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Abstract

A cochlear implant (CI) is a neural prosthetic device that restores hearing by directly stimulating 

the auditory nerve using an electrode array that is implanted in the cochlea. In CI surgery, the 

surgeon accesses the cochlea and makes an opening where he/she inserts the electrode array blind 

to internal structures of the cochlea. Because of this, the final position of the electrode array 

relative to intra-cochlear anatomy is generally unknown. We have recently developed an approach 

for determining electrode array position relative to intra-cochlear anatomy using a pre- and a post-

implantation CT. The approach is to segment the intra-cochlear anatomy in the pre-implantation 

CT, localize the electrodes in the post-implantation CT, and register the two CTs to determine 

relative electrode array position information. Currently, we are using this approach to develop a CI 

programming technique that uses patient-specific spatial information to create patient-customized 

sound processing strategies. However, this technique cannot be used for many CI users because it 

requires a pre-implantation CT that is not always acquired prior to implantation. In this study, we 

propose a method for automatic segmentation of intra-cochlear anatomy in post-implantation CT 

of unilateral recipients, thus eliminating the need for pre-implantation CTs in this population. The 

method is to segment the intra-cochlear anatomy in the implanted ear using information extracted 

from the normal contralateral ear and to exploit the intra-subject symmetry in cochlear anatomy 

across ears. To validate our method, we performed experiments on 30 ears for which both a pre- 

and a post-implantation CT are available. The mean and the maximum segmentation errors are 

0.224 and 0.734 mm, respectively. These results indicate that our automatic segmentation method 

is accurate enough for developing patient-customized CI sound processing strategies for unilateral 

CI recipients using a post-implantation CT alone.
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1. Introduction

A cochlear implant (CI) is a neural prosthetic device that restores hearing by directly 

stimulating the auditory nerve using an electrode array that is surgically implanted in the 

cochlea (U.S. Food and Drug Administration, 1995). An external sound processor, typically 

worn behind the ear, processes sounds detected by a microphone into signals sent to the 

implanted electrodes. The CI sound processor is programmed after implantation by an 

audiologist. Based on patient response, the audiologist determines stimulation levels for 

each electrode and selects a frequency allocation table to define which electrodes should be 

activated when specific sound frequencies are detected (Wilson et al., 1991). The number of 

electrodes in a CI electrode array ranges from 12 to 22, depending on the manufacturer.

CI electrode arrays are designed such that when optimally placed in the scala tympani cavity 

of the cochlea, each electrode stimulates regions of the auditory nerve corresponding to a 

pre-defined frequency bandwidth (Wilson and Dorman, 2008). However, because the 

surgeon threads the electrode array blind to internal cavities of the cochlea during the 

surgery, the final position of the electrode array relative to intra-cochlear anatomy is 

generally unknown. Research has shown that in 73% of CI surgeries the electrode array is 

placed fully within the scala tympani, while in the other 27% of CI surgeries, the electrode 

array is fully within a neighboring cavity or is initially inserted into the scala tympani but 

crosses into a neighboring cavity (Aschendorff et al., 2007). So far, the only option when 

programming the CI has been to assume the array is optimally placed in the cochlea and to 

use a default frequency allocation table. Currently, we are developing Image-Guided CI 

Programming (IGCIP) strategies that rely on patient-specific knowledge of the position of 

the electrodes relative to intra-cochlear anatomy, and we have shown that IGCIP strategies 

can significantly improve hearing outcomes (Noble et al., 2013). IGCIP strategies are 

enabled by a number of algorithms we have developed that permit determining the spatial 

relationship between intra-cochlear anatomy and the CI electrodes using a pre-implantation 

and a post-implantation CT (Noble et al., 2011a, 2011b, 2012; Schuman et al., 2010; Wanna 

et al., 2011). The intra-cochlear Structures-Of-Interest (SOIs) are the scala tympani (ST), 

scala vestibuli (SV), and the spiral ganglion (SG), which is the ganglion of auditory nerve 

bundles. 3D renderings of these structures as well as the implant are shown in Fig. 1a and b. 

Examples of pre- and post-implantation CTs with overlaid structure contours are shown in 

Fig. 1c and d.

The approach we previously developed for determining electrode array position relative to 

the SOIs involves several steps. First, we segment the SOIs in the pre-implantation CT. 

Next, we identify the electrode array in the post-implantation CT. Finally, we rigidly register 

the two CTs to determine the position of the electrodes relative to intra-cochlear anatomy. 

