive
to these parameters as shown in Section 3.9. Larger K and T result in higher computational
cost, we choose relatively small values K = 1.5n and T = 2.

Level sets represent only closed curves or surfaces, while the left ventricular border is open
at the base. For the sake of easy manipulation of level set representation, we always segment
up to a certain slice at the base end. Thus, the contours are fixed in the longitudinal direction
at the base end. For images acquired from the parasternal window, the epicardial surface is
often open at the apex. In this case, the apical end of the epicardial surface is also fixed in
the longitudinal direction. The level set offset constantsΨ1, Ψ2, ζI, andζ2 determine the sizes
of band regions which should be large enough to accommodate the deformation between
two consecutive frames while minimizing the computational cost. We find the following
setting works well for both baseline and post-infarct images: Ψ1 = 3mm, Ψ2 = 2.5mm, ζ1 =
1.8Ψ1, and ζ2 = 1.5Ψ2 for endocardial segmentation and Ψ1 = 2.5mm, Ψ2 = 2.5mm, ζ1 =
1.8Ψ1, and ζ2 = 1.5Ψ2 for epicardial segmentation. At the level set segmentation stage, we
normalize both It and At to [0,1]. The local appearance term At dominates the estimation. To
choose the parameters, we drop the intensity and shape terms first by setting γ = 0 and ν = 0.
Then we try different weights of the appearance term k and step sizes dτ. After dτ and k are
determined, the weight of the shape term γ and the intensity weight v are gradually increased
until the results start to worsen. We use the following parameter setting: dτ = 0.25, k = 3.3, γ
= 0.01, and ν = 0.17. More details about parameter selection and parameter sensitivities are
presented in Section 3.9.

3. Experiments and Results
3.1. Data

We validated our approach on 4D short-axis canine echocardiographic images acquired from
the parasternal window. Twenty-six 4D B-mode images were acquired from both healthy
and post-infarct animals using a Phillips iE33 ultrasound imaging system (Philips Health
Care, Andover, MA) with a frame rate of about 40 Hz. All animal imaging studies were
performed with approval of the Institutional Animal Care and Use Committee. Images were
acquired in anesthetized open-chested animals with an X7-2 phased array transducer at 4.4
MHz suspended in a water bath over the heart. Acquisition time points included baseline and
one hour and 6 weeks after surgical occlusion of the left anterior descending coronary artery.
Each image sequence spanned a cardiac cycle and contained about 25 – 30 volumes. Typical
image resolutions of the 3D volumes are ∼ 0.2 mm in the axial direction and ∼ 0.8 mm in
the lateral and elevational directions. For the sake of easy manipulation of level set
representation and computational efficiency, we down sampled the images to 0.5mm × 1mm
× 1mm. Both endocardial and epicardial borders were segmented throughout the sequences.
Figure 6 presents a representative example of our 3D segmentations in 3D, axial slice,
coronal slice, and sagittal slice views. Figure 7 shows 3D endocardial and epicardial
surfaces of sample frames from a representative 4D segmentation by our method.
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3.2. Quantitative Evaluation
To assess the automatic segmentation quality, we randomly drew 100 volumes from the total
∼ 700 volumes for expert manual segmentation. Manual segmentation was carried out using
the 4D Surface Editor of the BioImage Suite software (Papademetris et al., 2005). The final
benchmark tracings were achieved by group consensus of two experts in cardiovascular
physiology. Figure 8 presents sample axial, coronal, and sagittal slices of a 4D image
overlaid with our automatic endocardial segmentation in red, automatic epicardial
segmentation in purple, and the manual tracings in green. We used the following
segmentation quality metrics: Hausdorff Distance (HD), Mean Absolute Distance (MAD),
Dice coefficient (DICE), and Percentage of True Positives (PTP). Let A be a surface of
automatic segmentation and B be the corresponding expert manual tracing. The HD for
surfaces A and B is defined by

(17)

where d(a, B) = minb∈B ║b − a║2. It measures the maximum distance between two
surfaces. The MAD for surfaces A and B is defined by

(18)

It measures the mean distance between two surfaces. Assume ΩA and ΩB are the regions
enclosed by surfaces A and B. The Dice coefficient is given by

(19)

It is a symmetric similarity index which is 0 for no overlap and 1 for perfect agreement. The
PTP is defined by

(20)

It is 0 for no overlap. Larger PTP generally indicates better agreement but may also result
from overestimation. It is not as good an overlap index as Dice coefficient, but it enables
comparison with the reported results of previous methods that are presented in terms of PTP.

