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Abstract

Diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI), and

Diffusion Spectrum Imaging (DSI) have been widely used in the neuroimaging field to examine

the macro-scale fiber connection patterns in the cerebral cortex. However, the topographic and

geometric relationships between diffusion imaging derived streamline fiber connection patterns

and cortical folding patterns remain largely unknown. This paper specifically identifies and

characterizes the U-shapes of diffusion imaging derived streamline fibers via a novel fiber

clustering framework and examines their co-localization patterns with cortical sulci based on DTI,

HARDI, and DSI datasets of human, chimpanzee and macaque brains. We verified the presence of

these U-shaped streamline fibers that connect neighboring gyri by coursing around cortical sulci

such as the central sulcus, pre-central sulcus, post-central sulcus, superior temporal sulcus, inferior

frontal sulcus, and intra-parietal sulcus. This study also verified the existence of U-shape fibers

across data modalities (DTI/HARDI/DSI) and primate species (macaque, chimpanzee and human),

and suggests that the common pattern of U-shape fibers coursing around sulci is evolutionarily-

preserved in cortical architectures.

Keywords

DSI; HARDI; DTI; fiber shapes; shape analysis

© 2014 Elsevier B.V. All rights reserved.
**Joint correspondence authors.
*These authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Med Image Anal. 2014 July ; 18(5): 795–807. doi:10.1016/j.media.2014.04.005.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Introduction

Folding is an essential shape characteristic of the cerebral cortex in primate brains such as

macaque, chimpanzee and human. The convex and concave cortical structures of gyri and

sulci emerge from complex cortical folding processes during neurodevelopment (Richman et

al., 1975; Rakic, 1988; Welker, 1990; Sur and Rubenstein, 2005; Rash and Grove, 2006;

Dennis et al., 2007). Meanwhile, large-scale axonal wiring is another key determinant that

sculpts the cerebral cortex into a functional working system during neurodevelopment

(O'Leary, 1989; Brown et al., 2002; Passingham, et al., 2002; Berghuis et al., 2007;

Chédotal and Richards, 2010). In the past few decades, the neuroscientific communities

have made remarkable progresses in understanding these two prominent structural attributes

of the primate cortices (Rakic, 1988; Sur and Rubenstein, 2005; Chédotal and Richards,

2010). However, the intrinsic relationship between these two general cross-species

attributes, as well as the underlying organizational principles, that construct the structural

and functional architecture of the cerebral cortex, remains largely unknown.

Thanks to recent advancements of modern in-vivo brain imaging techniques, in particular,

diffusion spectrum imaging (DSI) (e.g., Wedeen et al., 2012), high angular resolution

diffusion imaging (HARDI) (e.g., Tuch et al., 2002) and diffusion tensor imaging (DTI)

(e.g., Basser and Pierpaoli 1996; Mori 2006, we are now able to quantitatively measure the

brain's in-vivo fiber wiring diagrams with decent spatial resolutions. Despite some

limitations in data acquisition and processing algorithms, the diffusion MRI data has shown

consistence with known pathways of major fiber tracts in the brain (Conturo et al, 1999,

LeBihan, 2003, Catani et al, 2003

Particularly, the joint representation and modeling approach of brain structure and

connection patterns has demonstrated its advantages in elucidating the structural brain

architectures and possible functional mechanisms (e.g., Behrens et al., 2003; Rilling et al.,

2008; Zhu et al., 2011). Recently, our analyses of a number of primate/human brains based

on the joint representation of cortical gyral folding and DTI-derived fiber connection

patterns (Nie et al., 2011) showed that the streamline fibers connected to gyri are denser,

than those connected to sulci in human, chimpanzee and macaque brains. This finding is

illustrated in Figure 1(a), which is a joint representation of a sagittal section through the

middle part of human brain. As can be seen, DTI-derived fiber trajectories' terminations

(yellow arrows) concentrate on gyral regions highlighted by the blue arrows. In a recent

follow-up work (Chen et al., 2012), our quantitative analyses of DTI and MRI data based on

the same joint representation consistently demonstrated that the structural fiber connection

pattern closely follows the gyral folding pattern in the tangent direction to the cortical

sphere, and this close relationship is well-preserved in the neocortices of macaque,

chimpanzee and human being, despite the progressively increasing complexity and

variability of cortical folding and structural connection patterns in these species. This

finding is illustrated by the blue arrows in Figure 1(b), from which we can observe that the

convex cortical gyral shapes are connected by dense fibers orienting along the tangent

directions of the gyral crest lines. In this figure, we mapped the orientations of the fiber

terminations onto the cortical surface patch. Red/blue colors indicate that the fiber
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termination apparently orients left/right (from the view angle of Figure 1(b)). Green color

indicates the fiber termination orient vertically to the tangent direction.

Despite the above findings regarding the relationships between axonal wiring and gyral

folding patterns, however, the topographic and geometric relationships between axonal fiber

connection patterns and cortical sulci remain largely unknown. Here, our extensive

observations revealed that the co-localization patterns of fibers of different shapes with

sulcal regions can be categorized into at least two basic types. Figure 1 shows two examples

of different co-localization patterns. Figure 1(a) illustrates one example of how straight line

shape fiber bundles with different orientations course around the sulcal regions (highlighted

by black arrows) by forming rectilinear crossings beneath sulci. Figure 1(c) shows examples

of U-shape fiber bundles which course around the sulci by embracing them and the

terminations (yellow arrows) of those bundles concentrate on the neighboring gyri. In this

work, we particularly focus on characterization of U-shape fibers (Figure 1(c)). Although U-

shape fibers have been widely reported in literature (e.g., Wedeen, V.J., 2012, Van Essen

D.C., 1997), we developed a new analysis pipeline which starts from U-shape identification

and ends up with several result interpretations like co-localization patterns of U-shape fibers

with cortical sulci, U-shape fiber wiring diagram and ratios.

