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Abstract

Personalized tumor growth model is valuable in tumor staging and therapy planning. In this paper,

we present a patient specific tumor growth model based on longitudinal multimodal imaging data

including dual-phase CT and FDG-PET. The proposed Reaction-Advection-Diffusion model is

capable of integrating cancerous cell proliferation, infiltration, metabolic rate and extracellular

matrix biomechanical response. To bridge the model with multimodal imaging data, we introduce

intracellular volume fraction (ICVF) measured from dual-phase CT and Standardized Uptake

Value (SUV) measured from FDG-PET into the model. The patient specific model parameters are

estimated by fitting the model to the observation, which leads to an inverse problem formalized as

a coupled Partial Differential Equations (PDE)-constrained optimization problem. The optimality

system is derived and solved by the Finite Difference Method. The model was evaluated by

comparing the predicted tumors with the observed tumors in terms of average surface distance

(ASD), root mean square difference (RMSD) of the ICVF map, average ICVF difference

(AICVFD) of tumor surface and tumor relative volume difference (RVD) on six patients with

pathologically confirmed pancreatic neuroendocrine tumors. The ASD between the predicted

tumor and the reference tumor was 2.4±0.5 mm, the RMSD was 4.3±0.4%, the AICVFD was

2.6±0.6%, and the RVD was 7.7±1.3%.
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1. Introduction

Quantitatively characterizing the tumor spatial-temporal progression is valuable in staging

tumor and designing optimal treatment strategies. In clinical practice, due to the lack of the

characterization of the spatially heterogeneous pattern of the cancer progression, a

conservative therapy is usually adopted by treating a margin of normal-appearing tissue

surrounding the tumor as part of the tumor. This conservative approach necessities a better

understanding of the spatial-temporal progression of the tumor.

Tumor growth not only relies on the properties of cancer cells, but also depends on dynamic

interactions among cancer cells, and between cells and their constantly changing

microenvironment. The complexity of the cancer system motivates the study of the tumor

growth using mathematical models (Swanson et al., 2000; Clatz et al., 2005; Hogea et al.,

2008).

Cancer modeling can be classified into four scales: atomic, molecular, microscopic, and

macroscopic (Deisboeck et al., 2011). Atomic scale modeling studies the structure and

dynamic properties of proteins, peptides, and lipids, as well as their dependency on the

features of the environment using molecular dynamics. Molecular scale modeling studies

average properties of a population of proteins, peptides, and lipids. Microscopic scale, i.e.

tissue or multicell, studies cell-cell and cell-microenvironment interactions. Macroscopic

scale studies dynamics of the gross tumor behavior including morphology, shape, extent of

vascularization, and invasion, which are observable by clinical imaging data. Tumor

modeling requires the knowledge of the underlying tumor physiological parameters. Clinical

imaging data offers the benefit of non-invasive, in-vivo and timely measurement of these

parameters. In this paper, we focus on the image-driven tumor modeling on the macroscopic

scale.

In the image-driven tumor modeling field, Swanson et al. (2000) assumed an infiltrative

growth of the tumor cells, while considering differences in cell diffusion in white and gray

matter. Clatz et al. (2005) modeled locally anisotropic migration patterns by integrating

information from diffusion tensor images (DTI). Hogea et al. (2008) included the

mechanical properties of the lesion on surrounding structures to model mass effect.

In this paper, we not only consider mass effect, but also the cell metabolic rate. To

incorporate cell metabolism into the tumor growth modeling, we combine the energy

conservation law presented in (West et al., 2001) with cell proliferation law (Swanson et al.,

2000). As pointed by West et al. (2001), ontogenetic development is fuelled by metabolism

and occurs primarily by cell division. The incoming metabolic energy is allocated to two

parts: one part for the maintenance of the existing cells and the other part for the creation of

new cells. This work was further extended by Herman et al. to study the relationship

between tumor vascularization and growth (Herman et al., 2011). FDG-PET (2-[18F]

Fluoro-2-deoxyglucose positron emission tomography) is widely used in oncology to find

regions in the body which are more active and need more energy, which motivates us to use

FDG-PET to measure metabolic rate and incorporate it into the tumor growth modeling.

Tracer kinetic modeling is a formal way to calculate glucose metabolic rate (Huang et al.,
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1980); however, this modeling approach usually requires taking series of blood samples

from the studied subject to give the time course of the tracer delivery and requires measuring

the dynamics of the radiolabel in local tissues. Standardized Uptake Value (SUV) is a semi-

quantitative measurement of the metabolic rate and does not need dynamic blood sampling

and PET scanning, therefore is suitable for routine clinical use. In this paper, we present the

quantitative relation between both glucose metabolic rate and SUV, and the proliferation

rate of the model. Anatomical modality imaging data such as CT and MRI can be used to

monitor the progress of the tumor boundary, which motivates the studies (Swanson et al.,

2000; Clatz et al., 2005; Hogea et al., 2008) on using tumor boundary as the biomarker to

estimate model parameters by comparing the predicted tumor boundary with the measured

boundary. However, tumor boundary only provides quite limited tumor physiological

information and in some cases cannot really reflect the growth of the tumor. For instance,

the cancerous cell proliferation might not be reflected in the tumor boundary progression,

which motivates us to find a way to extract the underlying physiological parameter related to

the cell number. In this paper, we introduce Intracellular Volume Fraction (ICVF) into

tumor growth modeling and present the principle and method to estimate ICVF using dual-

phase CT.