3.3. Comparison with Pure Intensity Models
Conventional pure intensity models for segmentation assume homogenous gray level
distributions within each regions of interest. Rayleigh distribution is a classic intensity prior
model for ultrasound data. When the dynamical appearance components are turned off, our
approach reduces to a conventional region-based level set approach using a pure Rayleigh
intensity model (Sarti et al., 2005). Pure intensity models are usually not sufficient for
cardiac ultrasound segmentation. Adding prior terms (e.g., shape priors) can often lead to
significantly improved results as shown by previous work (e.g., Jacob et al. (2002); Sun et
al. (2005); Yang et al. (2008); Zhu et al. (2009). Comparison of our segmentation results
with those of the Rayleigh model clearly shows the added value of the proposed DAM.
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Since the pure intensity model is generally sensitive to initial contours, we initialized the
Rayleigh method with the first frame manual tracing for the segmentation of each frame.

In Figure 9, we compare typical examples of the segmentation results by our method and the
Rayleigh model in different slice views. We observed that the Rayleigh method was easily
trapped by misleading intensity information (i.e., intensity in homogeneities and
characteristic artifacts) and generated erroneous border estimates, while our approach
produced accurate segmentations agreeing well with the manual tracings. This demonstrates
that our approach is robust to the gross intensity in homogeneities in echocardiographic
images. In Figure 8, we compare our segmentations with the manual segmentations in three
orthogonal slice views of a series of frames from a cardiac cycle. It shows that our estimates
agree well with the manual tracings. Figures 7 and 8 qualitatively show the capability of our
algorithm in estimating reliably 3D left ventricular endocardial and epicardial borders
throughout the whole cardiac cycle. The Rayleigh method did not generate acceptable
segmentation sequences in the experiment.

Tables 1 and 2 present the means and standard deviations of MAD, HD, DICE, and PTP
achieved by our method and the Rayleigh model in segmenting endocardial and epicardial
borders respectively. Our DAM significantly outperformed the Rayleigh model. It achieved
much higher mean values of DICE and PTP, much lower mean values of MAD and HD, and
significantly lower standard deviations of all the metrics than the pure intensity model. The
quantitative results show the remarkable improvement of segmentation accuracy and
robustness achieved by employing the DAM. These demonstrate that the individual
spatiotemporal coherence captured by our multiscale sparse representation and dictionary
learning procedure provides a strong constraint for left ventricular segmentation.

3.4. Comparison with Registration-based Trackers
The main classes of tracking methods in echocardiography that purely exploit the temporal
consistency include optical flow (Mailloux et al., 1989; Mikic et al., 1998; Boukerroui et al.,
2003), speckle tracking (Kaluzynski et al., 2001), and non-rigid registration (Ledesma-
Carbayo et al., 2005; Elen et al., 2008; Myronenko et al., 2009). We compared our method
with nonrigid-registration-based tracking. We performed multiscale nonrigid registration
(free-form deformations (Rueckert et al., 1999)) of consecutive pairs of frames to track both
endocardial and epicardial contours over the forward and backward subsequences as our
algorithm did. An initial affine registration was followed by three levels of nonrigid
registration. The sum of squared intensity difference (SSD) is used as the similarity measure.
From coarse to fine, the spacings of the grids are 16× 16× 16 pixels, 8×8×8 pixels, and
4×4×4 pixels. We tried a series of different smoothness weights for nonrigid registration and
got the best result when it was 1 × 10−5. The comparison here is based on this setting. For
fair comparison, before computing the quality indices for the nonrigid-registration-based
tracker, we cropped the longer one of the manual contour and the automatic contour at the
base (for endocardial and epicardial borders) and the apex (for the epicardial border). This
makes sure that the automatic contour and the manual contour correspond to the same
portion of the left ventricular border.