However, this approach cannot be used for many CI recipients because it requires a pre-

implantation CT, which is not always acquired prior to implantation. Thus far, the pre-

implantation rather than the post-implantation CT has been used to identify the SOIs 

because the cochlea is obscured by image artifacts introduced by the metallic electrode array 

in the post-implantation CT (see Fig. 1c and d). In this study, we propose methods to extend 

our IGCIP strategies to the population of unilateral CI recipients for whom a CT was not 

acquired pre-operatively, thereby increasing the portion of the population of existing CI 
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recipients who can benefit from IGCIP strategies. The methods we present permit automatic 

segmentation of the SOIs in the post-implantation CT despite the significant artifacts 

induced by the CI electrodes in those images.

2. Methods

The method we propose for segmenting the intra-cochlear anatomy of unilateral CI 

recipients takes advantage of the intra-subject inter-ear symmetry we have observed. We 

acquire a post-implantation CT in which both ears are in the field of view and segment the 

intra-cochlear anatomy of the implanted ear using information extracted from the normal 

contralateral ear. That is, we first segment in the normal contralateral ear the ST, SV, SG, 

which are the SOIs, and the labyrinth. The labyrinth, which we use as a landmark structure, 

externally bounds the intra-cochlear anatomy and includes the three semicircular canals (see 

Fig. 2). Next, we segment the SOIs in the implanted ear by projecting the SOI surfaces from 

the normal ear to the implanted ear. The transformation we use is the one that rigidly 

registers the mirrored labyrinth surface from the normal ear to the labyrinth in the implanted 

ear. The labyrinth provides adequate landmarks for this registration because a portion of the 

labyrinth lies far enough from the implant that its image features are not drastically affected 

by the implanted electrode array and, as we will show, the position of the labyrinth well 

predicts the position of the SOIs.

Our methods are detailed in the following subsections. In Section 2.1, we present details 

about our datasets. The registration processes we use at several steps throughout our work 

are detailed in Section 2.2. The study we perform to establish inter-ear symmetry of cochlear 

anatomy is presented in Section 2.3. The methods we use to segment both the labyrinth and 

the intra-cochlear anatomy in the normal ear are detailed in Section 2.4. Finally, in Section 

2.5, we present the method we propose to segment the intra-cochlear anatomy in the 

implanted ear using information obtained from the normal ear.

2.1. Data

Table 1 summarizes the characteristics of the various sets of CT scans we have used. Age of 

subjects included in this study ranged from 18 to 90 years. The scans were acquired from 

several conventional scanners (GE BrightSpeed, LightSpeed Ultra; Siemens Sensation 16; 

and Philips Mx8000 IDT, iCT 128, and Brilliance 64) and a low-dose flat-panel volumetric 

CT (fpVCT) scanner (Xoran Technologies xCAT® ENT). Conventional CT scans of 10 

subjects were used for symmetry analysis as described in Section 2.3; conventional CT 

scans of 18 subjects were used for active shape model (ASM) creation as discussed in 

Section 2.4.1; fpVCT scans of 14 subjects were used for intensity gradient model (IGM) 

creation as discussed in Section 2.5.2; and 18 CT-fpVCT pairs of scans were used for 

segmentation validation as discussed in Section 2.5.3. Typical scan resolution for 

conventional CT scans is 768 × 768 × 145 voxels with 0.2 × 0.2 × 0.3 mm3 voxel size. It is 

700 × 700 × 360 and 0.3 × 0.3 × 0.3 or 0.4 × 0.4 × 0.4 mm3 for fpVCT scans.

Dataset 4 is used for segmentation validation. Each implanted ear in the dataset will be 

automatically segmented in a post-implantation CT using the algorithms proposed in this 

paper. For each of these ears, there is a pre-implantation CT that is used to generate gold 
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standard segmentations to compare to the automatic segmentations for validation. Dataset 4 

consists of two subgroups. The first (6 subjects) includes a set of conventional pre-

implantation and low-dose post-implantation CTs of six unilateral CI recipients. The second 

(12 subjects) includes a set of conventional preimplantation and low-dose post-implantation 

CTs of a group of 12 bilateral CI recipients. We use the second set to increase the size of our 

testing set without having to scan more unilateral CI recipients prior to demonstrating the 

efficacy of our technique. To do so, we register the pre- and post-implantation CTs and use 

the contralateral side of the pre-implantation CT rather than the contralateral side of the 

post-implantation CT in our algorithm. Using this technique, we have 30 datasets (6 in the 

first group and 12 × 2 in the second group) on which we can test our unilateral segmentation 

algorithm. It should be noted that the second group of 24 ears from 12 subjects is not 

equivalent to ears from 24 subjects. While left and right ears generally have a different 

appearance in the post-implantation CT since the electrode array is positioned differently, 

differences in shape of anatomical structures between ears are not as large as inter-subject 

variations.