More specifically, in order to identify U-shape fibers, we developed a novel fiber clustering

framework based on the one in Hu et al., 2010. Compared with the method proposed in other

studies on fiber shape analysis and clustering (e.g., Corouge et al., 2004, Gerig et al., 2004,

O'Donnell et al., 2006), the reason we adopted the methods in Hu et al., 2010 lies in that it

presented a feature set to describe each single fiber and are promising to be applied to large

scale dataset, which is very suitable for this study, because our goal is comparing the fiber

shape across species and across datasets (referred by us as ‘large scale’) and there will be

millions of fiber tracts to deal with. However, the original methods in Hu et al., 2010 still

have limitations when applied on the large scale and cross-species datasets in this paper. For

example, considering the computation load when dealing with such a huge dataset in this

paper, one possible approach could be clustering fiber tracts of each species via the method

in Hu et al. separately. However, the problem is that the clustering results could be possibly

biased by species variation. As a result, the AP algorithm cannot be directly applied on such

huge and cross-species datasets. Therefore, while adopting the similar fiber features as those

in Hu, et al., 2010, we substantially improved the computational framework in Hu, et al.,

2010 into a two-step clustering framework. That is, firstly, we sample 6000 fibers tracts

from all datasets and apply the AP directly to obtain the cluster centers. Secondly, we use

the k-means clustering method to propagate the clustering results onto all datasets by using

the cluster centers as initializations. Also, another improvement is that we applied principal

component analysis (PCA) on original feature space before clustering them into clusters. As

to the identification of sulci, we semi-manually extracted the sulci fundi based on the

methods in Li et al., 2010.

Based on the above-mentioned methods (fiber shape analysis and sulcal fundi extraction),

we built U-shape fiber wiring diagrams for different species and verified the finding that the

cortical sulci are coursed around by U-shape fibers including those major ones such as pre-

central sulcus, post-central sulcus, superior temporal sulcus, inferior frontal sulcus, and
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intra-parietal sulcus across species. These U-shape fibers connect their neighboring gyral

regions. Also, comparisons across species based on U-shape fibers were conducted and it is

found that U-shape fibers are positively correlated with elaboration of gyrification. This

study reveals a common pattern of evolutionarily-preserved cortical architecture, and

suggests novel insights into the structural and functional organizational principles of the

cerebral cortex in primate brains.

2. Materials and Methods

2.1 Data Acquisition and Preprocessing

Generally, we acquired and used seven diffusion MRI datasets in this work. Dataset 1

(Human DTI Datasets) included eighteen healthy young volunteers who were scanned in a

GE 3T Signa MRI system using an 8-channel head coil at the Bioimaging Research Center

(BIRC) of the University of Georgia (UGA) under IRB approval were used in this paper. In

dataset 2 (Human HARDI Datasets), diffusion-weighted images were acquired from ten

adult subjects using a Siemens 3T TIM Trio MR Scanner at UNC Chapel Hill. Diffusion

gradients were applied in 120 non-collinear directions with diffusion weighting b = 2000

s/mm2. Q-ball model was adopted to deal with fiber crossings. Dataset 3 (Human
Connectome Project Datasets) included diffusion MRI data of 68 subjects obtained from

the Q1 release of the human connectome project dataset (http://

www.humanconnectomeproject.org/) package. Two fiber tracking methods were applied. 1)

Deterministic tracking: single-shell (b=2000) data for each subject was used, onto which q-

ball/HARDI model in Trackvis (http://trackvis.org/) was applied to handle fiber crossings.

Angle threshold for fiber tracking was set to be 45 degrees. 2) Probabilistic tracking: the

BedpostX in FSL 5 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX) was

adopted to deal with the multi-shell data (all the three shells b = 1000, 2000 and 3000 were

included). Dataset 4 (Human DSI Datasets) included DSI data of two subjects obtained

from the recently released HCP (Human Connectome Project) database (http://

www.humanconnectomeproject.org/). In dataset 5 (Human Fetus DTI Datasets), ex vivo

DTI data of a 21 post-conception weeks (pcw) fetus was downloaded from the BrainSpan

Atlas of the Developing Human Brain (http://www.brainspan.org). Dataset 6 and dataset 7

(Chimpanzee DTI Datasets & Macaque DTI Dataset) included MRI scans obtained from

fifteen female chimpanzees and twenty female adult macaques, respectively. All

chimpanzees and macaques involved were members of a colony at Yerkes National Primate

Research Center (YNPRC) in Atlanta, Georgia. All MRI and DTI scans were conducted at

the YNPRC of Emory University under IACUC approval. Detailed dataset description and

pre-processing can be found in the Supplemental Materials.

2.2 Joint Analysis of U-Shape Fibers, Sulcal Fundi and Gyral Crest Lines

Generally, the joint analysis method used in this paper consists of three major steps, as

illustrated in Figure 2 with circled numbers. After the preprocessing steps in section 2.1, the

fiber tracts (Figure 2(a)) and GM/WM cortical surface (Figure 2(c)) were obtained for each

subject. Then, a novel fiber clustering framework conducted in the fiber feature space based

on the one in Hu et al., 2010 (detailed in section 2.2.1) was adopted to group fiber tracts into

different classes according to their shapes, and further analysis mainly focuses on the U-
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shape classes (Figure 2(b)) in this paper. At the same time, the sulcal fundi (white curves in

Figure 2(d)) were semi-manually extracted throughout the GM/WM surface via a similar

method as the one in Li, et al., 2010 (detailed in section 2.2.2). In fact, gyral crest lines were

also extracted in the similar way (but not shown in Figure 2 in order to make the illustration

clear). Finally, U-shape fiber tracts in Figure 2(b) which pass through the nearby

neighborhood of sulcal fundi in Figure 1(d) were extracted and labeled with the same color

if they course around the same sulcus (Figure 2(e)).

2.2.1 Fiber Clustering—In order to simultaneously obtain U-shape fibers across species

and modalities on all datasets, we developed a novel fiber clustering framework based on

similar fiber features developed in Hu, et al., 2010 and obtained a feature vector V⃗

containing 12 elements for each fiber tract. The fiber preprocessing and features extraction

are detailed in supplemental materials to make the paper self-contained.

As to the clustering strategy, the method in Hu et al., 2010 lacks the ability to be applied on

large-scale datasets, therefore we developed a novel framework to facilitate its application

on our cross-species and cross-modality datasets. We took a two-step strategy detailed

below to firstly obtain the clustering centers in a small size sample dataset (6000 fibers), and

secondly propagate the clustering results across datasets. In order to make sure the cluster

results are not biased by any modality (DTI/HARDI/DSI) or species (human/chimpanzee/

macaque), we randomly sampled around 1200 fiber tracts (6000 fiber tracts altogether) from

every datasets and use them as samples to be clustered. The sample number within each

dataset is even across subjects.

Step (a). Data-driven clustering: the features introduced above were extracted from the

6000 samples. The affinity propagation (AP) clustering algorithm (Frey, et al., 2006) was

applied on the similarity matrix of the 6000 sample fibers in the feature space to

automatically cluster them into 5 classes. The element of the similarity matrix is defined as

the Euclidian distance between two fibers in the features space. The class number is

automatically determined by AP algorithm. Altogether, all fibers were clustered into 5

classes (close U, open U, noise, curved line, and straight line). Among the five classes, noisy

fibers usually appear to be highly twisted (see Figure 3 for example) and only account for

around 2%, and we therefore discarded those fibers. In Figure 3, we show examples of fibers

in the remaining four clusters in the top panel and the percentage bins of all five clusters in

the bottom panel. Fibers in clusters #1 and #2 are defined as U-shape fibers and those in

clusters #3 and #4 are defined as Line-shape fibers.