We observed that our approach achieved more accurate segmentations. Figure 10 presents
representative segmentation results of the ES frame by the two methods. Both methods had
the worst results at ES due to accumulation of errors. Figure 10 shows that the registration-
based tracking resulted in more errors at ES which indicates faster accumulation of errors.
Tables 3 and 4 present the sample means and standard deviations of DICE, MAD, and HD
and the computation time by nonrigid-registration-based tracking and our method. Our
approach achieved higher mean value of DICE and lower mean values of MAD and HD for
both endocardial and epicardial segmentation. In addition, our method achieved significantly
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lower standard deviations of all the metrics than the registration-based tracker in both cases.
Both algorithms were implemented with a mixture of MATLAB and C++. We tested the
two algorithms on a laptop with Intel quad-core 2.2 GHz CPU and 8 GB memory. The
average computation time of our method was about 1 minute per frame. The average
computation time of the registration-based tracker was about 10 minutes per frame. Our
method was much faster than nonrigid-registration-based tracking. The results showed that
our method outperformed the registration-based tracker in terms of accuracy, robustness and
computational efficiency.

3.5. Advantages of Multiscale Sparse Representation
To study the advantages of multiscale sparse representation over single-scale sparse
representation, we compared the proposed DAM in both cases of single-scale sparse
representation (S-DAM) (Huang et al., 2012b) and multiscale sparse representation (M-
DAM). The S-DAM was performed at 5 appearance scales ranging from fine scale ∼ 3mm ×
3mm × 3mm to coarse scale ∼ 15mm × 15mm × 15mm. It learned dictionaries only at a
single scale. The M-DAM utilized multiscale appearance information and learned
dictionaries at multiple scales. The number of dictionary updating iterations and the number
of boosting iterations are fixed for all the trials. The computational cost is equivalent for
different trials. The segmentation results were evaluated with the metrics DICE, HD, and
MAD. Their mean values were calculated and t-tests were performed to estimate 95%
confidence intervals.

We observed that the use of M-DAM resulted in higher segmentation accuracy and less
accumulation of errors compared to the S-DAM. Figure 11 shows segmentation examples
where the advantages of M-DAM over S-DAM are visually clear. In these cases, the S-
DAM made obvious errors either locally or globally that were effectively corrected by
employing the M-DAM. This shows that the errors made at a certain scale can be corrected
at other scales in the M-DAM framework. Figure 12 compares the mean values and 95%
confidence intervals of DICE, HD, and MAD achieved by M-DAM and S-DAM in
segmenting endocardial and epicardial borders. We observed that the performance of the S-
DAM varied with the scale, which implies its sensitivity to the appearance scale. The
appearance information at different scales has better discriminative power in different parts
of the image domain. Using a single-scale sparse representation, we need to adjust the scale
parameter carefully in order to get better results. The M-DAM achieved the best results in
almost all the metrics (i.e., the highest DICE mean, the lowest HD mean, the lowest MAD
mean, and the narrowest confidence intervals of all the metrics) for both endocardial and
epicardial segmentations. These indicate significantly better segmentation robustness and
accuracy, and thereby the advantages of multiscale sparse representation over single-scale
sparse representation. By summarizing complementary multi-scale appearance information
and optimizing the corresponding weights automatically, the M-DAM consistently produced
more accurate segmentations without careful adjustment of the scale parameters.

3.6. Comparison with Database-dependent Dynamical Models
In Tables 5 and 6, we compare the means and standard deviations of HD, MAD, and PTP
achieved by our model and those reported in Zhu et al. (2009). The quality measure statistics
obtained by our DAM are comparable with those by a state-of-the-art database-dependent
offline dynamical shape model SSDM (Zhu et al., 2009). Our approach achieved a higher
mean PTP and a lower mean MAD in segmenting epicardial borders. It also had a lower
mean MAD for endocardial segmentation. SSDM obtained slightly higher PTP for
endocardial segmentation and slightly lower HD for both cases. Our DAM achieved lower
standard deviations of almost all the metrics. Here we present only a rough comparison of
the two methods. It is difficult to fully compare the two methods, since the offline method

Huang et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



depends on databases while our method does not. Different databases would produce
different results for the offline method. Two methods rely on different sources of
information (database vs. individual data) which are not mutually exclusive. This
comparison suggests that the spatiotemporal constraint enforced through our online-
learning-based DAM is comparable with the spatiotemporal constraint learned from a
suitable database by the offline dynamical shape model SSDM.

