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Abstract

Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter 

(WM) fiber tracts and their development in the brain, facilitating a network representation of 

brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel 

means of investigating brain changes arising from pathology, development or aging. The high 

dimensionality of these connectivity networks necessitates the development of methods that 

identify the connectivity building blocks or sub-network components that characterize the 

underlying variation in the population. In addition, the projection of the subject networks into the 

basis set provides a low dimensional representation of it, that teases apart different sources of 

variation in the sample, facilitating variation-specific statistical analysis. We propose a unified 

framework of non-negative matrix factorization and graph embedding for learning sub-network 

patterns of connectivity by their projective non-negative decomposition into a reconstructive basis 

set, as well as, additional basis sets representing variational sources in the population like age and 

pathology. The proposed framework is applied to a study of diffusion-based connectivity in 

subjects with autism that shows localized sparse sub-networks which mostly capture the changes 

related to pathology and developmental variations.
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1. Introduction

Computational techniques applied to neuroimaging data have helped unveil the underlying 

structural or functional differences between groups of interest, e.g. patients and healthy 

controls. Study of brain connectivity has recently gained a lot of attention in investigating 
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the origin of many brain disorders such as autism spectrum disorder (Jou et al., 2011; 

Vissers et al., 2012), schizophrenia (Price et al., 2007; Skudlarski et al., 2010), and 

Alzheimer’s disease (Bozzali et al., 2011; Matthews et al., 2013) as well as in the study of 

development (Dennis et al., 2013; Ingalhalikar et al., 2013). Hence, advanced techniques of 

brain connectivity analysis are emerging as a powerful tool in studies of brain disorders as 

well as in the study of brain development. Such tools quantify the connectivity between two 

regions of interest (ROIs) in DTI, fMRI, EEG, or MEG recordings by using measures such 

as fiber tracking (Mori and van Zijl, 2002; Friman et al., 2006), independent component 

analysis (Calhoun et al., 2008), mutual information (Salvador et al., 2010), and 

synchronization likelihood (Ghanbari et al., 2013). Connectivity is then represented by a 

square matrix of size equal to the number of ROIs, where each element of the matrix 

represents the connectivity measure between corresponding ROIs (Rubinov and Sporns, 

2010).

Diffusion MRI (dMRI) (Bihan et al., 1986, 2001, 2003; Basser and Pierpaoli, 1996; Basser 

et al., 2000; Alexander et al., 2007; Paul et al., 2007) offers a rich insight into the complex 

“highway network” of white matter (WM) fiber pathways in the brain by capturing the 

diffusion patterns of water molecules aligned with microscopic tissue architecture. Diffusion 

is a three dimensional process which is mathematically modeled by 3-D tensors, which is 

representative of how water diffuses in the underlying tissue. Thus, dMRI provides unique 

clues of neural organization structures in terms of fiber bundles (Bihan, 2003). This brings 

the opportunity to quantify the anatomical connectivity using fiber bundle density measures 

(Lanyon, 2012; Clayden, 2013). The connectivity measures are subsequently used to 

construct the brain structural network, known as the connectome, to analyze the structural 

brain connectivity as a large complex network (Sporns, 2011). Structural connectome is 

hence represented by non-negative quantities indicative of anatomical pathways between 

regions of the brain. Its relationship with anatomy is the constraining factor for it to be non-

negative, where a zero means no pathway, while a positive number indicates presence of 

fiber pathway with its magnitude representing the connectivity strength.

A number of established analysis methods are available for studying the underlying brain 

structure via a network representation. Graph theory metrics (Bullmore, 2009; Rubinov and 

Sporns, 2010) have been recently introduced to analyze complex organization of brain 

networks by providing features such as small-worldness, modularity, and participation 

coefficient (Bassett et al., 2011; Ingalhalikar et al., 2013). A successful analysis 

methodology must possess a means of identifying relevant sub-networks, providing an 

interpretable representation of the brain network with non-negative quantities, while also 

facilitating the statistical analysis that describes how this representation is affected by 

disease. The traditional approaches, i.e. principal and independent components analysis 

(PCA and ICA) used for investigating brain functional networks (Calhoun et al., 2008) 

provide dimensionality reduction but may lack physiological interpretability, due to no non-

negativity constraints, when applied to structural connectivity networks.