Step (b). Model-driven propagation: We propagate the clustering results obtained on the

6000 samples across datasets. Currently, we adopted the K-means algorithm that uses the

five cluster centers obtained in step (a) as the pre-defined centers in the feature space when

conducting the K-means algorithm throughout the datasets. The features of all fibers were

transformed into the same PCA feature space in step (a) before the K-means algorithm was

performed. Again, all fibers classified into the noise cluster were discarded.

2.2.2 Sulcal Fundi, Gyral Crest Line and Fiber Bundle Extraction—The

BrainVoyage (www.brainvoyager.com/BrainTutor.html) 3D surface atlas is used as a human
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brain reference by two experts to identify sulci and gyri. As for the macaque and

chimpanzee, we referred to the brain atlases in Sincich, et al., 2003 and Bogart, et al., 2012.

The open-source ParaView software (http://www.paraview.org/) was used for the experts to

interactively extract sulcal fundi and gyral crest lines. First, several sequential vertices

(white dots in Figure 4(a)) were selected in the sulcal root region/gyral crest region on the

reconstructed surface by referring to the atlas. Then, a similar method with the one in Li et

al., 2010 based on the fast marching algorithm is adopted to connect the sequential vertices

into a geodesic curve (the white curve in Figure 4(a)) on the surface. For the convenience of

comparison, only major sulci and gyri which are much easier and more reliable to be

identified are presented in the paper, which will be detailed in the result section. More

details on fast marching based gyral crest lines/sulcal fundi can be found in supplemental

materials.

Considering that human brains are approximately three times greater in volume than

chimpanzee brains (Rilling, et al., 2007) and five times than macaque brains (MacLeod, et

al., 2003), we accordingly extracted the U-shape fiber tracts if they pass through a

3mm/2mm/1.8mm radius tube formed by the sulcal fundus on human/chimpanzee/macaque

brains. As an example, we illustrated this process in Figure 4(b). The reason why we use

sulcal fundi as a reference to extract fiber bundles but not the sulcal region is that the

reconstructed surface varies in quality from different datasets.

In order to determine which two gyral regions a fiber connects, we compute the minimal

distance between 10% length (10 points) of the termination part of a fiber and all gyral crest

lines. If the minimal distance between one termination part and one gyral crest line is less

than 5 mm, this termination of the fiber is determined to be connected to this gyral crest line.

Here, 5 mm is used to guarantee that both gyral crest and gyral wall are included in order to

avoid the possible dispersion and fanning effects (Heidemann, et al., 2012 and Jbabdi and

Johansen-Berg, 2011). If one termination of the fiber locates in the neighborhood of gyrus A

while the other locates in the neighborhood of gyrus B, we defined it as connecting gyrus A

and B. This method is similar to extracting fiber bundle from the sulcal fundus, but it only

takes 10 points at the termination part of a fiber into consideration and determine if those

points can pass through 5 mm radius tube of one gyral crest line.

3. Results

In this paper, only those major sulci listed in Supplemental Table 1 were studied. Also, the

gyri on the three species used in this paper are listed in Supplemental Table 2. It is worth

noting that because we mainly focus on co-localization of U-shape streamline fibers and

major sulci in Supplemental Table 1, in order to minimize the impact of fibers connecting

hemispheres on both visualization and statistical results, we eliminated those fibers passing

through a manually-defined plane (with the visualization from ParaView) which cut the

brain into two hemispheres. Those eliminated fibers consist of U-shape fibers passing the

corpus callosum and the Line-shape fibers passing through the brain stem. Two subjects in

human DSI dataset and ten randomly selected subjects in each of the datasets, human

HARDI/human DTI/chimpanzee DTI/macaque DTI datasets, were used for group-wise

analysis. One subject in the HCP dataset was used as an example for visual observation.
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3.1. Method Validation

In order to compare the performance of the framework with the method in Hu et al., 2010,

we randomly selected 400 fiber tracts from all datasets and two experts manually labeled the

fiber tracts into U-shape and line-shape. Then, we applied the framework in this paper on the

400 fiber tracts by directly using the propagation step. As to the method in Hu et al., 2010, it

is impossible to apply the AP algorithm on all fibers in all datasets and it is also not

reasonable to just apply the AP algorithm on those 400 fibers, as this would cause bias due

to the lack of samples. Therefore, we included the 400 fibers into other randomly selected

ones from all datasets to make the samples as large as 6×103. Then the AP algorithm is

directly applied onto them. By using those manual labels as pseudo ground truth, we

evaluated the clustering performance of both methods. The classification accuracy of the

method in this paper is 91%, and the one in Hu et al., 2010 is 93%. This result demonstrates

that our framework can preserve high classification accuracy, while having the ability to be

applied onto large-scale datasets. As introduced in section 2.2.1, we randomly sampled

around 1200 fiber tracts (6000 fiber tracts altogether) from each dataset and used them as

samples to be clustered. If we applied the AP algorithm on each dataset separately, the

clustering results will be biased by species/dataset variation so that it will be not feasible to

compare the results among species/dataset. To better elucidate this point, we randomly

selected 6000 fiber tracts from each of the following datasets: human DTI dataset,

chimpanzee DTI dataset and macaque DTI dataset. The AP algorithm was applied on each

dataset separately and the parameters were tuned accordingly for each dataset to generate

five clusters similar to those in Figure 3. The four cluster centers that expect noise cluster for

each dataset are shown in Figure 5. In fact, no standard ‘close U’ shape cluster center as the

one in Figure 3 can be found in chimpanzee dataset and macaque dataset (the second and

third rows in Figure 5). Therefore, the four cluster centers in chimpanzee dataset (b1-b4) and

macaque dataset (c1-c4) were organized according to their similarity to the four cluster

centers in human dataset (a1-a4). By comparison, we can observe that ‘close U’ shape in

chimpanzee and macaque datasets are more likely to be identified as ‘open U’ shape in

human dataset, because the ‘close U’ shape fibers are relatively fewer in non-human brains

which will be detailed in 3.4. If we use the clustering results in Figure 5, the comparison

among datasets, e.g., the percentage of ‘close U’ shape fibers in each species, will be biased

because fibers classified into ‘close U’ cluster in chimpanzee and macaque datasets are more

reasonable to classified into ‘open U’ cluster. Thus, in order to provide a comparable result,

we sampled 6000 fiber tracts across all datasets and obtained common cluster centers in

Figure 3 based on them.