2.2. Image registration methods

Various processes we describe in the following subsections rely on image-to-image 

registration. In this subsection, we detail the affine and non-rigid registration methods we 

use. Given a “fixed” image, i.e., an atlas, and a “floating” image, i.e. the image we want to 

segment, we use a multi-step process outlined in Fig. 3 to register them. First, we affinely 

register the entire but downsampled images. Next, we refine the registration by limiting the 

region of interest to a pre-defined region that encompasses the ear structure. At this stage, 

the affine transformation is estimated at full resolution. In both cases, we rely on an 

intensity-based technique that uses Powell’s direction set method and Brent’s line search 

algorithm (Press et al., 1992) to optimize the mutual information (Wells et al., 1996; Maes et 

al., 1997) between the images. The registration within the region of interest is further refined 

with a non-rigid registration step using the adaptive-bases algorithm (ABA) (Rohde et al., 

2003). ABA models the deformation field as a linear combination of a set of basis functions 

irregularly spaced over the image domain,

(1)

where x is a point in , with d being the dimensionality of images, the function Φ is Wu’s 

compactly supported positive definite radial basis function (Wu, 1995), and  is 

the set of basis function coefficients that are selected to optimize the normalized mutual 

information (Studholme et al., 1999) between the images. The optimization process uses a 

gradient descent algorithm to determine the direction of optimization, and a line 

minimization algorithm to calculate the optimal step in that direction. The final deformation 

field is computed using a multiresolution and multiscale approach. Multiresolution is 

achieved by creating a standard image pyramid, and multiscale is achieved by modifying the 

region of support and the number of basis functions. A large region of support models a 

transformation at a large scale. The algorithm is initialized on a low-resolution image with 

few basis functions. Then, the region of support of the basis functions is reduced as the 
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algorithm progresses to finer resolutions and smaller scales (larger number of basis 

functions). Using this approach, the final deformation field is computed as

(2)

with M being the total number of combinations of scales and image resolutions used.

2.3. Symmetry analysis

To establish that the ST, SV, SG, and the labyrinth are symmetric across ears, we conduct 

experiments on the set of pre-implantation CTs in dataset 1 (see Table 1). We identify 

surfaces of the ST, SV, SG, and the labyrinth for both ears in each pre-implantation CT 

using methods that we describe in Section 2.4. Then, we register the surfaces of one ear to 

the corresponding surfaces of the contralateral ear using a standard point-based rigid-body 

registration method (Arun et al., 1987). Finally, we measure distances between the points on 

each surface to the corresponding points on the registered surface.

2.4. Segmentation of the normal ear

To segment the ST, SV, and SG in the normal ear, we use an automatic active shape model 

(ASM)-based method we have developed previously (Noble et al., 2013, 2011a). The mean 

and maximum surface errors in segmenting the ST in fpVCTs are 0.18 and 0.9 mm. These 

are 0.22 and 1.6 mm for the SV, and 0.15 and 1.3 mm for the SG, respectively.

The method we have developed for the automatic segmentation of the labyrinth relies on an 

active shape model. The following subsections describe how we create the model, how we 

use these models for segmentation purposes, and the study we have designed to test the 

accuracy of our results.

2.4.1. Labyrinth active shape model creation—We create an ASM of the labyrinth 

using the pre-implantation CTs in dataset 2 (see Table 1). We choose one of these pre-

implantation CTs to serve as a reference volume, and we use the remaining CTs as training 

volumes. The active shape model creation process is outlined in Fig. 4. This process has six 

main steps. First, the labyrinth is segmented manually in the reference volume by an 

experienced otolaryngologist (TRM). Second, the training volumes are registered to the 

reference volume using the multi-step registration techniques described in Section 2.2. 

Third, the labyrinth in each of the training volumes are pre-segmented by projecting the 

labyrinth surface from the reference volume onto each of the training volumes using the 

transformations computed in step 2. Fourth, the surfaces produced in step 3 are manually 

edited to correct for possible segmentation errors caused by mis-registration. These four 

steps produce both segmented surfaces and a one-to-one point correspondence between 

points on the reference surface and points on each of the training surfaces. The procedures 

described in these four steps are similar to the approach described by Frangi et al. (2001). In 

the fifth step, all the training surfaces are registered to the reference surface with a 7-

Degree-Of-Freedom (DOF) transformation (three rotations, three translations, and one 

isotropic scale) computed with a standard least squares fitting method (Arun et al., 1987). 

Reda et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We include isotropic scaling as a DOF so that inter-subject differences in labyrinth scale are 

normalized. Finally, in step (6), we use eigenanalysis to build the ASM, which is composed 

of the mean  and the eigenvectors {uj} of the covariance matrix X of the registered shapes,

(3)

where M is the number of training shapes and {λj} is the set of eigenvalues (Cootes et al., 

1995).