Recently, non-negative matrix factorization (NMF) and its alternatives have received 

extensive attention and proven effective in providing an interpretable set of bases 

characterizing multivariate data. After being first introduced by Lee and Seung (1999), NMF 
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has been successfully employed in many applications such as signal processing, pattern 

recognition, and data mining (Berry et al., 2007; Yan et al., 2007; Wang et al., 2009; Yang 

and Oja, 2010; Batmanghelich et al., 2012). Its part-based representation of data, as well 

non-negativity constraints on both the bases and coefficients, facilitates interpretability, and 

its small size of the basis set categorizes NMF among the dimensionality reduction 

techniques. Although these methods are useful for interpretation due to their positivity and 

sparsity, they do not necessarily provide discriminative bases, only bases which best 

reconstruct the original data.

We consider the connectivity matrix of a subject as linear combination of several 

fundamental connectivity matrices called connectivity component sub-networks. The 

approach taken here is the decomposition of such connectivity matrices into dominant 

components, while enforcing positivity on both the components and coefficients. Such 

decomposition maintains the interpretation of each component as a network connectivity 

matrix and the coefficients associated with these components as weights of those networks, 

while providing a low dimensional representation of the population amenable to statistical 

analysis. Such an interpretation is obtained by enforcing non-negativity constraints to both 

the component sub-networks that represent structural connectivity, as well as their 

coefficients that represent their contributing weights. Fig. 1 illustrates the decomposition of 

a connectivity matrix into several sub-network modules.

The analysis of connectomes of a population requires meaningful reduction of the 

dimensionality to obtain sub-networks that describe the population. The weight of each sub-

network describes the contribution of that sub-network to a subject which can be used to 

learn about the subject’s standing within its population group spectrum. These weights can 

also be used to perform statistical analysis and regression. Such a representation is able to 

capture different aspects of population and facilitates different types of analyses. Hence, 

three types of components are needed to extract: discriminative, regressive, and 

reconstructive components. Discriminative components are used to identify groups (such as 

patients-control) within the population and their pattern of connectivity difference. 

Regressive components characterize the connectivity pattern of a continuous score such as 

age or a clinical score. Reconstructive components are also needed to ensure that the original 

connectome input data would be reconstructed with minimal error in conjunction with 

discriminative and regressive components.

To compute our basis components towards discriminative, regressive, and reconstructive 

sub-networks, we take advantage of graph embedding. Graph embedding approaches have 

recently gained a lot of attention in data analysis (Craddock et al., 2012), dimensionality 

reduction (van den Maaten et al., 2009), and clustering (Belkin and Niyogi, 2002; Ng et al., 

2002). These methods mainly use the intrinsic geometry of the points on the data manifold 

to embed a graph into an objective function to keep neighborhood structure in the lower 

dimensional space. Locally linear embedding (Roweis and Saul, 2000; Saul and Poweis, 

2000) and Laplacian eigenmaps (Belkin and Niyogi, 2002; He and Niyogi, 2003) are among 

the most popular techniques applying graph embedding to find an appropriate low 

dimensional representation. Such techniques have proven to successfully provide low 

dimensional discriminative/regressive features in medical imaging applications such as in 
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MRI based classification of Alzheimer’s disease (Liu et al., 2013) and in characterizing 

trajectories of brain development (Aljabar et al., 2010).

Hence, we design a new framework accounting for the intrinsic geometrical information of 

the data manifold that helps to categorize our non-negative basis set into discriminative (i.e. 

providing group differences), regressive (age related in this paper) and reconstructive (i.e. 

providing low reconstruction error) components. This is modeled by minimizing the 

Frobenius norm of the decomposition residual error when graph embedding is added. We 

form a unified objective function to be minimized by a gradient descent approach with 

appropriate step size while guaranteeing the positivity of bases and their coefficients.

While the method is generalizable to any type of non-negative network, we demonstrate the 

applicability of the framework to DTI-based structural connectivity for a population of 

subjects with autism spectrum disorder (ASD). Our method is able to extract components 

that describe the underlying sub-network patterns of pathology related variability 

(discriminative components), as well as sub-network patterns of age variation 

(developmental components). Differences seen are pertinent to deficiencies in thalamic 

network and sub-cortical inter-hemespheric connectivity in autism, while there are other 

differentiating sub-networks in autism that are linked with age as well.