In addition, we also specified how to choose the parameters in the methods as follows.

1. Cluster number: It is difficult to determine how many types of shapes there would

be. So, we adopted the affinity propagation (AP) clustering methods (Frey, et al.,

2006), which will automatically determine the cluster number. There is only one

parameter p in the AP algorithm to control whether the clustering results are in a

coarse scale (greater absolute p value) or a fine scale (smaller absolute p value). We

manually adjusted p until the algorithm can automatically generate the close U,

open U, curved line and straight line clusters (plus one noise cluster and p = −13).

For example, if we use p = −18, there will be six clusters generated, in which close
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U shape fibers will be split into two clusters, and if p = −5, the curved line and

straight line shapes will be mixed up.

2. The gyrus/sulcus tube radius: The gyrus tube radius is set to be 5 mm. We

manually grouped gyral crest lines into pairs if they are running parallel courses

(e.g., the pre-central gyrus & post-central gyrus pair, the superior frontal gyrus &

middle frontal gyrus pair). Then, the mean distance between the crest lines within

each pair is measured and the value is 10.3mm. Therefore, we used 5mm tubes to

make less overlapping between gyri so that a fiber tract can be less likely counted

as connecting two neighboring gyri at the same time. As for sulcal fundi, we

measured the minimal values between any two neighboring sulcal fundi and the

value is 6.8mm. Therefore, we used a 3 mm tube so that less fiber bundles would

be extracted from multiple sulcal fundi. In the future, we plan to enlarge the tube

size of sulcal fundi or use a plane beneath sulcus to extract fibers. In this way, we

can explore how fiber shapes vary with the increase of the depth.

3.2. Cross Validation on Human Data

In this section, we compared U-shape fibers obtained from human brains with different data

modalities via different fiber orientation estimation and tracking methods. First, one subject

was respectively selected from the DSI, HARDI, DTI and HCP dataset as an example to

show the major sulcal fundi. Cross-modality (e.g., DTI, HARDI, DSI and HCP datasets)

validation is one of the effective ways to demonstrate the reproducibility of the observation.

One advantage of HARDI data, DSI data and HCP data is their ability to resolve crossing

fibers at the scale of single MRI voxel. Therefore, the usage of those datasets, though only

two subjects were available in DSI dataset currently, is to demonstrate that the phenomenon

of U-shape fibers crossing all major sulcal fundi is reproducible and consistent across

available data modalities.

The U-shape on the left hemisphere (open U-shape and close U-shape) fibers in DSI are

shown in Figure 6, and those for the right hemisphere of DSI and both hemispheres of

HARDI, DTI and HCP dataset are shown in Supplemental Figures 2-6

We can observe from Figure 6 and Supplemental Figures 2-6 that U-shape fiber bundle

course around the corresponding sulcal fundus in all those figures. Moreover, the fibers'

terminations concentrate on the neighborhoods of the gyral crest lines and the distributions

of the fibers' terminations also follow the trends of the gyral crest lines. It is worth noting

that a variety of factors, like different fiber tracking parameters and different tracking

software, can generate different numbers of fibers. For example, fiber bundles in Figure 6

are derived from DSI data via TrackVis software and the total number of fibers is 184,535,

while fiber bundle in Supplemental Figures 3&4 are derived from HARDI data via

MEDINRIA software and the total number of fibers is 50,000. This is one of the major

factors which make fibers in Figure 6 look much denser. Importantly, the key conclusion

that U-shape diffusion imaging derived fibers course around sulci and connect neighboring

gyri is consistently true, no matter what datasets and tractography tools/parameters were

used.
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We further used the HCP dataset to validate this observation. We selected a group of seed

points along the sulcal fundus (the black dots in Figure 7(a)) and used the probabilistic

tracking method in FSL on each seed point separately. In Figure 7(a), the left central sulcus

was used as an example to show the overlapped probabilistic tracking maps obtained from

multiple seed points. In Figure 7(b), only one or two typical seed points were used in order

to give a clearer view. It can be seen that voxels with higher probabilistic values form U-

shape pathways starting from the seed points and extending the way to neighboring gyral

regions. Maps on the right hemisphere can be found in Supplemental Figure 7.

We also measured the U-shape fiber depth using the HCP data which has high resolution

(1.25mm×1.25mm×1.25mm) via q-ball model on the single shell (b = 2000) of five

randomly selected subjects. Then, based on the fiber tracts obtained via deterministic fiber

tracking in Trackvis, we computed the minimal distance between each fiber tract and the

gray matter/white matter cortical surface. On average, the minimal distance between U-

shape fibers and gray matter/white matter boundary is 2.89 mm. This result demonstrates

that the fiber bundles are more than 2 voxels away from the boundary and suggest that the

fiber dispersion problem may have relatively little impact on U-shape fiber bundles. Also,

we adopted the multi-shell model in FSL5 to estimate the fiber orientation of the HCP dMRI

data and obtained the orientation dispersion maps. Then, we aligned the U-shape fiber

bundles with the dispersion maps and recorded the dispersion values along the pathways. On

average, the gray matter dispersion value is 0.0759 which is much greater than white matter

(0.0109). The average dispersion value on our U-shape pathways is 0.010, which is lower

than the one in gray matter. This result further demonstrates that U-shape fiber bundles

discussed in this paper may be less affected by the orientation dispersion problem. Detailed

reports of the U-shape depth and dispersion values can be found in Supplemental Tables 3

and 4.

Moreover, our preliminary result on the fetus brain suggests that fiber dispersion may have

less statistically effect on fiber termination density. In Figure 8 (a) and 10(b), we compared

the fiber termination density map and the maximum principal curvature (MPC) map of a

fetus brain. The white arrow highlights a sulcus with more negative MPC value, where less

fiber density can be observed. More importantly, the fetus brain is relatively flat rather than

highly convoluted, which can be observed by taking a cross-section (the white dashed curve

in Figure 8(c)) at the position of red line (frontal lobe) in Figure 8(b). But the fibers beneath

the potential sulcus are of U-shape and much deeper than the sulcus (indicated by the yellow

dashed arrow). This observation suggests that the deeper parts of those fiber pathways have

less possibility to disperse their way to gray matters. Therefore, at the current brain

development phase, it might be possible that no strong fiber dispersion effects can be found.