In this paper, we focus on integrating FDG-PET and CT into tumor modeling. Our work is

based on the extension of a Reaction-Diffusion model (Swanson et al., 2000). The Reaction-

Diffusion model plays a fundamental role in modeling spatial-temporal dynamics in system

biology. The Reaction-Diffusion model describes the change of the cell density or

population. However, 1) the Reaction-Diffusion model does not incorporate cell metabolic

rate and 2) due to the difficulty to calculate the cell number, the pre-diction of the Reaction-

Diffusion model, i.e., the cell number has to be converted to the front progression in order to

connect the model with the clinical observation (tumor boundary). In this paper, we 1)

develop a Reaction-Diffusion model enabling the incorporation of the cell metabolic rate

and 2) present a method to calculate ICVF using dualphase CT. As a result, the model

prediction can be directly related to clinical imaging data.

The proposed model is formalized as a coupled PDE system (forward problem). The patient

specific parameters (control variables) are estimated by fitting the model prediction to the

observed tumor leading to a coupled PDE-constrained optimization problem (an inverse

problem). To obtain realistic solution, Tikhonov regularization was introduced to regularize

the solution. The optimality system was derived and solved by the Finite Difference Method

(FDM).

The proposed model was evaluated on pancreatic neuroendocrine tumors. A dedicated

protocol was developed to accumulate longitudinal CT and FDG-PET of untreated

pancreatic tumors. The only work on the pancreatic tumor modeling that we are aware of is

(Haeno et al., 2012), in which the authors used a compartment model to divide the cell

population into three subpopulations: primary tumor cells, metastasis-enabled cells and

metastasized cells. The migration rate between subpopulations and the growth rate and death

rate within each subpopulation were estimated based on autopsy data. In this paper, we

focus on the way to combine routine clinical multimodal images to study the growth of the

primary solid tumor.
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2. Material and methods

In this section, we first present the whole framework of the modeling and evaluation;

second, derive a Reaction-Advection-Diffusion model incorporated with cell metabolic rate

and mass effect; third, describe how to adapt the model to associate it with routine dual-

phase CT and FDG-PET; finally, describe the process for parameter estimation using

longitudinal imaging data.

The flow chart of the proposed method is illustrated in Fig. 1. The flow chart includes two

parts: parameter estimation and evaluation. We introduce ICVF as the biomarker for both

model parameter estimation and evaluation. In the parameter estimation part, ICVF

calculation takes longitudinal dual-phase CT images as inputs. At each time point, ICVF is

measured based on pre- and post-contrast CT images (see Section 2.2 for details). The

measured ICVF at the 1st follow-up is compared with the predicted ICVF growing from the

base line to find the optimal parameters g by minimizing the deviation between the two

ICVF maps. Once the model parameter g is estimated, the tumor grows from the 1st follow-

up with estimated model parameter. The predicted ICVF and the extracted tumor surface are

compared with the measured ICVF and tumor surface at the 2nd follow-up for evaluation.

To use dual-phase CT to calculate ICVF, the non-rigid registration for the imaging data at

one time point, i.e., between pre- and post-contrast CT, needs to be performed. To

incorporate PET into the model, we also need to non-rigidly align the post-contrast CT and

PETCT, and then apply the transform to the PET. The non-rigid registration method we used

was the Free-Form Deformation (FFD) (Lee et al., 2002) based method. To align the

longitudinal data, we performed the rigid registration between longitudinal postcontrast CT

using an ITK implementation of an affine transform-based registration (Yoo et al., 2002).

For the tumor segmentation, we used a Level Set segmentation implemented in ITK-SNAP

(Yushkevich et al., 2006).

2.1 Derive the tumor growth model

According to the tumor logistical growth model presented in (Swanson et al., 2000), the

number of the newly created cells within unit time can be described by,

(1)

where N is the number of cells, a function of time t. ρ is spatial-temporal invariant

proliferation rate. This model describes that the tumor grows exponentially at the beginning

and then gradually slows down as approaching the carrying capacity K.