2. Material

2.1. Participants

24 individuals with ASD and 59 age-matched typically developing controls were recruited 

with no known genetic conditions associated with ASD. Ages of ASD subjects ranged from 

7.8 to 18.3 years with mean = 12.9 and SD = 3.0. The TDCs aged from 6.2 to 17.2 years 

with mean = 11.6 and SD = 3.2. The groups did not significantly differ in age. Participants 

with a community diagnosis of an ASD were recruited in part through autismMatch (https://

autismmatch.org), and diagnoses were confirmed using gold standard diagnostic instruments 

(ADOS (Lord et al., 2000) and ADI-R (Lord et al., 1994)) and expert consensus clinical 

judgment by two independent psychologists following Collaborative Programs of 

Excellence in Autism (CPEA) diagnostic guidelines. Tests include performance based 

measures collected by a psychologist with each study participant, as well as parent rating 

forms designed to quantify behavioral features of ASD.

2.2. Image acquisition

DTI data was acquired on a Siemens 3T Verio™ scanner, using a 32 channel head coil and a 

single shot spin-echo, echo-planar sequence with the following parameters: TR/TE = 

11,000/76 ms, b-value of 1000 s/mm2, 30 gradient directions. Eighty 2 mm contiguous axial 

slices of 128 × 128 matrix (FOV 256 mm) yielded 2 mmisotropic data. Quality assurance 

(QA) of the images was performed manually and the ones with poor quality were removed 

leaving 83 images with acceptable quality.
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2.3. DTI processing and tractography algorithm

Brain extraction procedure was performed on each diffusion volume of DTI data acquired 

for each subject, from which fractional anisotropy (FA) volume was computed. The high 

resolution T1 structural images were parcellated into 79 regions (68 cortical and 11 sub-

cortical) using Desikan atlas (Desikan et al., 2006) in Freesurfer. The 79 region labels were 

then transferred to the diffusion space where the GM-WM boundaries were determined. 

Probabilistic fiber tracking (Behrens et al., 2003a,b) was performed from each of these 

regions with 5000 streamline fibers sampled per voxel, resulting in a 79 × 79 matrix of 

weighted connectivity values, where each element of the matrix represents the conditional 

probability of a pathway between regions, normalized by the active surface area of the seed 

ROI. Fig. 2 demonstrates this procedure.

3. Methods

We view the connectivity matrix obtained from the structural brain connectivity network of 

subjects in a population as linear combination of several fundamental connectivity matrices 

called connectivity component sub-networks. There are challenges in computing such sub-

networks from a set of DTI structural connectomes: (a) these sub-networks have to be 

represented by connectivity matrices with positive elements because there is no concept of 

negative connections in DTI and (b) brain structure does not deactivate and hence the 

coefficients of those sub-networks have to be positive as well. To pursue this goal, we 

develop a method here that guarantees these constraints while producing sub-networks 

representative of pathology and development.

Due to the symmetry of connectivity matrices, a vector of all elements of the upper 

triangular part of any connectivity matrix is considered as a representative of that matrix, 

and is used as an observation vector xi for the corresponding subject i. We note that this is 

not a constraint of the method, i.e. if the connectivity network is represented by an 

asymmetric matrix (or a directed graph) then all elements of the connectivity matrix are 

vectorized into xi, not just the upper triangular ones.

To compute the connectivity components, a matrix factorization model is used as follows.

(1)

where represents the residual error of the decomposition operation, columns of X = [x1, x2, 

…, xn] ε Rm×n, i.e. xi (1 ≤ i ≤ n), are the vectorized connectivity matrix, and columns of W = 

[w1, w2, …, wr] − ε Rm×r, i.e. wj (1 ≤ j ≤ r), are representative of the normalized basis 

connectivity components, i.e. the upper triangular elements of the matrix of the 

corresponding connectivity component. These components wj are then mixed by the 

elements of each column of the loading matrix Φ = [ϕ1,ϕ2, …, ϕn] ∈ Rr×n to approximate 

the corresponding column of X (Yang and Oja, 2010), i.e. ; 1 ≤ i ≤ n. Fig. 