Also, based on this observation, we suggest that the development of those U-shape fibers

may be independent of the formation of convoluted cortex. Other U-shape fibers in the fetus

brain can be found in Supplemental Figure 14.

In order to better illustrate that U-shape fibers connect the neighboring gyri, we computed

the group-wise connectivity maps for fiber bundles in the following way. For the fiber

bundle extracted from one sulcus, each fiber within it has determined which two gyri it

connects. Then, the total number of fibers that connect gyri A and B within this fiber bundle
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is defined as the connectivity strength. Therefore, a connectivity matrix, the row and column

of which are the gyrus name and the element of which is the connectivity strength, can be

obtained for each sulcus. Then, an average matrix for each sulcus across subjects within

each dataset can be directly computed. In order to compactly visualize those connectivity

matrices, we firstly picked up the top three strongest connectivities (if there exist more than

three connections) from each average matrix, and then integrated those average matrices

from different sulci into a connectivity map. In Figure 9, we visualized the U-shape fiber

connectivity map of all human datasets. In this figure, gyri are organized on a gyral circle.

The connectivities are represented by curves linking gyri inside and outside the gyral circle.

Connectivities from the same sulcus are of the same color according to the color bars in

Figure 6. The connectivity that links two different gyri is shown inside the gyral circle, and

the one that links the same gyrus is outside the circle. The connectivity strength is

represented by the width of the curves. To make sure that the maps can be clearly observed,

the connectivity strength, the width of the curves were equally amplified within each map.

Therefore, direct comparison among the three maps in terms of connectivity strength is

improper while it is meaningful within subject.

It is noted that many connectivities within a single gyrus can be found in the human DSI

data. For example, the superior frontal gyurs, middle frontal gyrus, and superior parietal

lobule are self-connected and fibers course around the nearby sulci, such as the superior

frontal sulcus and intra-parietal sulcus. This type of connectivities can also be found in

HARDI data, for example the superior frontal gyrus, superior parietal lobule and middle

temporal gyrus, and those fibers course around the nearby sulci, such as the superior frontal

sulcus, intra-parietal sulcus and superior temporal sulcus. However, this type of connectivity

can be barely found in DTI data except a few gyri in frontal lobe such as superior frontal

gyrus.

Abundant connectivity can be found within lobes in all three maps such as the frontal lobe

(e.g., superior frontal gyrus, middle frontal gyrus and inferior frontal gyrus) and those

connecitivties are derived from U-shape fibers coursing around the inferior frontal sulcus,

superior frontal sulcus or pre-central sulcus. Gyri in the parietal lobe (e.g., superior parietal

gyrus, inferior parietal gyrus and supra-marginal gyrus) are also connected and the

connecting fibers course around the intra-parietal sulcus or post-central sulcus.

A few middle-range connectivities can also be found between lobes. In all three modalities,

fibers crossing boundary between the parietal lobe and temporal lobe and connecting

inferior parietal lobule/supra-marginal gyrus and middle temporal gyrus can be found, and

those fibers mostly course around the superior temporal sulcus and a few course around

inferior temporal sulcus. In DSI data, fibers crossing boundary between the frontal lobe and

parietal lobe and connecting the post-central gyrus/pre-central gyrus and superior parietal

lobule/inferior parietal lobule/supra-marginal gyrus can be found, and those fibers mostly

course around the central sulcus or post-central sulcus. In DTI data, fibers crossing the

boundary between the frontal lobe and parietal lobe can also be found, and they connect the

pre-central gyrus and post-central gyrus/superior parietal lobule/inferior parietal lobule and

course around the central sulcus and post-central sulcus. Also, a few fibers connecting the

parietal lobe (superior parietal lobule) and occipital lobe (superior occipital gyrus) can be
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found, and they course around the inferior temporal sulcus or intra-parietal sulcus.

Additionally, a few long-range U-shape connectivities between the frontal lobe and temporal

lobe can be found in all three maps. Those fibers cross multiple sulci like the pre-central

sulcus, central sulcus and post-central sulcus, so it is not necessary to determine which

sulcus they course around.

Although qualitative comparison among DSI, HARDI and DTI data suggest different levels

of diffusion imaging quality, they still share some common connection pattern. For example,

those connectivities within frontal lobe and parietal lobe are similar across the modalities.

Further, we quantitatively analyze the average ratio of U-shape fiber number over the total

number of fibers extracted from major sulci on all subjects within each datasets. In Table 1,

only close U-shape fibers of human brains are considered, i.e., the fibers classified into

cluster #1 in Figure 3. In Table 2, U-shape fibers of human brains classified into cluster #2

are also included to obtain the U-shape-to-all ratio. The ratio was computed on each subject

individually, and then the average ratio within each dataset is reported in tables in this

section.

It can be seen from Table 1 that very few (left hemisphere: 0.03, right hemisphere: 0.02)

close U-shape fibers coursing around the central sulcus can be found in DSI data, and the

ratio values in the other two modalities are also low (HARDI: left: 0.13, right: 0.16; DTI:

left: 0.17, right: 0.14) in the central sulcus compared to other sulci. Dense close U-shape

fibers can be found in the intra-parietal sulcus in both DSI (left: 0.29, right: 0.31) and

HARDI (left: 0.20, right: 0.17) data, while they are not dense in DTI (left: 0.13, right: 0.14)

data. Dense fibers can be found in the pre-central sulcus and superior temporal sulcus in all

three modalities (shaded by gray bars). After adding open U-shape fibers (Table 2), the U-

shape fibers take up around 40% of all fibers. The differences of ratio from major sulci are

decreased across modalities compared to Table 1, indicating the overall distribution of U-

shape fibers across the brain. In comparison, less U fibers can be found in the central sulcus,

superior temporal sulcus and transverse occipital sulcus (shaded by gray bars).

3.3. Joint Analysis of Primate Data

In this section, we randomly selected one subject from the chimpanzee DTI dataset to show

the major sulcal fundi and the U-shape (open U-shape and close U-shape) fibers on the left

hemisphere in Figure 10 (the right hemisphere of chimpanzee DTI and both hemispheres of

macaque are shown in Supplemental Figures 8-10). In Figure 11, we visualized the group-

wise U-shape fiber connectivity map of the two species. In general, U-shape fiber bundle

can also be found to be coursing around the correspondent sulcal fundus. The fibers extend

their way to the neighborhood of the gyral regions.