As a tumor progresses, the parts with sufficient nutrients and oxygen grow faster, and those

suffering vascular inefficiencies will develop into necrosis, suggesting a heterogeneous or

spatial-temporal varying proliferation function ρ(x, t). The metabolic energy conservation

law presented by West et al. (2001) quantitatively describes the relationship between the

metabolic energy and the ontogenetic growth, providing the theoretical foundation to

explore the heterogeneity of the proliferation rate. The energy conservation law states that

the incoming energy required for tumor growth is allocated to two parts,
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(2)

where the first term represents the energy to maintain the existing cells and the second term

represents the energy to create new cells. Bc is the metabolic rate of a single cell, and Ec is

the energy required to create a cell. Both Bc and Ec are assumed constant during tumor

growth. We replace  in equation (2) with ,

(3)

The proliferation rate ρ in equation (3) is a function of time t. However, in clinical practice,

ρ is only available at specific time points when B and N are measurable. Thus, we

approximate ρ at time t between 0 and T through a linear interpolation,

(4)

where B0, BT, N0 and NT are the measured metabolic rate and cell number at time 0 and T,

respectively. Apply model (1) to each voxel (millions of cells within 1mmm3) at position x,

and add a diffusion term as that in the Reaction-Diffusion model (Swanson et al., 2000) to

account for cancerous cell infiltration into surrounding tissues, leading to a new Reaction-

Diffusion model enabling the incorporation of the cell metabolism,

(5)

where the first term is the diffusion term, and the second term is the reaction (proliferation)

term. is the diffusivity or infiltration rate. Equation (5) describes that the rate of cell number

change equals the sum of the net dispersal of cancerous cells and the net proliferation of

cancerous cells. The cell number at position x is not only affected by the proliferation and

diffusion (Brownian movement) but also affected by the underlying mechanical deformation

(so-called mass effect), which is caused by the growing cells impacting on the extracellular

matrix. Tumor cells live in an extracellular matrix (ECM) (Suresh, 2007), which clusters and

binds the cells together to form tissues. Integrins are cell surface receptors which create

clusters known as focal adhesions to bind the cell surface and the ECM, which provides the

biological interpretation on why the cells can move with the ECM. As the tumor grows, the

pressure produced by the gradient of local cell density will drive the ECM to deform, which

in turn drifts cells. Viewing cells as the source of the body force and the ECM as the studied

material, we can use established theories in continuum mechanics to study the kinematics

and the mechanical behavior of the ECM. To account for mass-effect, we model the ECM as

a material of linear instantaneous elasticity. An advection term is added into model (5) as

that in (Hogea et al., 2008) to account for the tumor cells being displaced as a consequence

of the underlying mechanical deformation,
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(6)

where the tumor cell drift velocity depends on the displacement vector u induced by the

balance between the Cauchy stress tensor ρ and the body force b. λ and are μ unknown

Lame’s coefficients in linear elasticity. The body force originated from the growing cells is

proportional to the local gradient of the tumor cell density,

(7)

where p is an unknown positive constant.

Model (6) allows the incorporation of cell metabolic rate and accounts for cell proliferation,

infiltration, metabolism and mass effect, but not directly connected to clinical imaging data.

We will adapt the model in the following two subsections in order to associate the model

parameters with measurements from CT and FDG-PET. The proposed model accounts for

the cell metabolic rate and directly connects to routine CT and FDG-PET, which makes our

model fundamentally different from the model in (Hogea et al., 2008).

2.2 Associate the model with dual-phase CT

The Reaction-Diffusion model predicts the tumor cell number. To measure this

physiological parameter, we introduce dual-phase CT into the modeling. In this section, we

describe the principle on how to use dual-phase CT to measure Intracellular Volume

Fraction and present the image processing pipeline to measure ICVF.

2.2.1 Principle of ICVF calculation using dual-phase CT images—A tissue is

considered to be made of three well-defined regions (see Fig. 2): (1) a vascular space

through which the blood flows; (2) an extravascular extracellular space (EES) which

provides the support structure of the tissue; and (3) the cellular space.

Iodine contrast agent in a target organ or blood plasma causes greater absorption and

scattering of x-ray radiation, which results in an increase in CT attenuation and contrast

medium enhancement in the CT image. For a given voltage, the proportionality of contrast

enhancement to iodine concentration is near constant (Bae, 2010). Iodinated contrast media

consist of relatively small molecules (molecular weight, 800-1,600) that are highly

diffusible. Intravascular contrast media are distributed rapidly and extensively outside the

blood vessels in volumes approaching that of the extracellular space (ECV), i.e.,

extravascular extracellular space plus capillary space, after injection (Kormano and Dean,

1976). Before the derivation of the ICVF calculation equation, we define the following

parameters,

vp: volume of the vascular space,

vc: volume of the cellular space,
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vEES: volume of the EES,

vECV: volume of the vascular space plus EES, i.e., vp + vEES,

vtissue: volume of the tissue space, i.e., vECV + vc,

vECV: contrast media concentration within extracellular space,

vtissue: contrast media concentration within the tissue.