2.4.2. Segmentation of the labyrinth using the active shape model—Once an 

ASM of the labyrinth is built, we use it to segment the labyrinth in a target volume using the 

segmentation process outlined in Fig. 5. We start by registering the ASM reference volume 

to the target volume according to the procedure described in Section 2.2. We then project the 

ASM mean surface points onto the target volume and we fit the ASM to these projected 

points. This produces our initial segmentation that is then refined as follows. For each point 

on the ASM surface  we find a new candidate point  by searching for the point 

with the highest image intensity gradient within the interval [−1.35, 1.35] mm along the 

local surface normal , equivalently,

where

(4)

for k ∈ [−9, 9] and Δd = 0.15 mm, where I( • ) is the image intensity at a given point. The 

approach of finding a point with the maximum gradient is similar to those investigated by 

Kass et al. (1988), Staib and Duncan (1992), Cohen and Cohen (1993), Cootes et al. (1995), 

Chakraborty et al. (1996), and Sakalli et al. (2006). Then, we fit the ASM to the new 

candidate point set  to obtain an adjusted shape . To perform the 

fitting procedure, we first register y’ to the ASM mean shape  with a 7-DOF (three 

rotations, three translations, and one isotropic scale factor) transformation ψ. Then, we 

compute the adjusted point set y” using the equation

(5)

with K being the number of eigenshapes used, where

(6)

The magnitude of  is chosen such that the Mahalanobis distance from the adjusted 

shape to the mean shape is less than 3:
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We iterate the adjustment step until the constraint  is satisfied, 

where N is the number of points, and ε is empirically set to 0.01 mm.

2.4.3. Labyrinth segmentation validation—To validate our labyrinth segmentation 

method, we fix the reference volume and use the method presented above to segment the 

remaining 17 training volumes in a leave-one-out approach. We measure distance between 

corresponding points on the automatic and manually generated surfaces to quantitatively 

evaluate the agreement between the two. Specifically, for each point on the automatic 

surface we measure the Euclidean distance to the corresponding point on the manual 

surface. Then, for each training volume, we measure the mean and maximum of these 

distances.

2.5. Segmentation of the implanted ear

The process we use to segment the intra-cochlear anatomy in an implanted ear is outlined in 

Fig. 6. In this process, we do not identify the intra-cochlear anatomy in the implanted ear 

directly. Rather, we identify the position of the labyrinth in the implanted ear and use it as a 

landmark structure to determine the position of the intra-cochlear anatomy. First, we 

estimate an initial position of the labyrinth in the implanted ear using a procedure described 

in Section 2.5.1. Next, we iteratively refine this estimation of the labyrinth position using a 

procedure described in Section 2.5.2. Finally, we determine the intra-cochlear anatomy in 

the implanted ear by projecting the intra-cochlear surfaces segmented in the normal ear 

through the transformation that rigidly registers the labyrinth from the normal ear to the 

iteratively refined labyrinth in the implanted ear. The following subsections detail this 

approach.

2.5.1. Segmentation initialization via image-to-image registration—To estimate 

an initial position of the labyrinth in the implanted ear, we project the labyrinth surface from 

the normal contralateral ear to the implanted ear. The transformation we use for projecting 

the labyrinth is the transformation that registers the normal ear to the implanted ear. Fig. 7 

lists the steps we use to compute this transformation. We start by estimating a mirroring 

transformation through registration to a volume in which the mid-sagittal plane has been 

defined. Several approaches exist in the literature for accurate mid-sagittal plane extraction 

in MR images as well as other modalities (Rupper et al., 2011; Prima et al., 2002; Liu et al., 

2001; Tuzikov et al., 2003, and Smith and Jenkinson, 1999). The approach we have selected, 

while likely not as accurate as these dedicated methods, requires little extra processing 

because registration with a reference is already performed prior to segmentation and 

provides an estimation of the mirroring transformation that is accurate enough to initialize a 

subsequent refinement step. This is achieved by computing a rigid body transformation with 

an intensity-based method applied first to the entire but downsampled images then to a 
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region of interest but at full resolution. This is similar to the process we use in the first step 

of the process described in Fig. 3.