3 illustrates this procedure.
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3.1. Projective non-negative basis learning

We assume that Φ is the projection of X into W, i.e. Φ=WTX, the non-negativity constraint 

on the elements of W and Φ makes our non-negative component analysis an optimization 

problem of minimizing the cost function F1(W) = ||X − WWTX||2 with respect to W, where 

||.|| represents the matrix norm. Considering the Frobenius norm, the minimization problem 

can be denoted by

(2)

In order to demonstrate the effectiveness of non-negativity constraints in identifying the true 

underlying components, we apply the method of Eq. (2) to simulated connectivity matrices. 

We compare this with ICA which is the most widely-adopted method for similar purposes. 

The simulation is performed by using random non-negative numbers as the elements of three 

10 × 10 simulated symmetric matrices (as components) plus a slight (non-negative) random 

background noise. Ten linear mixtures of the simulated connectivity matrices are composed 

by a random mixing matrix with non-negative elements. The upper triangular part 

(excluding the diagonal) of the 10 connectivity matrices are vectorized to form the 10 

columns of X45×10. We apply the fast ICA algorithm (Hyvarinen and Oja, 2000) as well as 

the projective NMF of Eq. (2) (Ghanbari et al., 2012) to solve for p = 3 normalized 

components as columns of W45×3. The results are shown in Fig. 4. For visualization, the 

matrices and the elements of the resulting components are displayed by grayscale images. It 

can be seen that ICA is unable to resolve the components correctly while the solution to Eq. 

(2) can. This is due to the fact that ICA forces the components to be statistically independent 

whereas Eq. (2) forces the components to be non-negative and orthogonal which leads to 

localized components.

3.2. Locality preserving bases with graph embedding

In order to regularize our connectivity sub-network components towards possessing 

discriminative and regressive properties, we take advantage of the locality of the points in 

the high dimensional space of the vectorized connectivity. Firstly, we split the set of 

projective bases into two sets of W = [Ŵ, W̆, W̃] in which Ŵ = [w1, …, wq] are the 

discriminative basis components, W = [wq+1, …, wq+p] are the developmental basis 

components, and W̆ = [wq+p+1, …, wr] is the complimentary space containing the 

reconstructive basis components which minimizes the reconstruction error together with Ŵ 
and W̆. Thus, the coefficient matrix Φ is also split into Φ̂ = ŴTX, W̆ = W̆TX, and Φ̃ = W̃TX. 

A proper modeling of such intent would provide at most q of those bases which are likeliest 

to provide population discrimination to belong to Ŵ, and p of those which are likeliest to 

account for the developmental variations in W̆.

The locality preserving property that we impose in our method is based on the assumption 

that the two-group multivariate m-dimensional connectivity points lie on a manifold in the 

high dimensional space. In the first embedding, if the connectivity matrices are close in the 

m-dimensional spaces, then their proximity is preserved in the lower dimension using the set 

of discriminative components. The developmental components will embed subjects close in 

Ghanbari et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



age together, in order to preserve the age continuum. The third set of reconstructive 

components will preserve large distances to capture the global data variations so that the 

basis decomposition scheme will ensure reconstruction of the original connectivity data.

To clarify the idea behind our mathematical modeling, suppose that the m-dimensional 

points of two groups lie on a 3-D manifold in the m-dimensional space, as illustrated in Fig. 

5(a), and are to be projected into an r = 3 dimensional subspace with q = 1 discriminative 

(say y⃗), and p = 1 developmental (say x⃗), and r − p − q = 1 reconstructive components (say 

z⃗). To achieve this, we construct three separate graphs with the m-dimensional connectivity 

points as their vertices. The first graph is an intrinsic graph of k-nearest neighbors (He and 

Niyogi, 2003; Yan et al., 2007; Wang et al., 2009) which connects point i to point j if point j 

is among the k nearest neighbors of point i (as illustrated in Fig. 5(b)). This graph is 

employed to obtain the discriminative component sub-networks Ŵ by keeping the m-

dimensional points as close to each other as possible in the subspace spanned by Ŵ. The 

second graph, used for the developmental components, connects point i to point j if subject 

j’s age is among the k nearest ages to subject i, irrespective of the two points’ distance 