Because the Hounsfield Unit (HU) enhancement of CT is proportional to the concentration

of the tissue within one voxel (Bae, 2010) (not the concentration of ECV), for one voxel

within the tumor, we have,

(8)

where HUpost_tumor and HUpre_tumor are the HU of the voxel of the tumor in the post-

contrast and pre-contrast CT, respectively. k is a constant. According to mass conservation,

(9)

where ECVF is the ratio of the volume of extracellular space and the volume of the tissue

space. Replace Cpost_tumor in equation (8) with (9),

(10)

Directly using equation (10) to calculate ECVF of the tumor encounters the trouble that both

k and CECV are unknown. We take the voxel of the blood pool as the reference since we

know the ECVF of the blood pool is 1.0 − Hctblood, where the hematocrit Hctblood is the

volume percentage (%) of red blood cells in blood, which varies from patient to patient, but

can be measured by the blood sample (Purves et al., 2004). Apply equation (10) on the voxel

of the blood pool with the assumption that iodine contrast agent reaches dynamic

equilibrium between the tumor and blood pool,

(11)

Divide (10) by (11),

(12)

To alleviate the influence of the noise, we use the average HU enhancement of the blood

pool. ECVF’s complement ICVF can be calculated as,

(13)
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2.2.2 ICVF calculation framework—Fig. 3 illustrates the image processing pipeline to

calculate ICVF from the pre- and post-contrast CT images. The procedures were performed

on the baseline and all followups. Firstly, pre-contrast CT was non-rigidly registered with

post-contrast CT. Then, the tumor and blood pool were segmented on post-contrast CT.

ΔHUblood = HUpost_bloodpool − HUpre_bloodpool was calculated based on the segmented blood

pools on the aligned pre-contrast CT and post-contrast CT. Hctblood was obtained by the

blood sample. When ΔHUblood,Hctblood, the segmented tumors on both aligned pre-contrast

CT and post-contrast CT were available, the ICVF map within the tumor were calculated

using equation (13).

The measured ICVF maps are compared with the predicted ICVF maps to estimate tumor

growth parameters.

In equation (6), the cell number N is difficult to be directly measured by CT image. We

adapt the Reaction-Advection-Diffusion equation by replacing N(x, t) with Kθ(x, t) based on

the assumption that all cells have similar volumes,

(14)

where (replace N0 and NT in (4) with Kθ0 and KθT, respectively)

(15)

where a = KBc and b = KEc. Both parameters a and b> have specific biological meanings,

representing the energy to maintain K cells and create K cells, respectively. Similarly,

replacing N in (7) with Kθ leads to .

2.3 Associate the model with FDG-PET

The formal way to calculate glucose metabolic rate, an approximation of metabolic rate B,

was originally presented in (Huang et al., 1980), in which the glucose metabolic rate MRglc

can be calculated by,

(16)

where LC is a lumped constant that accounts for the transport and phosphorylation

difference between FDG and glucose, and is the glucose concentration in arterial plasma.

[K1K3/(K2 + K3)] (commonly called the uptake constant) can be estimated given dynamic

FDG-PET scans and blood samples, usually not available in routine clinical practice.

The energy for organism growth is supplied by different metabolic pathways. The metabolic

energy of the tumor can be approximated by that supplied by glycolytic pathway due to the

established model of the Warburg effect (Warburg, 1956): cancer cells use glycolysis for
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energy production regardless of the availability of oxygen because glycolysis produces

energy much faster than oxidative phosphorylation despite the loss in efficiency.

Normally, when the scanning time is longer than 45 min post-injection, the uptake constant

can be approximated by (Huang et al., 1980),

(17)

where PET(t) denotes the radioactive tracer FDG concentration in the tissue at time t that is

measurable with PET. k is a constant that is not dependent on the particular subject being

studied. Replace the uptake constant in (16) with (17),

(18)

where , a lumped unknown parameter. The numerator in (18) is widely used

as Standardized Uptake Value, which is proportional to MRglc since both k and LC are

constants.

Replace B0 and BT in equation (15) with, c × SUV0 and c × SUVT respectively,

(19)

where α = c/b, β = a/b.

Equation (6) with its Reaction-Advection-Diffusion equation replaced with equation (14)

constitutes our proposed model (or state equations from an optimal control standpoint

(Gunzburger, 2003)). This model connects to dual-phase CT via ICVF and static FDG-PET

via SUV using equation (19) or connects to ICVF and dynamic FDG-PET using equation

(15). Using dynamic FDG-PET with the model needs an additional tracer kinetic model

involved to estimate metabolic rate , but has the benefit that two biologically meaningful

parameters a and b can be estimated.

ρ (x, t) is the generalization of the spatial-temporal invariant ρ in (Swanson et al., 2000;

Clatz et al., 2005; Hogea et al., 2008), leading to a heterogeneous growth model.

In equation (19), when  = constant for all position x and a = β, ρ(x,

t) is reduced to  (equivalent to a constant ρ), leading to a homogeneous

model. Heuristically, a higher FDG-PET value denotes a more aggressive growth. But, this

aggressiveness can be caused by more less-aggressive cells or less more-aggressive cells.

Thus, simply weighting the proliferation rate with the PET value cannot truly reflect the

aggressiveness of the growth. The benefit using energy conservation law (2) to explore the
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heterogeneity of the proliferation rate described as equation (15) and (19) lies in the removal

of the influence of the cell number/fraction.