2.5.2. Segmentation refinement via surface-to-image registration—To refine the 

position of the labyrinth, we iteratively adjust its position. We perform this by iteratively 

finding candidate positions for each point yi on the labyrinth surface and rigidly registering 

the surface to those candidate points. This is similar to the iterative closest point surface 

registration algorithm introduced by Besl and McKay (1992). At each iteration, we choose 

the candidate position  for each point yi as

(7)

where Δd = 0.15 mm, and we choose kmin to minimize the cost function

(8)

The cost function Ci( • ) we have designed for candidate selection at each ith point is a 

function of an intensity-gradient model (IGM) of the image at that point. To build the IGM, 

we rely on a set of manual segmentations of the labyrinth in dataset 3 (see Table 1). For each 

ith point on the jth training surface, , we extract an intensity-gradient profile g(xji) 

along the local normal normal  using the equation

(9)

where

(10)

Δd = 0.15 mm, and Ij( • ) is the intensity of the jth training image at a given point. Finally, 

we define the IGM as the set of  for j ∈ [0, 1,…,M – 1], where N is the number 

of points composing each training surface, and M is the number of training surfaces.

The cost we use for candidate point selection in Eq. (8) above is then designed as

(11)

which defines the cost for selecting  as a new candidate position for the ith 

point as the minimum Euclidean distance between the set of intensity-gradient profiles in the 

IGM and the intensity-gradient profile measured at that point. The standard approach is to 

compute the mean profile as well as the covariance of the profiles and determine candidate 

points by minimizing the Mahalanobis or Euclidean distance to the mean profile (Cootes et 

al., 1995; Cootes and Taylor, 2001; Mitchell et al., 2001; Heimann et al., 2006; Heimann 

and Meinzer, 2009; Brejl and Sonka, 2000; Tobon-Gomez et al., 2008). However, pilot 
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experiments we conducted indicated that our approach leads to superior final segmentation 

accuracy.

Finally, we compute the rigid body transformation T that registers the initial point set {yi} to 

the candidate point set { } determined using Eq. (7) using a weighted least-squares 

approach (Sonka and Fitzpatrick, 2000), formulated as

(12)

{wi} is a set of reliability weights that we assign to points using image intensity information 

derived from the images. Because the implant is very bright in the CT images, it obscures 

structure boundaries. Points that are near high intensity regions are thus assigned low weight 

values and points away from bright regions are assigned high weight values. To compute the 

weight values, we analyze the intensity distribution of the image over a subset of labyrinth 

boundary points that are known a priori to lie far away from the electrode (region shown in 

blue in Fig. 8) and use this information to create a weight function that estimates the 

likelihood that each labyrinth surface point is located near an electrode. To do this, we first 

extract intensity profiles r(zi) at each ith point in the subset of surface points 

 that should lie far from the electrodes and is shown in blue in Fig. 8, 

using the equation

(13)

where

(14)

Δd = 0.15 mm, and I( • ) is the intensity of the target image at a given point. Then, at each 

iteration of the registration process, we compute a weight for each point as

(15)

where the value of R is experimentally determined (see details below) to be the 68th 

percentile of the distribution of the maximum values of r(zi) measured at , and σ is 

the standard deviation of the same distribution, computed as

The weight function in Eq. (15) is designed such that a weight value of 1.0 is assigned to 

points with a maximum value in their intensity profile less than R, and weight values that 
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exponentially decay from 1.0 are assigned to points with a maximum value in their intensity 

profile greater than R. By assigning weights in this way, we achieve our goal, which is to 

constrain the registration to rely more on points located in regions that are less affected by 

the image artifacts produced by the implant.

The value of R, as defined above, is customized for each target image because the intensity 

distribution in the images generated by the low-dose scanner used in this study vary across 

patients. To arrive at the value of R, we use the set of testing image pairs in dataset 4. First, 

we sample R in increments of 4% percentiles in the distribution of maximum values of 

intensities , and we measure the resulting SOI segmentation error on all 

testing image pairs. Next, we select the value of R as the value for which the overall mean 

segmentation error is the smallest. Fig. 9 shows a plot of the overall mean error for 

  in increments of 4 percentiles. 

As shown in this figure, R = 68th percentile leads to the smallest segmentation error. This is 

the value, computed for each volume that is used to produce the results presented herein.

We iterate the surface-to-image registration step formulated in Eq. (12) until 

 is satisfied, where ε is empirically set to 0.01 mm. In summary, 

at each iteration, we determine candidate points { } using Eq. (7), we compute the weights 

{wi} using Eq. (15), and we register the initial points {yi} to the candidate points { } using 

Eq. (12). Finally, we segment the intra-cochlear anatomy in the implanted ear by projecting 

the intra-cochlear surfaces from the normal ear to the implanted ear through the iteratively 

refined inter-ear labyrinth registration transformation.