It is worth noticing that the DAM does not require more human interaction at the
segmentation stage than the database-dependent offline dynamical models such as Jacob et
al. (2002), Sun et al. (2005), and Zhu et al. (2009) which need manual tracings of the first or
first few frames for initialization. Manual initialization is generally needed by conventional
offline-statistical-model-based approaches in the case of echocardio-graphic segmentation,
because aligning an unseen image to the reference space of the database can be very
challenging and introduce substantial errors.

Since our DAM is database-free, it overcomes the limitations (e.g., generalization errors and
costs) introduced by the use of databases. The DAM can be applied to a broader range of
subjects including the cases (e.g., the post-infarct subjects in our study and children with
congenital heart disease) where it is inappropriate to apply database-dependent a prior
motion or shape knowledge. Our approach imposes a spatiotemporal constraint by learning
directly from the individual data while offline dynamical models learn spatiotemporal
constraints from databases. Our DAM complements offline database-dependent models and
can be used to relax offline statistical models' dependence on the database quality.

3.7. Ejection Fraction Estimation
The ejection fraction is an important cardiac functional parameter and predictor of
prognosis. We computed the left ventricular ejection fraction EF based on our endocardial
segmentations. We detected ten landmarks distributed evenly at the base of the endocardial
border based on local cross-correlation. We determined the longitudinal coordinate of the
base by averaging the longitudinal coordinates of the ten points. Then we cropped the base
of ES or ED whichever is too long based on the longitudinal coordinates. The ejection
fraction is given by

(21)

where EDV is the end-diastolic volume and ES V is the end-systolic volume. Figure 13
presents the linear regression analysis and Bland-Altman analysis comparing the ejection
fraction measurements calculated from automatic segmentation (EFa) and expert manual
segmentation (EFm). The linear fitting result was EFm = 1.015EFa − 0.014 with the
coefficient of determination R2 = 0.945 and the sum of squared errors SSE = 0.050. The
mean difference between automatic and manual ejection fraction measurements (EFm –
EFa) is −0.0064. The 95% limits of agreement (mean difference±2S D) are [0.0830,
−0.0958]. The results showed good agreement between our automatic ejection fraction
estimation and the ejection fraction measurement by expert manual tracing. Besides ejection
fraction estimation, our segmentation results were fed to a combined shape tracking and
speckle tracking framework to estimate myocardial strain where good correlation with the
tagged MR benchmark was achieved. Further details have been reported in our conference
paper compas et al. (2012)
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3.8. Applications to Human Data
We extended the application of our method to human data. We tested our method on four
sequences of 3D human echocar-diographic images. The images were acquired from the
apical long-axis view. Each sequencecontained about 15 frames and spanned a whole
cardiac cycle. Typical resolutions of the 3D volume are ∼ 0.7 mm in the axial direction and
∼ 0.8 mm in the lateral and elevational directions. The segmentation results were
qualitatively assessed by experts in cardiovascular physiology. The quality of our
segmentation results on human data was similar to that on canine data. The estimated left
ventricular borders agreed well with experts' interpretation of the images. Figure 14 shows
the three orthogonal slice views of the segmentation results on a representative 4D human
echocardiographic image. The manual initialization of the first frame and the automatic
segmentations of the following frames are overlaid on the images. The figures qualitatively
show the good accuracy of our algorithm on 4D human data. The estimated contours follow
the deforming cardiac borders closely throughout the whole cardiac cycle. Comparisons
between the automatic segmentations and the manual initialization show the accuracy of the
automatic results is close to manual tracings. There were some irregularities in the manual
surfaces due to the fact that contours were traced slice-by-slice. The automatic
segmentations demonstrated better consistency compared to manual tracings. We also
computed the ejection fraction of these human echocardiographic sequences. Table 7
presents the ejection fraction measurements computed from automatic and manual
segmentations. The automatic estimates were close to the manual results. The EF result for
human data was consistent with what we observed on canine data.