In Figure 11(a), a few short range U-shape connectivities can be found within a single gyrus

(superior frontal gyrus, post central gyrus and superior parietal lobe). Those fibers course

around superior frontal sulcus/pre-central sulcus, central sulcus/post central sulcus and intra-

parietal sulcus. U-shape connectivities can also be found within the frontal lobe (superior

frontal gyrus, middle frontal gyrus, inferior frontal gyrus and pre-central gyrus) and parietal

lobule (superior parietal lobule and supra-marginal gyrus). Those fibers course around the
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superior frontal/inferior frontal/pre-central sulcus and intra-parietal sulcus respectively.

Inter-lobe middle-range U shape connectivities can also be found between the frontal lobe

and parietal lobe (between pre-central gyrus and supra-marginal gyrus, and between superior

frontal gyrus and post-central gyrus) and those fibers mainly course around central sulcus.

Virtually weak long-range connectivity, like fibers connecting the frontal lobe and temporal

lobe in human brains, can be found in chimpanzee brains.

In the macaque DTI data (Figure 11(b)), intra-gyrus U-shape connectivity exists within pre-

central gyrus and superior temporal gyrus, and course around arcuate sulcus and superior

temporal sulcus respectively. Intra-lobe connectivity exists within the frontal lobe (superior

frontal gyrus, middle frontal gyrus, inferior frontal gyrus and pre-central gyrus) and parietal

lobe (superior parietal lobule, supra-marginal gyrus and angular gyrus). Those fibers course

around the arcuate/principal sulcus and intra-parietal sulcus, respectively. Inter-lobe

connections can be found between the parietal lobe and temporal lobe, that is, fibers course

around the intra-parietal sulcus and connect superior parietal lobule and superior temporal

gyrus/angular gyrus. Particularly, the connectivity between the pre-central gyrus and post-

central gyrus coursing around central sulcus can be found and relatively stronger than

others. No long-range U-shape connectivity can be found. This result is consistent with the

one in Thiebaut de Schotten, et al., 2011.

In summary, the figures and results in sections 3.2 and 3.3 and in Supplemental Figures 2-10

consistently demonstrated the U-shape fibers coursing around major sulci across the whole

cortex, across data modalities, and across three primate species. These results reveal that the

common pattern of U-shape fibers coursing around sulci is evolutionarily-preserved in

cortical architectures.

Similarly, the close U-shape fiber ratios and U-shape fiber ratios (including open U) of

chimpanzees and macaques are shown in Table 3 and Table 4. Generally, denser close U-

shape fibers (see Ratio 1) can be found in the inferior post-central sulcus (left: 0.11, right:

0.24) and inferior pre-central sulcus (left: 0.11, right: 0.32) in chimpanzees, while fewer can

be found in the lunate sulcus (left: 0.02, right: 0.08). Again, when adding open U-shape

fibers into consideration (see Ratio 2), we can find that U-shape fibers are relatively evenly

distributed across sulci and take up around 40% of all fibers. As to macaque data, denser

close U-shape fibers course around the intraparietal sulcus (left: 0.18, right: 0.17) and

superior temporal sulcus (left: 0.15, right: 0.14), while fewer can be found in the arcuate

sulcus (left: 0.08, right: 0.05). Dense U-shape fibers (including open U shape) can be found

coursing around the arcuate sulcus (left: 0.43, right: 0.40) and principal sulcus (left: 0.43,

right: 0.41), while fewer can be found in the central sulcus (left: 0.33, right: 0.33).

3.4. Comparison across Species

In order to quantitatively compare the fiber shapes across datasets, we computed the ratio of

fibers classified into each of the four clusters in Figure 3 over the total number of fibers

within each subject, and show the results in Supplemental Figure 11 (DSI and HARDI data

were used as reference). Here, fibers connecting two hemispheres are not considered.

Generally, human brains (HARDI and DTI datasets) have greater close U-shape ratios and

open U ratios than chimpanzees and macaques. Although human DSI data has fewer close
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U-shape fiber, it prevails over others in open U-shape. Totally, U-shape ratios (including

close U-shape and open U-shape) in human brains are 0.45 (DSI), 0.43 (HARDI) and 0.35

(DTI), which are greater compared to chimpanzees (0.23) and macaques (0.24). The ratios

of line shape (including curved line and straight line) fibers in chimpanzee (0.77) and

macaque (0.76) brains surpass those in human brains (DSI: 0.55, HARDI: 0.57 and DTI:

0.65). Statistical t-test was conducted on U-shape fibers ratios (including close U-shape and

open U-shape) between species. Considering the data modality impact, t-test is only

conducted on the DTI data of the three species. The p-values are 0.008 and 0.035,

respectively, for human-chimpanzee and human macaque pairs when two-tailed test is

performed, and the p-values are 0.011 and 0.021 in right-tailed tests (human ratio is greater

than chimpanzee/macaque ratio). This result indicates that fibers in human brains are more

deflected from the straight courses than chimpanzee and macaque brains.

4. Discussion and Conclusion

In this work, three modalities of diffusion imaging data (DSI, HARDI and DTI) and

deterministic fiber tracking methods (TrackVis and MedINRIA) were used to reconstruct the

fiber pathways. The former two imaging techniques (DSI and HARDI) were developed in

order to better resolve crossing fibers at the scale of single MRI voxels (Tuch et al., 2002;

Wedeen et al., 2005; Wedeen et al., 2012, Ozarslan et al., 2003). Many previous studies

have validated the effectiveness of these imaging techniques via either phantom study

(Poupon et al., 2008) or autoradiography-based comparison study (Schmahmann et al.,

2007). As an example, we further examined the orientation distribution functions (ODFs)

derived from human DSI data in Supplemental Figure 12 to visually verify the effectiveness

of deterministic tracking methods, as well as the fact that reconstructed U-shape fiber

coursing around the sulcal fundi. Specifically, we extracted voxels around two sulcal fundi

(superior temporal sulcus and intra-parietal sulcus), and jointly showed the fundi and ODFs

derived from those nearby voxels in Supplemental Figure 12. Two different views were

taken for each sulcus. It can be clearly appreciated that orientations of the local maxima on

ODF profiles are roughly tangential to the sulcal fundus and form a sweeping flow around

the fundus. This result visualizes our previous finding that U-shape fibers course around

sulcal fundi.

We are also aware of the possible biases of streamline fiber tracking methods and low-level

modeling approaches that might cause false positives/negatives when they approach the gray

matter cortex. Dispersion and fanning of white matter fibers can be observed near the gray/

white matter boundary (Heidemann, et al., 2012 and Jbabdi and Johansen-Berg, 2011).