2.5.3. Validation—We validate our method by automatically segmenting the post-

implantation volumes in dataset 4 and measuring the resulting segmentation errors. The 

gold-standard surfaces that we use for comparison were created in the pre-implantation 

volumes by manually editing surface points on segmentations that are automatically 

initialized by our pre-implantation CT segmentation techniques. We measure distances 

between corresponding points on the automatic and gold standard surfaces to quantitatively 

evaluate the agreement between the two. Specifically, for each point on the automatic 

surface we measure the distance to the corresponding point on the gold standard surface. 

Then, for each volume, we measure the mean and maximum of the distances between all 

corresponding points. To assess how much improvement our proposed surface-to-image 

registration refinement step provides, we also measure segmentation errors achieved at 

initialization prior to performing the refinement step, which are the results that can be 

achieved using image registration alone. Finally we compare our technique to the best 

possible segmentation results that could be achieved using our contralateral ear registration 

method. These are obtained by registering directly the labyrinth surface in the normal ear to 

the gold standard labyrinth surface in the contralateral ear extracted from the pre-

implantation CT with a 6-DOF (three rotations and three translations) point-based 

registration method that minimizes the RMS error between the two surfaces (Arun et al., 

1987).
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3. Results

3.1. Intra-cochlear anatomy and labyrinth symmetry

To demonstrate intra-subject inter-cochlear symmetry, we measured the distance between 

the ST, SV, and SG surfaces rigidly registered across ears in dataset 1. These measurements 

are presented in Table 2. Fig. 10 shows the ST, SV, and SG surfaces from one ear 

colormapped with the distance to the registered contralateral surface for subject one. These 

distance values are smaller than the segmentation error for these structures as reported in 

(Noble et al., 2013) and (Noble et al., 2011a). Distance maxima are located in the same areas 

segmentation error maxima occur, i.e., at both the apical and basal ends of the cochlea. 

Segmentation errors occur at these locations due to the relative scarcity of local information 

available in the CT image to estimate the location of the intra-cochlear structures in these 

regions. This suggests that the small differences between the registered contralateral 

segmentations seen in Fig. 10 are most likely due to segmentation error, and that the intra-

cochlear anatomy is indeed highly symmetric.

We performed similar experiments to demonstrate the existence of intra-subject symmetry in 

labyrinth anatomy. We measured the distance between the labyrinth surfaces rigidly 

registered across ears in dataset 1. These measurements are presented in Table 3, and they 

are smaller than the labyrinth segmentation error reported in Section 3.2. These results 

suggest that the labyrinth is also highly symmetric.

3.2. Labyrinth segmentation in the normal ear

We built the ASM of the labyrinth using 18 pre-implantation CTs (see dataset 2 in Table 1). 

A total of 9100 points compose each labyrinth shape. Table 4 presents the percentage of 

shape variation captured by each of the first eight principal components. Table 4 presents the 

cumulative variations in percentage for the first nine principal components (eigenshapes). 

As shown in the table, the first nine principal components (eigenshapes) capture 90% of the 

shape variation in the training set. We used these eigenshapes in the ASM segmentation 

process. Previous studies suggest that the cochlea is fully formed at birth, and its size and 

shape does not change as an individual ages (Jeffery and Spoor, 2004). Thus, it is of note 

that the models we built are applicable for all age groups.

Table 5 presents the mean and maximum errors measured as the distance from each point on 

the automatically generated surface to the corresponding point on the manually generated 

surface. To illustrate the segmentation improvement provided by the ASM-based 

segmentation method, we also show errors for surfaces generated using an atlas-based 

segmentation method. In this approach we simply project the reference shape onto the target 

volume using the transformation that registers the reference volume to the target volume. 

The overall mean and maximum errors for the ASM-based segmentation method are 0.239 

and 1.623 mm, respectively. These are 0.452 and 2.407 mm for the atlas-based method. The 

mean and maximum errors for the ASM-based method are smaller than the atlas-based 

method for all subjects.

In Fig. 11, we show renderings of the surfaces automatically segmented using both the 

ASM-based and atlas-based segmentation methods. These surfaces are colormapped with 
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the segmentation error. The top row in this figure shows the labyrinth of the subject with the 

smallest mean error (subject 16), and the bottom row shows the labyrinth with the largest 

mean error (subject 2). As can be seen, the surfaces generated using the atlas-based method 

have unnatural deformations, whereas the surfaces generated using the ASM-based method 

are smooth and resemble, as expected, the structure surfaces included in the ASM. As can 

also be seen in the figure, the mean errors for the ASM-based method are sub-millimetric 

over most of the labyrinth surface.