3.9. Analysis of Parameter Sensitivities
In this section, we present a sensitivity analysis of the important parameters of our algorithm
in the context of endocardial segmentation. To study contributions of the dynamical
appearance components, we kept the weight of the intensity fixed and varied the weights of
the appearance discriminant At and the shape prediction  respectively. Figure 15 presents
the effects of varying the weight κ of the appearance discriminant At. As expected, when the
weight of the appearance discriminant increases gradually from a very low value, mean HD
and mean MAD decrease significantly, mean DICE increases significantly, and the
confidence intervals of the metrics narrow significantly. This demonstrates that the
appearance discriminant contributes greatly to segmentation accuracy and robustness. This
effect gradually diminishes before reaching the optimal weight. After the turning point,
increasing the weight of At worsens the means and enlarges the confidence intervals at low
rates due to the overweighting of the appearance discriminant. Figure 16 shows the effects
of varying the weight γ of the shape prediction . Varying γ results in much smaller
changes of segmentation results compared to those of varying the appearance discriminant
weight κ. However, there are noticeable improvements in mean values and confidence
intervals of the metrics when γ increases from 0. The best results are achieved when γ∈
[6,12] × 10−3. The results show that the dynamical shape prediction contributes to
improving the overall segmentation accuracy and robustness. The contribution of the shape
prediction  is smaller compared to the contribution of the appearance discriminant At.

The most important parameters for sparse representation and dictionary learning are the
sparsity factor T, the dictionary size K, the number of weak learners trained J, and the
number of local appearance scales S. We varied each of these parameters separately while
keeping the other parameters fixed to study how these parameters affect the segmentation
results. Figure 17 shows the changes in means and 95% confidence intervals of the metrics
as a result of varying the sparsity factor T. DICE increases while MAD and HD decrease as
T increases from 1, which shows increasing the flexibility of sparse representation improves
segmentation results. Above T = 4, the measures are rather stable when T varies. The change
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in the Dice coefficient within a wide range [4,16] of T is less than 1%. The change in MAD
within this range is only ∼ 0.05 mm. The change in HD is ∼ 0.4 mm. The variations in the
confidence intervals are minimal. These results demonstrate the method's robustness to the
sparsity factor T.Figure 18 shows the effects of varying the dictionary size. Here, we
redefine K as the ratio of the dictionary size to the dimension of the appearance vector n. As
K increases from 0.5 (under-complete, K < 1) to 2 (over-complete, K > 1), DICE increases
while MAD and HD decrease. These effects demonstrate that the increased expressiveness
of the over-complete dictionaries results in better representation of the local appearance and
thereby improves segmentation results compared to under-complete and complete
dictionaries. Above K = 2, the measures are stable when K varies. We observed only
minimal variations of the quality metrics DICE (< 1%), MAD (∼ 0.03 mm), and HD (∼ 0.3
mm), when we varied K within a wide range [1,6]. These results show that our method is
robust to the dictionary size. Since the computational cost increases with the dictionary size,
in practice, it is advisable to set K to a value in [1,3] for the sake of balancing accuracy and
efficiency. Figure 19 presents the changes in means and 95% confidence intervals of the
metrics resulting from varying the number of weak learners J while the number of
appearance scales is fixed at 5. When J is small, the method underfit the data. As J increases
from 1, DICE increases significantly while HD and MAD decrease significantly. This
results from incorporation of more appearance scales and more weak learners. Beyond J = 6,
the results are rather stable over a wide range of J as indicated by the flat curves. The best
results are achieved around J = 10. Above J = 10, the dictionary learning process tends to
overfit the training data and the error increases at a low rate. We also varied the number of
appearance scales S while fixing the number of weak learners. Figure 20 presents its effects
on the segmentation results. When S increases from 1 to 6, DICE increases gradually while
HD and MAD decreases gradually. This shows the incorporation of more complementary
appearance scales improves the results. The results do not present noticeable changes when
S vary between [6,10], which means no additional constructive scales can be extracted. The
analysis of parameter sensitivities shows that the method is rather robust to the major
important parameters. There is no difficulty selecting a set of good parameters.