Meanwhile, in Sotiropoulos, et al., 2013, comparison has been made between diffusion MRI

and histology images on macaque cortex. It is inspiring that DTI-derived fiber orientations

are consistent with histology data within the white matter area, which supports the validity

of DTI and the results in this paper. Based on these studies, although diffusion MRI lacks

the ability of detecting dispersion and fanning of fiber terminations entering gray matter in

gyral walls, the overall shape of fiber tracts may not be impact severely and we suggest that

the existence of observed U-shape fibers across whole brain are not likely to be the result of

the bias of tracing approach. Moreover, Sotiropoulos and his colleagues also demonstrate

that both the modalities predict reduced dispersion near the fundus of a sulcus. Therefore,
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when we observe the sulcal fundus in this paper it appears more confident to suggest the

conclusion that those fiber bundles course around the sulcal fundus. To better illustrate this

point, we selected four sulci and jointly visualize the white matter surface and ODFs

reconstructed from DSI data in Supplemental Figure 13. Cross sections (white curves) were

used to better illustrate the location of sulcal roots and gyral walls. Black arrows highlight

some ODFs beneath the sulcal roots while yellow arrows highlight some ones near the gyral

walls. We can observe that those ODFs beneath the sulcal roots are of the polarized shape,

suggesting less dispersion of fibers coursing around the sulcal root, while anisotropic ODFs

can be found near the gyral walls, suggesting more dispersion and fanning when they

entering the grey matter. Also, the results in section 3.2 including the minimal distance

between U-shape fibers and gray matter/white matter boundary is 2.89 mm, more than 2

voxels away from the boundary, the average dispersion value on our U-shape pathways is

0.010, lower than the one in gray matter (0.0759) and our preliminary result on the fetus

brain (Figure 8), suggest that the fiber dispersion problem may have relatively little impact

on U-shape fiber bundles.

Although we suggested some conclusions based on the current datasets and up-to-date fiber

tracking and analysis methods in this paper, further studies including higher resolution

diffusion MRI data and other modalities like histology data are needed in the future to

carefully further and complete the interpretation of co-localization of fibers and sulci.

From the methodological point of view, most of the current fiber clustering methods (e.g.,

O'Donnell et al., 2007; O'Donnell et al., 2013; Wang et al., 2011; Wassermann et al., 2010;

Visser et al., 2011) were developed to segment streamlines into anatomically relevant

bundles so that the fiber clusters may have anatomical plausibility. However, the goal in this

paper is to characterize U-shape fiber, and thus we are interested in how to describe the

shape of fibers so that U-shape fibers across the whole brain can be identified. Therefore, it

is acceptable in this paper that U shape fibers in the frontal lobe and the occipital lobe would

be clustered into the same class. This fiber shape based clustering cannot be achieved by

other methods as far as we know, which can only group adjacent fibers into clusters and

depict fiber bundle boundaries but cannot generate specific U shape fiber clusters as we

need. Also, current fiber analysis methods summarized in O'Donnell et al., 2013, including

the one developed by ourselves in Hu et al., 2010, mainly focused on clustering fiber tracts

into bundles. They relied on constructing a similarity matrix, the element of which is the

similarity measure between any two fiber tracts. The computation load is limited by the size

of the similarity matrix. However, our goal is comparing the fiber shapes across species and

across datasets (referred by us as ‘large scale’) and there will be millions of fiber tracts to

deal with. An alternative approach could be clustering fiber tracts of subjects individual by

individual and then collecting the individual clustering results and making the comparison.

However, the problem is that individual clustering results could be biased by individual

variation. The similar problem can also be met if we apply clustering methods onto each

species separately. In this paper, instead of directly applying clustering methods onto all

fibers, we sampled a subset of fibers across datasets and species and used the affinity

propagation clustering methods to determine the common cluster centers, which are the five

fiber shapes. The five shapes were derived across datasets and species, and therefore they

can be used as common templates and all fiber tracts from different species can be compared
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by measuring the similarity to those common templates. Based on this concept, we used the

k-means method to propagate the five-fiber-shape labels across all datasets. Therefore, this

scheme effectively deals with the ‘large-scale’ dataset problem, and makes the clustering

results comparable, as well as without introducing the ‘cross-species’ bias.

When comparison was conducted among the three diffusion imaging modalities (DSI,

HARDI and DTI) in human brains, more self-connected gyrus, that is, the gyrus connected

by two terminations of the same fibers, can be found in DSI and HARDI data other than in

DTI data. Also we observed that middle-range connectivity of DTI data is stronger than

short-range connectivity within the same subject, while short-range connectivity is stronger

than middle-range connectivity within DSI data and HARDI data. This observation may

indicate that the capacity of DTI to detect short-range and highly curved fibers is relatively

low. The reason might be that the co-localization of highly curved short-range fibers (close

U-shape suggested in this paper) and middle-range fibers might cause many crossings within

voxels, and the ratio of highly curved short-range fibers is lower than middle-rang ones.

Therefore, the inability of DTI to detect crossing fibers may bring more false negatives

(ineffective tracking of pathways that do exist) in tractography reconstruction of this class of

fiber. However, the existence of U-shape fibers which course around sulcus and connect

neighboring gyri is consistently evident and has been cross-validated among multiple

diffusion imaging modalities and cross-species datasets.

The phenomenon that U-shape streamline fiber courses along sulcal fundi and connects

neighboring gyri can be observed apparently near sulci like the intra-parietal sulcus where U

shape fibers dominate. Even in sulci like the central sulcus where U-shape fibers take a

small portion, line-shape fibers still course around its fundus in a similar way, as illustrated

in Figure 1(a). The underlying reason of this phenomenon may be due to the inability of the

three diffusion imaging techniques, which should be investigated in the future. Moreover,

the co-localization of U-shape fibers and gyri may also suggest a specific role that U-shape

fiber plays in gyrification procedure. In Hu et al., 2010, the preliminary results showed the

correlation between cortical folding pattern and fiber shapes. This figure statistically showed

that the close U-shape fibers are more like to terminate in the neighborhood of peak/ridge-

shape gyri regions. This result was reproduced in DSI data as shown in Supplemental Figure

15. Though fibers may disperse and fan when they entering the gray matter of gyral wall, we

can still observe that gyri regions around the U-shape fiber terminations are more highly

convoluted than other regions. This observation is also mentioned in Wedeen et al. 2012, in

which the authors found that path orientation was aligned with gyral topography in the

arcuate sulcus and they suggested that the relation of fiber structure and cortical folding

merits further investigation.