3.3. Intra-cochlear anatomy segmentation in the implanted ear

We compared quantitatively the gold-standard and automatically generated ST, SV, and SG 

surfaces for the 30 post-implantation ears in dataset 4. Fig. 12a shows box plots of the mean 

error for each SOI, and Fig. 12b shows the box plots of the maximum error for each SOI. In 

each box plot, the lower and upper bounds are the minimum and maximum values, 

respectively, the lower and upper whiskers are the first and third quartiles, respectively, and 

the red line is the second quartile or the median value. The overall mean and maximum 

errors for the proposed segmentation method are 0.224 and 0.734 mm, respectively. These 

results are comparable to those obtained by segmenting the SOIs in pre-implantation CT 

images using the methods described in (Noble et al., 2013, 2011a). In Fig. 13, we present 

qualitative results for the subject with the smallest maximum segmentation error (shown in 

green square on the box plots in Fig. 12) and for the subject with the largest maximum 

segmentation error (shown in red square on the box plots in Fig. 12). Gold standard contours 

are shown in red, blue, and green for ST, SV, and SG, respectively, and automatically 

generated contours are in yellow. For the subject with the smallest maximum error, there is 

excellent agreement between the gold-standard and automatic contours along the length of 

the structures. In the post-implantation CT, even though the structure boundary information 

is lost due to the presence of the implant, we are able to achieve sub-millimetric 

segmentation accuracy for all SOIs. For the subject with the largest maximum error, some 

disagreement between the gold-standard and automatic contours can be seen along the 

length of the structures. However, as shown in the surface visualization, these errors are still 

sub-millimetric. Fig. 13 suggests that a number of voxels in the immediate proximity to the 

electrode array (bright voxels) do not lie within the segmentation-delineated borders of the 

scala tympani/scala vestibuli. This is caused by beam hardening and partial volume 

reconstruction artifacts that make the electrode appear larger in the images than it really is as 

shown in Fig. 1.

Fig. 14a (left) shows the mean and maximum error box plots for all SOIs (pooled ST, SV, 

and SG) segmented using only the inter-ear image registration-based initialization method 

described in Section 2.5.1. The overall mean and maximum errors are 0.639 and 1.545 mm, 

respectively. Fig. 14a (middle) shows the mean and maximum error box plots for all SOIs 

segmented using the proposed method. As shown in the plots, using the proposed 

segmentation method leads to a 64.94% and 52.49% reduction in mean and maximum 

segmentation errors, respectively. Fig. 14a (right) shows box plots of mean and maximum 

errors for the best segmentation results that could be achieved using our proposed method, 

as described in Section 2.5.3. The overall mean and maximum errors are 0.166 and 0.657 

mm, respectively. This shows that the segmentation results we achieve in post-implantation 
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CT are close to the best that are achievable, despite the lack of contrast in these images due 

to artifacts induced by the implanted electrode array. Fig. 14b shows the same information 

for the labyrinth.

4. Conclusion and discussion

Image-guided CI programming strategies like the ones we are currently developing require 

accurate localization of the position of implanted electrodes relative to intra-cochlear 

anatomy. Until now, it has been possible to segment the SOIs, localize the electrodes, and 

compute the distance between the electrodes and intra-cochlear anatomy only for CI 

recipients for whom a preimplantation CT has been acquired. In this work, we have 

presented a method that does not require a pre-implantation CT. Our approach is to segment 

the labyrinth in the contralateral normal ear and use its position to segment the SOIs in the 

implanted ear by exploiting the intra-subject inter-ear symmetry. We performed symmetry 

analysis on ten subjects and the results suggest that both the SOIs and the labyrinth are 

highly symmetric.

To the best of our knowledge, there have been no methods proposed to automatically 

segment the labyrinth with a high degree of accuracy. We validate the ASM-based method 

we propose on 17 ears using a leave-one-out approach. The overall mean and maximum 

errors are 0.239 and 1.623 mm, respectively. As shown in the SOI segmentation validation 

study on 30 subjects, this level of accuracy is sufficient to segment the SOIs with sub-

millimetric accuracy. In previous work where we relied on a pre-implantation CT and 

achieved an average SOI segmentation error of 0.15 mm, we have obtained excellent 

programming results (Noble et al., 2013). The segmentation accuracy we achieve with the 

method presented in this article that does not require a pre-implantation CT is slightly larger 

(0.22 mm) but still small. We anticipate that this slight reduction in segmentation accuracy 

will not negatively affect the improvement in hearing outcomes we have observed in the 

more than 60 patients that have participated in our ongoing study (85% of these have 

reported substantial improvement in hearing). However, we will only be able to confirm this 

after we have assessed hearing improvements in subjects for whom a pre-operative CT has 

not been acquired and a programming plan has been created using only a post-implantation 

CT and the method described herein.