The proposed model constitutes the forward problem with unknown control parameter and

state variable g = (α, β, D, λ, μ, q) and state variable ϕ = (ρ, u, v), which will be solved in

the following section using the optimal control theory.

2.4 Model parameter estimation

Problem definition: Given measured SUV: SUV0, SUVT, and measured ICVF: ρ0, ρT at time

0 and T in the spatial domain Ω, estimate model parameter: g = (α, β, D, λ, μ, q).

To estimate the parameters, the predicted tumor ICVF map is compared to the measured

ICVF map to find the parameters leading to the best fit for the functional,

(20)

where the first term measures the degree of similarity, and the second term is Tikhonov

regularization term to recover a locally unique solution close to a reference solution gr = (αr,

βr, Dr, λr, μr, qr). S is a scaling matrix to scale model parameters into the same order of

magnitude. The diagonal entries of S are Sα, Sβ, SD, Sλ, Sμ, Sq, and the nondiagnoal entries

are zero. γ controls the balance of these two terms, which is obtained by a trial-and-error

strategy. Functional (20) along with model (state) equations constitutes a coupled PDE-

constrained optimization problem. The Lagrange multiplier or adjoint variable

 is introduced to change (20) to an un-constrained Lagrangian functional,

(21)

Apply the first order necessary KKT (Karush-Kuhn-Tucker) conditions to (21), yielding an

optimality system:  state equations, i.e., the model equation,  adjoint

equations (22),  optimality conditions (23).

(22)
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(23)

We specify a ROI (spatial domain Ω as shown in Fig. 4) centered at the geometrical center

of the tumor with size 50 × 50 × 50mm3 for registration and FDM. The rigid registration

between the post-contrast CT at time 0 and T is performed within the ROI rather than the

whole image to avoid the influence of the intensity variation in the non-ROI region. The

optimality system is resolved by the FDM within the ROI. Very few pancreatic tumors can

have a size larger than 30 × 30 × 30mm3. We add 10 mm margin and assume there are no

cells progressed to the boundary (ρ = 0) and no mass effect occurring on the boundary (u =

0), yielding the following boundary and initial conditions,

(24)

Boundary and initial conditions (24) complete the optimality system. Note that the adjoint

reverses the propagation of information leading to the initial condition of the adjoint

equations backward in time with a terminal condition at t = T.

Model parameters in g, reflecting different properties of tumor growth, are different in the

order of magnitude. To obtain a realistic solution, we force the potential solution to be close

to a reference solution gr, which is estimated as follows,

■

, where Ec = 2.1 × 10−5J, the energy to create one cell (West et al., 2001), K=106, 6.2 ×

10−5 g· J− is the mass of glucose to produce 1 Joule energy.

■ , where Bc is the scaled

metabolic rate of an average cell in an intact mammal (West et al., 2002).

■ Dr = 0.13mm2/day is according to the suggested average diffusion by Fisher in

(Swanson et al., 2000).

■  where Young’s modulus E =

3000Pa and Poisson’s ratio come from brain biomechanics (Wittek et al., 2007).

■ qr = 200Pa is based on the one dimensional mass effect simulation in (Hogea et al.,

2008).
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■ The diagonal entries of the scaling matrix S are: sα = 103, sβ = 102, sD = 10, sλ =

10−3, sμ = 10−3, sq = 10−2, which scale the reference model parameters to the range [1,

10].

The reference solution is derived from literature and is just a rough estimation of the real

solution. It is not necessary to be accurate since it is only used to define a region in which

the real solution is located.

3. Results

To study tumor growth, we have developed a dedicated protocol spanning for several years

to collect patients with pancreatic tumors. The desirable longitudinal data needs to satisfy

the requirements: 1) the tumor should be big enough (volume > 20mm3) to allow us to

ignore the error induced by segmentation and registration, 2) at least three time points and

each time point includes both dual-phase CT and FDG-PET, and 3) without any treatments.

Usually, a tumor will be surgically removed when it becomes sufficiently big. The

contradictive requirements 1) and 3) lead to the difficulty to obtain desirable data.

In this work, we selected 6 patients with pathologically confirmed pancreatic

neuroendocrine tumors from over 100 patients for the model evaluation. The scanning

interval is about one year for each patient. We are still collecting data and will incorporate

them in the modeling in the future. The patient information is listed in Table 1.

Pancreatic protocol CT scan was performed by using GE LightSpeed Ultra. The patients

were placed supine on the table, head first, centered at the sternal notch. A bolus of 115ml

(adult with body weight ≤ 82kg) or 130ml (adult with body weight > 82kg) of iodinated

contrast (Isovue 300; Bracco Diagnostics, Inc, Princeton, NJ) was given intravenously. The

rate of automated intravenous injection of contrast was 2ml/second. The images were

obtained 50 minutes after the contrast injection with image dimension 512 × 512 × 247 and

voxel size 0.7 × 0.7 × 1.89 mm.