4. Discussion and Conclusions
We have proposed a dynamical appearance model that exploits the inherent spatiotemporal
coherence of individual echocardiographic data for tracking both endocardial and epicardial
boundaries of the left ventricle. It employs multiscale sparse representation of local image
appearance and interlaces the sequential segmentation process with the dynamical multiscale
appearance dictionary updating process supervised in a boosting framework. The multiscale
appearance dictionaries are trained on the fly to be both reconstructive and discriminative
and carry forward appearance information from preceding frames to following frames. The
weights of multiscale local appearance information are optimized automatically. Our region-
based level set segmentation formulation integrates a spectrum of complementary multilevel
information including intensity, multiscale local appearance discriminant, and shape.

Our algorithm achieves segmentations that are close to manual tracings on both healthy and
post-infarct data. Ejection fraction estimates computed from our segmentation results agree
well with manual results. Our method results in significantly improved accuracy and
robustness of left ventricular segmentation compared to conventional pure intensity models.
This shows the individual spatiotemporal coherence is a strong constraint for
echocardiographic segmentation and can be effectively utilized through multiscale sparse
representation and dictionary learning. Our method also outperforms a nonrigid registration-
based tracker in both segmentation accuracy and computational efficiency. We also show
the advantages of multiscale sparse representation over single-scale sparse representation.
Our approach achieves comparable results with those of a state-of-the-art database-
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dependent offline dynamical shape model SSDM. The spatiotemporal constraint imposed
through our online-learning-based DAM is comparable with the spatiotemporal constraint
learned from a suitable database by the offline SSDM. Our DAM is database-free and
therefore more flexible and easier to be deployed, which is advantageous in physiological
research. It can be applied to the cases where it is inappropriate to apply database-dependent
a prior motion or shape knowledge. It complements conventional offline statistical models
and can be used to relax the conventional offline model's dependence on the database
quality.

While many prior studies on left ventricular functional analysis, either based on MR or
ultrasound images, include the papillary muscle (PM) in the blood pool, we choose to
exclude PMs from the blood pool in this study. The rationale is threefold. First, the border
between the PM and the blood pool is much better defined than the border between the PM
and the myocardium in echocardiography. Therefore the boundary of the blood pool can be
more reliably segmented and tracked than the border between the PM and the myocardium.
Second, the definition of EF excludes PMs from the blood pool. Even though previous work
(Sievers et al., 2004) has found no statistically significant difference between EFs calculated
by including or excluding PMs in the blood pool, there are studies showing that variable
inclusion of papillary muscles can result in methodological variability whose impact is
increased among patients with left ventricular hypertrophy (Janik et al., 2008; Han et al.,
2008). Third, the segmentation result is an important input to our shape-tracking-based
motion analysis framework (Papademetris et al., 2002) where curvature-based shape
landmarks (such as due to PMs) and their temporal consistency play an important role.

The current framework has two limitations. Firstly, similar to many database-dependant
offline dynamical shape models (e.g., Jacob et al. (2002); Sun et al. (2005); Zhu et al.
(2009)), the current sequential segmentation process is initialized by a manual tracing of the
first frame, which hasn't reduced the human interaction to a minimum. Integration of our
model into previous automatic methods may reduce the amount of human interaction while
improving the overall segmentation accuracy. This can be a future research direction, and
this study mainly focuses on the benefit of our model. Secondly, the sequential process
carries errors forward resulting in accumulation of errors. The segmentation accuracy decays
from ED to ES, as shown in Figures 21 and 22. Fortunately, the decay rate is mild. The
worst results that typically appear at ES are still fairly good, as shown by our good ejection
fraction estimates. This limitation may be alleviated by employing more robust dictionary
learning framework which can be a direction of future work (Huang et al., 2013). Integration
of an offline learning stage may also help overcome this limitation.