We note that the proposed approach does not permit us to identify intra-cochlear anatomy 

for bilateral implant users for whom a pre-implantation CT has not been acquired. We are 

currently expanding our segmentation techniques (Reda et al., 2014) to make it possible and 

thus provide all cochlear implant subjects access to our image-guided programming method.
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Fig. 1. 
Shown in (a) and (b) are surfaces of ST (red), SV (blue), and SG (green). In (b), a surface 

model of a CI electrode array inserted into ST is shown. In (c), contours of ST (red), SG 

(green) and the electrodes (purple) in the coronal view of a pre-implantation CT and a 

corresponding post-implantation CT, and in (d) contours of the SV (blue) in the coronal 

view of a pre-implantation CT and a corresponding post-implantation CT. The bright 

structure in the post-implantation CTs is the artifact cause by the CI electrode array. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 2. 
Surfaces of the labyrinth (shown in transparent gold) and intra-cochlear anatomy (shown in 

transparent red (ST), transparent blue (SV), and transparent green (SG)) viewed in three 

orientations (a), (b), and (c). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Image registration process.
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Fig. 4. 
Active shape model generation process.
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Fig. 5. 
Active shape segmentation process.
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Fig. 6. 
Iterative intra-cochlear anatomy segmentation process.
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Fig. 7. 
Inter-ear registration process.
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Fig. 8. 
Points shown in blue are the points we use for computing R, the main parameter in our 

weight function. The remaining points of the labyrinth surface are shown in yellow. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 9. 
Mean error in the SOIs versus selection of R as a function of image intensity.
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Fig. 10. 
Subject one’s ST, SV, and SG surfaces viewed in two different orientations. The color at 

each point encodes the distance in mm to the corresponding point on the registered 

contralateral surfaces. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 11. 
Automatically generated surfaces colormapped with errors in mm for subject 16 (top row) 

and subject 2 (bottom row). Left, surface of the labyrinth generated by the ASM-based 

method; right surface of the labyrinth generated by the atlas-based method. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 12. 
Quantitative results for the proposed segmentation method. The green squares on the box 

plots are quantitative results for the subject with the smallest maximum error, and the red 

squares are quantitative results for the subject with the largest maximum error. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)

Reda et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
Qualitative segmentation results for the case with the smallest maximum segmentation error 

(shown in green box on Fig. 12). The contours shown are the ST (left panel), SV (middle 

panel), SG (right panel). Structure contours for gold-standard ST (red), gold-standard SV 

(blue), gold-standard SG (green), and automatic contours for all structures (yellow) are 

shown in a slice of a post-implantation image (top row) and a corresponding pre-

implantation image (middle row). On the bottom panels the structure surfaces colormapped 

with segmentation errors are shown. (b) Shows similar information for the subject with the 

largest maximum segmentation error (shown in red box on Fig. 12). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 14. 
Various quantitative segmentation results for all 30 testing post-implantation CTs. (a) Mean 

and maximum error box plots for the SOIs segmented using the initialization method (left), 

using the proposed segmentation method (middle). On the right are the mean and maximum 

error box plots for the best possible SOIs segmentation results. (b) Shows the same 

information for the labyrinth.
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Table 1

Datasets used in this study.

Dataset # Purpose Dataset size Acquisition # Of CIs

Xoran fpVCT Conventional No CIs One CI Two CIs

1 Symmetry analysis 10 × ×

2 ASM creation 18 × ×

3 IGM creation 14 × ×

4 Segmentation validation 6 × ×

× ×

12 × ×

× ×
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Reda et al. Page 31

Table 2

Distances in millimeter between rigidly registered ST, SV and SG surfaces.

Subjects Scala Tympani (ST) Scala Vestibuli (SV) Spiral Ganglion (SG)

Mean Maximum Mean Maximum Mean Maximum

1 0.099 0.287 0.088 0.243 0.092 0.350

2 0.051 0.159 0.054 0.108 0.064 0.159

3 0.019 0.071 0.018 0.054 0.030 0.113

4 0.049 0.121 0.044 0.133 0.046 0.118

5 0.059 0.160 0.059 0.161 0.063 0.245

6 0.063 0.144 0.055 0.155 0.073 0.212

7 0.087 0.328 0.064 0.164 0.065 0.162

8 0.049 0.115 0.045 0.119 0.067 0.193

9 0.055 0.139 0.050 0.142 0.049 0.160

10 0.058 0.176 0.058 0.140 0.068 0.172

Overall 0.059 0.328 0.054 0.243 0.062 0.350
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Table 4

Percent of labyrinth shape variations captured by the principal components of the shapes used for building the 

ASM of the labyrinth.

Principal component 1 2 3 4 5 6 7 8 9

Cummulated variations % 25.07 42.98 55.02 66.64 74.31 78.95 83.21 87.08 90.00
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