(illustrated in Fig. 5(c)). This graph is used to compute the age-regressive sub-networks W ̆ 

by keeping the connectivity points of subjects with similar ages near each other in the 

subspace of W̆. Finally, the third graph is formed by connecting point i to point j if point j is 

among the k farthest points to point i (as illustrated in Fig. 5(d)). Making far points close to 

each other will avoid the inclusion of the corresponding sub-network wrongly as 

representative of a discriminative or developmental component. As seen in Fig. 5(a), the 

axis x⃗ could be an incorrect potential candidate for the discriminative component since it 

keeps nearby points closer to each other compared to axis y⃗ (the desired discriminative 

component). Hence, having it captured in the third set of components will avoid wrongly 

categorizing this component into the discriminative, instead of reconstructive set. It will also 

help capture other variations of the data that was not captured by the discriminative/

developmental bases to help a better reconstruction of the data (i.e. better representation of 

the data variations).

There are a variety of approaches that can characterize separability of multivariate 

datapoints. Most of such techniques can be unified in the framework of graph embedding 

(Yan et al., 2007). Let G = {X, S} be an undirected weighted graph of n vertices, i.e. 

datapoints xi, with a symmetric similarity matrix S ∈  with non-negative elements, 

within the range of 0–1, corresponding to the edge weight of the graph. The Laplacian 

matrix (He and Niyogi, 2003) of the graph is then defined by

(3)

In order for the bases in Ŵ to provide discriminatory information, we would like the 

resulting coefficients of nearby xi points to stay close to each other to group together when 

projected into Ŵ. This can be obtained by minimizing
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(4)

where Ŝ = [Ŝij] is similarity matrix composed of the edge weights in the intrinsic graph of k 

nearest neighbors Ĝ = {X, Ŝ} of the m-dimensional points xi, as illustrated in Fig. 5(b). The 

edge weight of neighbor points xi and xj is defined by

(5)

where σ̂ is a scaling parameter. In this scheme, Ŝij is non-zero, if and only if xi is among the 

k-nearest-neighbors of xj or vice versa, leading Ŝ to be symmetric. According to Eq. (5), if 

datapoints xi and xj are close, their graph edge weight Ŝij will be large, and therefore, the 

cost function F2(W) gets minimized only if the corresponding coefficients ϕ̂
i and ϕ̂

j remain 

close. It is worth noting that proper choice of sigma will highlight the impact of subjects 

whose connectivity matrices are better representative of their population (i.e. lie around the 

center of the population distribution). Such proper choices of sigma will also lower the 

effect of subjects whose connectivity points are outliers. This helps the optimization 

function to concentrate on the more population representative connectivity data. The choice 

of scaling parameters is explained in Section 3.5.

Similarly, in order to capture the space of developmental variations, we employ the 

developmental graph Ğ = {X, S̆}, as shown in Fig. 5(c), in which points whose subjects are 

of similar ages are connected. Therefore, the space of developmental sub-network, W ̆, 

grouping the coefficients of subjects with similar ages, is computed by minimizing

(6)

The similarity matrix S̆ gets non-zero values for connected points in the developmental 

graph, whose elements are determined by

(7)

with σ̆ being a scaling parameter and agei is the age of subject i.

As explained earlier, we exploit the graph of k-farthest points G̃ = {X, S̃}, as illustrated in 

Fig. 5(d), to impose the representative coefficients (ϕ̃
i) of the farthest points to remain as 

close as possible in the lower dimensional space when projected into the reconstructive set 

W̃. This is performed by minimizing
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(8)

where the non-zeros elements of the similarity matrix forming the graph edges in G̃ is 

calculated by

(9)

It can be shown that minimizing Eq. (8) in conjunction with Eqs. (4) and (6) will help the 

sub-network components of Ŵ maintain discriminative properties and components of W̆ be 

age-regressive.

3.3. Objective function

To achieve the above four objectives, the final objective function is formed by F(W) = 

F1(W) + λ(F2(W) + F3(W) + F4(W)). According to the projective properties of the model, 

i.e. Φ = WTX, the final objective function can be modeled to minimize

(10)

where λ is a tunable parameter to balance the two terms of reconstruction error norm and 

graph embedding.