Data overview

Table 2 lists all data used for model parameter estimation and the estimated parameters.

Carefully examining Table 2, we found that a general pattern of the ICVF is that it increases

slowly as the ICVF increases, which might be caused by less room for cell growth when

ICVF is larger. For instance, for patient 2, it only increases one percent from 86% to 87%

for one year period even the energy uptake is very large (over 10.0). This slow increasing

behavior agrees well with the logistical growth model (Eq. 1), which has been incorporated

into our proposed model. Another interesting observation is that if the energy uptake is high

(larger than 10), the ICVF usually can reach a value close to 80% (patients 1, 2, 4 and 5),

which might disclose that if the energy uptake is high, tumor cells can grow fast. For the

velocity term, we observe that the cell moves outwards, as shown in Fig. 6. We speculate

that the underlying reason lies in the pressure induced by the internal high cell density,

which drives the cell to move towards surrounding regions with low cell density.

We evaluated the proposed model by comparing the predicted ICVF map and tumor with the

measured ICVF map and tumor at the 2nd follow-up. The predicted ICVF map was produced
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by growing the ICVF (using the model equation) from the 1st follow-up for the period

between the 1st and 2nd follow-up with the parameters estimated from the longitudinal data

at the baseline and the 1st follow-up. The predicted tumor is an isosurface extracted from the

predicted ICVF map based on a threshold. Fig.5 shows the longitudinal post-contrast CT,

fused PET/CT, estimated SUV map (with decay correction) and the ICVF maps.

Fig.7 shows the comparison between the reference results of the 2nd follow-up and the

prediction results of two patients. The corresponding ICVF range, SUV range and

parameters of the two patients are listed in Table 2. The first row of Fig. 6 demonstrates a

similar distribution of the ICVF map between the reference and the prediction results for

both patients: the cell number decreases from the center to the rim of the tumor. The

predicted center region (blue) is more homogeneous than the reference part, which might be

caused by the exclusion of the complex heterogeneous tumor microenvironment from our

model.

The comparison of the isocontours of the ICVF map is shown in the second row. The inner

most contour shows larger discrepancy, but the outer contours agree well with each other,

suggesting a more heterogeneous cell distribution in the center region of the reference

tumor, which also can be observed in the gray scale ICVF (the last column of Fig.5). In the

third row, we compare the ICVF on the surface of the segmented tumor. We focus on this

surface because it is the one that can be identified in the image data with our naked eyes.

Both patients show similar ICVF distribution, and the second patient demonstrates a more

homogeneous ICVF distribution than the first patient. We assume the average ICVF on the

tumor surface to be the threshold that defines the detectable tumor boundary, which makes

sense since ICVF is a main factor affecting HU of CT. We use this threshold to extract the

isosurface (predicted tumor) from the predicted ICVF map to compare with the segmented

tumor in terms of average surface distance and relative volume difference.

The quantitative evaluation regarding the root mean square difference (RMSD) of the ICVF

map, the average ICVF difference (AICVFD) on tumor surface, the average surface distance

(ASD) between the predicted tumor surface and the segmented tumor surface, and the tumor

relative volume difference (RVD, the ratio of the volume difference and the volume of the

segmented tumor) are listed in Table 3, in which the RMSD is 4.3±0.4%, the AICVFD is

2.6±0.6%, the ASD is 2.4±0.5 mm, and the RVD is 7.7±1.3%. The ICVF value is slightly

large, but the boundary prediction (clinically relevant) is very promising (around 2.4mm).

Actually, there is no work to compare with our work regarding ICVF because we are the

first one introducing ICVF into the tumor growth modeling.

To infer the sensitivity of the model output to the adjusted parameters, we conducted global

nonlinear non-monotonic sensitivity analysis as shown in Table 4. The global analysis was

performed by an extended Fourier Amplitude Sensitivity Test (eFAST) (Marino et al.,

2008), an extension of FAST (Collins et al., 1994). eFAST is a variance decomposition

method to measure the sensitivity of the output to the input. As input parameters vary, the

output of the model varies accordingly. The variation of the output is quantified by the

variance of sampling data with size N. To determine the fraction of the variation caused by
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each parameter, eFAST first partitions the variance by varying different parameters at

different frequencies, and then uses Fourier analysis to measure the strength of each

parameter’s frequency in the model output, which serves as a measure of the model’s

sensitivity to the input parameter.

In our eFAST analysis, the output was defined as the sum of square difference between the

model prediction and the reference ICVF. The parameter space is assumed to follow a

uniform distribution. We ran the eFAST analysis with sample size 65 (resampling size 3).

Both the first order and total order sensitivity indexes show the biological parameters: D, α
and β are consistently higher than the three biomechanical parameters: μ, λ and q, which

suggests the biological parameters affect the ICVF more than the biomechanical parameters.

In the biological parameters, the diffusion D is highest (Si=0.43, STi=0.74), probably

disclosing the aggressive infiltration of the pancreatic tumor. In the biome-chanical

parameters, μ and λ dominate the explanation of the variation, which makes sense since

these two parameters control the stiffness and incompressibility of the tissue.