The comparison result among species that U-shape fibers take over a larger portion in

human brain than chimpanzee and macaque brains can be better explained, given our

previous hypothesis that U-shape fiber might have a positive correlation with the elaboration

of gyrification. Such observation can also be found in our previous study (Chen, et al.,

2012), in which more elaborate folding pattern and fiber bundle orientation pattern have

been validated along the phylogeny scale, and in Wedeen et al., 2012 where the authors

suggested that cross-species homology was strong and showed emergence of complex gyral
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connectivity by continuous elaboration of this grid structure. From the functional

perspective of view, many long-range comparison studies have reported some major

differences between human and other primates. For example, in Thiebaut de Schotten, et al.,

2012 and James, et al., 2008, major differences were found for the arcuate fasciculus, which

may underlie unique human language functions. This result can also be observed in our

connectivity map in Figure 9(c), Figure 11(a) and Figure 11(b). Nevertheless, much more

joint comparison work is warranted in the future to explain the result in this paper that U-

shape fibers are less in overall regions in non-human brain, from both structural and

functional perspectives.

Finally, we would like to point out that this study and its results should be interpreted with

caution that diffusion imaging including DSI, HARDI and DTI is limited to connectivity

mapping at the macro-scale. In particular, it is noteworthy to point out that current diffusion

imaging techniques (DTI, HARDI and DSI) have limitations in spatial resolution, dealing

with crossing fibers, and mapping axonal fibers around the boundaries between gray matter

and white matter. Essentially, current diffusion imaging techniques are far from being able

to map the complete complex fiber pathways and connectional architectures of the cerebral

cortex (Schmahmann and Pandya, 2006). Therefore, in the future, micro-scale bioimaging

techniques, e.g., the recently developed series two-photon tomography imaging (Ragan et

al., 2012), should be used to further examine the identified U-shape streamline fiber

connection patterns among cortical gyri and sulci via macro-scale neuroimaging techniques.

In general, integration of structural connectivity imaging techniques at multiple scales is a

very promising future research direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

1. A novel computational framework for characterization of U-shape fibers.

2. Identification and characterization of U-shape fibers from DTI/HARDI/DSI

data.

3. Characterization of U-shape fibers from human, chimpanzee and macaque

brains.

4. Most U-shaped fibers connect neighboring gyri by coursing along cortical sulci.

5. Reveal an evolutionarily-preserved common pattern of U-shape fiber

connectivity.
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Figure 1.
(a) Joint representation of cortical gyral folding (derived from MRI) and streamline fiber

connection patterns (derived from DSI) on a coronal section through the middle part of

human brain. Sulcal regions are highlighted by black arrows. The direction of blue arrows

suggests the normal orientation of the gyri. (b) Demonstration that convex cortical gyral

shapes are connected by dense fibers orienting along the tangent folding direction (indicated

by arrows) to the cortical sphere of the gyral crests. The surface patch is color-coded by the

fiber termination orientation according to the color bar. (c) Joint representation of cortical

gyral folding (derived from MRI) and U-shaped streamline fiber connection patterns

(derived from DSI) on a sagittal section through the superior level of central sulcus. Yellow

curves highlight the trajectories of the dominant fiber bundles and the yellow arrows

indicate the orientation of the fibers' terminations which penetrate the cortical surface.
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Figure 2.
The flowchart of the fiber shape analysis methods. (a) Whole-brain white matter fiber

tractography; (b) U-shape fibers; (c) Reconstructed GM/WM surface with gyral region

color-coded by brown and sulcal region color-coded by other colors; (d) Sulcal fundi (white

curves); (e) U-shape fiber bundles extracted from sulcal fundi. Step 1: fiber clustering

method detailed in section 2.2.1; Step 2: Sulcal fundi extraction method detailed in section

2.2.2; Step 3: Fiber bundles extraction around sulcal fundi detailed in section 2.2.2.
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Figure 3.
The bottom panel shows the ratio of fiber number in each class over the total number (in the

sample dataset). Example fibers in the five classes analyzed in this paper are shown in the

top panel, and fibers are color-coded according to the corresponding color bars in the bottom

panel. The noisy fiber is shown in yellow color.
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Figure 4.
(a) Illustration of extracting gyral crest line on cortical surface. White dots are manually and

sequentially selected from ‘Start’ to ‘End’ and the white curve is the geodesic path

backtracking from ‘End’ to ‘Start’ on the surface, which is color-coded according to the

maximum principal curvature bar on the right side. (b) Illustration of extracting U-shape

fibers from the sulcal fundus. White curve is the sulcal fundus, and the white mesh frame is

a 3 mm radius tube of the sulcal fundus. Color curves are U-shape fiber bundle passing

through the tube.
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Figure 5.
Comparison of cluster centers obtained by separately applying AP algorithm on human DTI

dataset, chimpanzee DTI dataset and macaque DTI dataset.
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Figure 6.
Joint representation that U-shape fibers course around sulci and connect neighboring gyri on

the left hemisphere of human DSI data. Fibers which course around the same sulcus are

shown with the same color according to the color table. White tubes are the sulcal fundi and

gray tubes are the gyral crest lines. The radius of sulcal fundi tubes is 2 mm and the radius

of gyral crest line tubes is 0.5 mm. The sulcus names are annotated on the sulcal tubes with

black color and the gyrus names are annotated beside them with white color.
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Figure 7.
(a) Joint representation that U-shape fibers course around sulci and connect neighboring gyri

on the left hemisphere in the HCP data. White tube: central sulcus fundus. Gray tubes: pre-

central/post-central gyrus crests. Black dots: seed points selected along the sulcus fundus.

Black curves represent the skeleton lines of pathways with high probabilistic values; (b)

Joint representation that U-shape fibers course around sulci and connect neighboring gyri on

the left hemisphere in the HCP data.
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Figure 8.
(a) Fiber end density mapped onto gray matter surface of a fetus brain; (b) The maximum

principal curvature map of the gray matter surface; (c) A joint visualization of fibers (white

tubes) and a cross-section (white dashed curve) of the surface at the position of red solid line

in (b). Yellow dashed arrow indicates the distance between U-shape fiber bottoms and sulcal

fundi. (d) T1-weighted MRI cross-section image taken at the same position as (c) is used as

background. The white arrow highlights a sulcus.
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Figure 9.
The U-shape streamline fiber connectivity map of human data: (a) DSI; (b) HARDI; (c)

DTI. Note that the connectivities preserved in each sulcus are the top three ones in terms of

strength.
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Figure 10.
Joint representation that U-shape fibers course around sulci and connect neighboring gyri on

the left hemisphere in chimpanzee DTI data. Fibers which course around the same sulcus are

shown with the same color according to the color table.
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Figure 11.
The U-shape fiber connectivity map in (a) chimpanzee DTI data and (b) macaque DTI data.
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