3.4. Optimization solution

Minimizing the objective function of Eq. (10) with non-negativity constraints of W yields 

the optimal projective bases among which q likeliest discriminative ones are obtained in Ŵ 
and p developmental sub-networks are captured in W̆ while the rest of components play the 

major role in reconstructing the original networks. To minimize the final objective function, 

we use a gradient descent approach, i.e. updating  with a positive step-

size ηij, where

(11)

Regarding that L̂ = D̂ − Ŝ, L̆ =D̆ − S̆ and L̃ = D̃ − S̃, and the fact that both D and S have non-

negative elements, our non-negativity constraint is guaranteed by positive initialization of W 
and applying the step-size as follows:
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(12)

This results in the a multiplicative updating solution as

(13)

For the stability of convergence, at each iteration, each column of W is normalized by 

. Starting with initial random positive elements on W, the iterative procedure will 

converge to the desired W = [Ŵ, W̆, W̃] ≥ 0.

3.5. Graph edge weights

The parameters σ̂, σ̆, and σ̃ in Eqs. (5), (7), and (9) are scaling measures of similarity 

between two points. Such scaling parameters are commonly set by trial and error, but this 

approach requires manual intervention and is time-consuming. A self-tuning local scaling 

parameter δi was proposed in (Manor and Perona, 2004) for each datapoint xi and is used to 

calculate the scaling parameter separately for each edge of the graph as follows:

(14)

where x↔i,k is the most distant point among the k-nearest neighbors of xi. Here, δi becomes 

undesirably large for the outliers and small for those near the center of the data distribution. 

This would lead σij in (14) to offset the distance effect in the computation of Sij and 

consequently Dii. This effect is illustrated in Fig. 6(b).

To avoid this problem, we propose to set the scaling parameter of the graph Ĝ by

(15)

where  is the most distant point among the k-nearest neighbors of xi. This is a suitable 

approach because δ̂i becomes large for the outliers and small for the points near the center of 

each distribution in the high dimensional space. The average of the δ̂is is dominated by the 

edges of the points around the center of population distribution, because the number of 

points around the distribution center exceeds the number of outliers. Synthetic 2-D points, 

distributed normally, were created to show that the scaling parameter of Eq. (15) 

outperforms Eq. (14), in constructing a weighted graph with center points having higher 

edge weights and outliers receiving lower edge weights in the graph. This is demonstrated in 

Fig. 6.
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With the same rationale, the scaling parameter of the graphs Ği,k and G̃ are set, respectively, 

by

(16)

and

(17)

where  is the farthest age among the k nearest ages to subject i, and  is the least 

distant point among the k-farthest points to xi.

3.6. Group analysis model

As stated by Eq. (1), the n connectivity observations, i.e. xi (1 ≤ i ≤ n), in the matrix X are 

approximated by

(18)

Each observation vector per subject i is thus, approximately reconstructed by

(19)

Thereby, the presence of each component wj in the corresponding connectivity vector of a 

subject xi (1 ≤ i ≤ n), is characterized by the corresponding coefficients Φji. Let us suppose, 

with no loss of generality, that the first n1 elements are from the first group (e.g. population 

of patients) and the remaining n2 = n − n1 from the second group (e.g. controls). Therefore, 

the statistical significance between the set of {Φji : 1 ≤ i ≤ n1} and {Φji : n1 + 1 ≤ i ≤ n} 

describes the importance of the corresponding connectivity basis wj in differentiating the 

two groups. Similarly, a developmental component wj can be evaluated by correlating its 

coefficients Φj. with the age of the subjects.

4. Results

The proposed method provides a framework for extracting three sets of network components 

from the population. These three basis sets help us understand the primary global dominant 

networks as well as pattern-based discriminatory and developmental sub-networks 

characterizing population variations. The discriminatory and developmental set of 

components are expected to show localized sparse sub-networks which mostly capture the 
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changes related to pathology and developmental variations, but do not considerably 

contribute in the reconstruction of the original connectivity matrices. The reconstructive 

basis set consists of global networks of dominant connectivity patterns. The number of 

components in the basis is population dependent; however, we show that even with 

relatively small numbers, we can obtain stable group differences.