One limitation of the current study is that we have only one manual tracing result for each
data set. Having multiple observers tracing the same data separately can provide a more
comprehensive validation of the method. Another limitation is that we have tested the
method only on a small set of human data. Future work will aim to overcome the current
limitations and extend the application to other acquisition settings and other modalities. It is
also of interest to develop an integrated online and offline learning framework to exploit
their complementarities which may result in improvement of the overall segmentation
performance.
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Figure 1.
Spatio-temporal coherence of local image appearance at different scales. Local images in the
same color present similar appearance. The arrows point out the temporal coherence of local
image appearance.
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Figure 2.
Dynamical dictionary updating interlaced with sequential segmentation. Ii is the image of

frame i. si is the segmentation of frame i.  represents multiscale appearance dictionaries
for class j in frame i.
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Figure 3.
Construction of multiscale appearance vectors. From top to bottom, the images are ordered
from coarse to fine resolutions and the physical sizes of the blocks vary from large to small.
yk(u) is an appearance vector for voxel u∈Ω at scale k.
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Figure 4.
Examples of learned appearance dictionaries at different scales for the two local appearance
classes inside and outside the endo-cardial border. The left (right) column from top to
bottom represents three dictionaries from coarser scale to finer scale for the outside (inside)
class. The dictionaries in the same row are at the same scale. The true physical size of the
finer scale dictionary atoms is smaller than the coarser scale dictionary atoms.
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Figure 5.
The procedure of region-based level set segmentation of a current frame given appearance

dictionary prediction . It is the image of frame t. st is the segmentation of frame t.
At is the appearance discriminant.
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Figure 6.
A typical example of 3D segmentations by our algorithm in 3D, axial slice, coronal slice,
and sagittal sliceviews. Endocardial segmentations are in red and epicardial segmentations
are in purple.
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Figure 7.
3D endocardial (in red) and epicardial (in purple) surfaces of frames 1, 4, 7, 10, 13, 16, 19,
22, 25, and 28 of a representative canine echocardiographic sequence segmented using our
approach.

Huang et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Sample axial (top row), coronal (middle row), and sagittal (bottom row) slices of a 4D
image (a cardiac cycle) overlaid with our automatic segmentations (red and purple) and
expert manual tracings (green). Each column represents a frame at a time point of the
cardiac cycle. From left to right the frames are in chronological order with the two ends
representing ED frames.
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Figure 9.
Comparisons of segmentation results by the Rayleigh model (top row) and our DAM
(bottom row). Green: Manual segmentation. Red: Automatic endocardial segmentation.
Purple: Automatic epicardial segmentation.
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Figure 10.
Comparisons of segmentation results by nonrigid registration and our DAM. Green: Manual
segmentation. Red: Our DAM. Blue: Non-rigid registration.
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Figure 11.
Comparisons of segmentation results by the S-DAM and the M-DAM. Green: Manual
segmentation. Red: M-DAM. Blue: S-DAM.
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Figure 12.
Means and 95% confidence intervals of DICE, HD, and MAD obtained by the S-DAM
(blue, scales 1,…, 5) and the M-DAM (red, 6) for endocardial segmentation(top row) and
epicardial segmentation (bottom row).
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Figure 13.
Linear regression analysis (left) and Bland-Altman analysis (right) showing the agreement
between the ejection fraction measurements computed from automatic segmentations (EFa)
and manual segmentations (EFm).
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Figure 14.
Sample axial (top row), coronal (middle row), and sagittal (bottom row) slices of a 4D
human echocardiographic image (a cardiac cycle) overlaid with segmentations. Each column
represents a frame at a time point of the cardiac cycle. The contours in the first frame are
manual tracings.
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Figure 15.
The effects of varying the weight κ of the appearance discriminant At. The curves represent
mean values and the bars denote 95% confidence intervals.
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Figure 16.
The effects of varying the weight γ of the shape prediction . The curves represent mean
values and the bars denote 95% confidence intervals.
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Figure 17.
The effects of varying the sparsity factor T. The curves represent mean values and the bars
denote 95% confidence intervals.
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Figure 18.
The effects o f varying the dictionary size. K denotes the ratio of the dictionary size to the
dimension of the appearance vector n. The curves represent mean values and the bars denote
95% confidence intervals.
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Figure 19.
The effects of varying the number of weak learners J while S = 5. The curves represent
mean values and the bars denote 95% confidence intervals.
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Figure 20.
The effects of varying the sparsity factor T. The curves represent mean values and the bars
denote 95% confidence intervals.
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Figure 21.
Endocardial segmentation quality measures at different frames of an example sequence from
end-diastole to end-systole.
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Figure 22.
Epicardial segmentation quality measures at different frames of an example sequence from
end-diastole to end-systole.
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Table 1