Robustness

To evaluate the robustness of the parameter estimation, we also estimated the parameters

using the first and second follow-ups. The parameters values are listed in the parenthesis of

Table 2. We found that the estimated values are very close to the values estimated using the

baseline and the first follow-up. Paired t-test shows there is no significant difference

between these two group values: D(0.36), α(0.63), β(0.09), λ(0.92) μ(0.85). In our study, P-

value equal or less than 0.05 is considered as significant difference.

Comparison

To evaluate the impact of metabolic rate on the tumor growth modeling, we compared the

proposed model incorporated with metabolic rate with the model without metabolic rate. In

another word, compare the model with proliferation rate as a function of cell creation and

maintenance energy with a model using a constant proliferation rate. Table 3 shows the

comparison regarding ICVF, RMSD, AICVFD, ASD and RVD. Patients 1, 3, 5 and 6 show

obvious improvement when considering cell metabolic rate, but patients 2 and 4 not.

Examining ICVF distribution, as shown in Fig. 8, we found patient 2 and 4 have

homogeneous ICVF distribution. As a result, the metabolic rate might not be very helpful in

exploring the heterogeneity. Therefore, there is no big difference between using and not

using the metabolic rate for these two cases.

Clinical significance

The estimated parameters might be used as a biomarker for diagnosis. To evaluate this, we

performed simple linear regression and correlation analysis for each parameter. The results

are shown in Fig. 9. The tumor grade is the response and the model parameter is the

predictor. Fig. 9 shows the three biological parameters have higher correlation (greater than

0.6) with the tumor grade than the three biomechanical parameters (less than 0.35). The

diffusion has highest correlation, which is consistent with our sensitivity analysis, in which
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the diffusion explains most tumor growth. The reason should be this parameter directly

reflects the aggressiveness of the cancerous cell infiltrating into surrounding tissues.

4. Discussion

In this paper, we focus on the growth modeling of the primary solid tumor. We consider

multiple cancerous cell characteristics. Cancerous cells are characterized by uncontrolled

growth, so the proliferation rate is widely in tumor growth modeling (Swanson et al., 2000;

Clatz et al., 2005; Hogea et al., 2008). However, a simple constant proliferation might not

completely capture the cell growth behavior. We explore cell proliferation heterogeneity by

combing the metabolic energy conservation law and logistical growth law and derive the

relation between the proliferation rate and cell creation and maintenance energy. Focusing

on a position x, the cell number is changed not only due to the proliferation, but also the

motion of the cells. In our tumor growth modeling, we consider two cell motions: diffusion

and advection. Tumor cells are driven by cell densi- ty gradient and move from a high

density region to a low density region. Diffusivity is a parameter needed to be estimated.

Diffusion is a random Brownian motion, which has no relation with the advection. The

advection term is used to incorporate mass effect. Tumor cells live in the ECM, which can

bring the cell to move together. As tumor grows, the mass gradient will drive the moving of

the ECM, which in turns causes the moving of the cell, i.e. mass effect. We model the ECM

as a linear instantaneous elasticity material characterized by Lame’s coefficients. The

driving force caused by the mass gradient is parameterized on an unknown constant q.

Because there is a higher cell density in central region than in peripherals, the mass effect

causes the ECM moving towards surrounding regions, leading to the cell moving outwards

as shown in Fig. 6.

There are two kinds of parameters in our modeling: biological parameters and

biomechanical parameters: μ, λ and q. To the best of our knowledge, there is no report about

the pancreatic tumor biophysics modeling. The only work about pancreatic cancer modeling

is (Haeno et al., 2012), in which authors focused on the tumor cell metastasis modeling

rather than the biophysics modeling. To gain some experience of these parameters, we

borrowed some values from Glioma of brain. These values do not need to be accurate, just

for the purpose of regularization. Our robustness experiment demonstrates the effectiveness

of the parameter estimation method.

5. Conclusions and Future Work

In this paper, we presented a tumor growth model, which is characterized by incorporating

cell metabolic rate into the Reaction-Advection-Diffusion model and being driven by routine

clinical imaging data based on ICVF and SUV. The ICVF is able to reflect current tumor

cell invasion, but not the future progression. To predict tumor progression, tumor’s inherent

biological and biomechanical parameters need to be estimated. In this paper, we developed a

tumor growth model and used clinical imaging data to estimate model parameters. The

experiment on pancreatic neuroendocrine tumors demonstrated the promise of the proposed

model. Other than the characteristics of tumor itself such as the aggressiveness measured by

the metabolic rate, tumor microenvironment is also essential for the study of tumor growth.
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In the future, besides dual-phase CT and FDG-PET, we will introduce DCE-MRI to measure

vasculature/perfusion regions and FMISO-PET to measure hypoxia regions in order to

model tumor microenvironment.
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Highlights

1. We present a macroscopic scale tumor growth model integrating cancerous cell

proliferation, infiltration, metabolic rate and extracellular matrix biomechanical

response

2. We present a tumor growth model directly associated with clinical CT and

FDG-PET

3. We introduce Intracellular Volume Fraction (ICVF) into tumor modeling

4. We present the principle to calculate ICVF using dual-phase CT
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Figure 1.
Flow chart of the method. The left side is parameter estimation and the right side is model

evaluation. ICVF rather than tumor boundary is used as the biomarker for both parameter

estimation and evaluation. In the parameter estimation part, the baseline and the 1st follow-

up are involved, in which each time point includes dual-phase CT scans: pre-contrast CT

(preCT) and post-contrast CT (postCT). In the evaluation part, the 2nd follow-up is used to

compare with the model prediction. g is a vector of the unknown model parameters.
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Figure 2.
Iodinated contrast medium distribution in a three-compartment physiology model. Left: a

typical CT image with a tumor ROI denoted by an orange box. Middle: one voxel within the

ROI. Left: three-compartment physiology model of the voxel: cell space, capillary space,

and extravascular extracellular space (EES). The stars represent the iodinated contrast

molecules constrained within the capillary space and the EES.
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Figure 3.
Image processing pipeline of ICVF calculation.

Liu et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
ROI for the parameter estimation. The blue contour is the pancreas, and the green box is the

ROI. The size of the ROI is predefined as 50 × 50 × 50mm3, and the center of the ROI is the

geometrical center of the segmented tumor (red contour).
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Figure 5.
Longitudinal original and intermediate results. The rows correspond with the baseline, the

1st follow-up, and the 2nd follow-up and the columns correspond with post-contrast CT,

fused PET/CT, estimated SUV and ICVF maps. The white bounding box highlights the

tumor.
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Figure 6.
Velocity visualization. The left and right figures are the tumors of two adjacent follow-ups.

The color denotes the ICVF distribution. The middle figure is the estimated velocity. The

color denotes the magnitude of the velocity and the arrow points to the direction of the

velocity.
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Figure 7.
Comparison between the reference (the 2nd follow-up) and the prediction of two patients

regarding ICVF map, isocontour and ICVF on the tumor surface.
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Figure 8.
Homogeneous ICVF distribution for two patients. The ICVF is encoded into the color. Both

patient show homogeneous ICVF distribution.
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Figure 9.
Relation between the model parameters and the tumor grade.
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Table 1

Patient information. All patients have pancreatic neuroendocrine tumors.

Gender Age Location Grade #Tumor

Patient 1 male 57 head 3 1

Patient 2 female 48 tail 1 1

Patient 3 male 51 tail 2 1

Patient 4 male 62 head 1 1

Patient 5 female 37 head 3 1

Patient 6 male 58 body 1 1
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Table 3

Quantitative evaluation. ICVF ([min%, max%]), RMSD (%), AICVFD (%), ASD (mm), RVD (%).The value

out of the angular bracket was obtained using the proposed model, and the value in the angular bracket was

obtained without considering the metabolic rate. The value in the parenthesis of the ASD is the threshold to

extract the predicted tumor from the predicted ICVF map.

Id ICVF Predicted ICVF RMSD AICVFD ASD RVD

1 [0,77] [0,81]<0,83> 4.2<5.1> 3.1<3.7> 2.0<2.4>(34.0) 8.l<9.2>

2 [0,87] [0,88]<0,88> 5.1<5.2> 1.2<1.4> 2.2<2.3>(41.5) 7.6<7.4>

3 [0,69] [0,65]<0,64> 4.6<5.2> 3.1<3.8> 3.3<3.9>(36.0) 10.4<11.0>

4 [0,75] [0,79]<0,80> 3.7<3.5> 2.7<2.8> 3.1<3.2>(31.6) 8.2<8.2>

5 [0,79] [0,77]<0,77> 3.8<4.4> 3.5<4.7> 1.5<2.1>(39.2) 4.5<5.3>

6 [0,66] [0,78]<0,81> 4.1<4.6> 2.2<2.7> 2.4<2.8>(32.2) 7.1<7.3>

mean ± std [0,75±6] [0,78±5]<0,79±6> 4.3±0.4<4.7±0.5> 2.6±0.6<3.2±0.9> 2.4±0.5<2.8±0.5> 7.7±1.3 < 8.1±1.4 >
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Table 4

eFAST global sensitivity analysis. Sample sizes 65 (resampling size 3). Si: the first order sensitivity index

denoting the fraction of model output variance explained by the input variation of a given parameter i. STi:the

total order sensitivity index denoting the remaining variance after the contribution of the complementary set is

removed. Output(g) = ∫Ω (θ (x) – θT(x))2 dx

eFAST

Si (first order) STi (total order)

Parameters Output(g) Output(g)

α 0.2210 0.4776

β 0.2533 0.4451

D 0.4328 0.7403

λ 0.0369 0.1226

μ 0.0524 0.1709

q 0.0091 0.0083
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