Sample means and standard deviations (expressed as Mean±SD) of the segmentation quality measures for
endocardial segmentation by the Rayleigh model and our DAM.

Method DICE (%) PTP (%) MAD (mm) HD (mm)

Rayleigh (Sarti et al., 2005) 74.9 ± 18.8 83.1 ± 16.3 2.01 ± 1.22 9.17 ± 3.37

Our DAM 93.6 ± 2.49 94.9 ± 2.34 0.57 ± 0.14 2.95 ± 0.62

Med Image Anal. Author manuscript; available in PMC 2015 February 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Huang et al. Page 45

Table 2

Sample means and standard deviations (expressed as Mean±SD) of the segmentation quality measures for
epicardial segmentation by the Rayleigh model and our DAM.

Method DICE (%) PTP (%) MAD (mm) HD (mm)

Rayleigh (Sarti et al., 2005) 74.1 ± 17.4 82.5 ± 12.0 2.80 ± 1.55 16.9 ± 9.30

Our DAM 97.1 ± 0.93 97.6 ± 0.86 0.60 ± 0.19 3.03 ± 0.76
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Table 3

Sample means and standard deviations (expressed as Mean±SD) of the segmentation quality measures and
computation time per frame for endocardial segmentation by nonrigid-registration-based tracking and our
DAM.

Method DICE (%) MAD (mm) HD (mm) Computation Time (min)

Nonrigid Registration 89.3 ± 5.85 0.81 ± 0.28 4.55 ± 1.65 ∼11

Our DAM 93.6 ± 2.49 0.57 ± 0.14 2.95 ± 0.62 ∼1
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Table 4

Sample means and standard deviations (expressed as Mean±SD) of the segmentation quality measures and
computation time per frame for epicardial segmentation by nonrigid-registration-based tracking and our DAM.

Method DICE (%) MAD (mm) HD (mm) Computation Time (min)

Nonrigid Registration 94.0 ± 1.83 0.92 ± 0.38 6.59 ± 2.48 ∼10

Our DAM 97.1 ± 0.93 0.60 ± 0.19 3.03 ± 0.76 ∼1
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Table 5

Sample means and standard deviations (expressed as Mean±SD) of the segmentation quality measures for
endocardial segmentation by the SSDM and our DAM.

Method PTP (%) MAD (mm) HD (mm)

SSDM (Zhu et al., 2009) 95.9 ± 1.24 1.41 ± 0.40 2.53 ± 0.75

Our DAM 94.9 ± 2.34 0.57 ± 0.14 2.95 ± 0.62
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Table 6

Sample means and standard deviations (expressed as Mean±SD) of the segmentation quality measures for
epicardial segmentation by the SSDM and our DAM.

Method PTP (%) MAD (mm) HD (mm)

SSDM (Zhu et al., 2009) 94.5 ± 1.74 1.74 ± 0.39 2.79 ± 0.97

Our DAM 97.6 ± 0.86 0.60 ± 0.19 3.03 ± 0.76
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Table 7

The ejection fraction measurements computed from automatic segmentations (EFa) and manual segmentations
(EFm) for the four human echocardiographic sequences.

Sequence 1 Sequence 2 Sequence 3 Sequence 4

EFa(%) 48.61 63.55 61.33 53.54

EFm(%) 51.58 64.94 68.16 50.31
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