4.1. Connectivity component analysis

The 79 × 79 connectivity matrix of each subject was vectorized to its 3081 upper triangular 

elements. The vectorized connectivity of all subjects were stacked to create the observation 

matrix X with m = 3081 rows and n = 83 columns. We pooled both patient and control 

groups because performing decomposition on the pooled ASD and TDC populations yields a 

common set of network basis components facilitating statistical group comparison, whereas 

obtaining components separately from the two populations yields coefficients that are 

statistically incomparable as they do not share the same mapping space, thereby causing 

spurious group differences. Moreover, pooling the patient and control groups will provide 

the between-group variability in the data which will be captured by the basis sub-networks.

To compute the components, we first constructed the three graphs explained in Section 3.2. 

We set k = 3 for all three graphs to construct the three nearest neighbor graph for 

discriminative, three nearest age graph for developmental, and three farthest point graph for 

reconstructive components. The similarity matrix representing graph edge weights were all 

obtained using the Gaussian kernels explained in Eqs. (5), (7), and (9). The tuning parameter 

between dominant component analysis and graph embedding (in Eq. (10)) was set to λ = 1.

We used q = 4 discriminative, p = 2 developmental, and 6 reconstructive components. We 

suggest that for each discriminative or developmental component, a reconstructive 

component be considered, hence the number of reconstructive components is set equal to the 

total of other components. The iterative procedure of Eq. (13) was performed which yielded 

components shown in Fig. 7. The connectivity component sub-networks obtained were 

sparse and thresholded for binary visualization to show the dominant connections at each 

component.

The vectorized connectivity of each subject was projected into the discriminative and 

developmental bases to obtain the coefficients and subsequently perform statistics for group 

difference and age correlation. To measure the discriminability of the components, we 

performed a t-test between the coefficients of ASD and TDC subjects for each sub-network 

component, separately. The coefficients were also correlated with age to determine the 

effect of development that the component can capture. In addition, the 83 subjects were 

divided into three closely-balanced age groups of 6–10 years (25 subjects), 10–13.5 years 

(28 subjects) and 13.5–18 years old (30 subjects). A t-test was performed between the 

coefficients of the subjects in the three age groups to assess the ability of the developmental 

components in capturing the effect of age. Results are given in Table 1.

Table 1 shows the results of group-wise and age-based statistics on the coefficients of 

discriminatory (a–d) and developmental (e) and (f) components. The statistical group 

difference between ASD and TDC shows that the discriminative basis (a) is able to 
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differentiate the two groups with a high statistical significance p = 0.002. Inspection of this 

component in Fig. 7 shows distinct connectivity deficiencies in the thalamic network, and 

inter-hemispheric subcortical connections in children with ASD. The low correlation with 

age of this component (column 5, Table 1) is indicative of the fact that this component 

concentrates on the pathology-related patterns in the data. The developmental basis (e) does 

not show any group related differences, but has a high positive correlation with age. It 

demonstrates significant age increase (p = 0.004) between the second and third age ranges 

(age > 10). Its positive correlation with age suggests that the connections between (mainly) 

left frontal and its nearby frontal, temporal, and sub-cortical regions significantly develop 

with age (correlation = +0.55), likely capturing ongoing maturation of language and 

executive functioning. The second developmental basis (f) shows an independent sub-

network whose weight decreases (based on its negative correlation = −0.54 with age) 

significantly with development, especially in first two age groups (age < 13.5, p = 0.0002). 

The behavior of the two components (e) and (f) are opposite with respect to age, as indicated 

by the sign of the correlation. Of interest is the discriminative component (d), that shows the 

second highest group difference, with several frontal regions compromised. However, this 

component also shows a relatively high correlation with age. The analysis of these 

components shows that our method is able to extract components that capture the changes 

due to pathology (a) and age (e); and there are components such as (d) and (f) that are 

representative of changes in both. This may be an indication of those aspects of pathology 

that are linked with age and cannot be completely separated, yet help in providing a 

comprehensive picture of the pattern of changes in the population.

The components are desired to be orthogonal between discriminative and developmental 

sub-networks for interpretability. In order to investigate the orthogonality of the 

discriminative and developmental sub-networks, we computed the inner product 

between any one of discriminative and developmental components. Since they are 

normalized vectors as stated in Section 3.4, the inner product between them measures the 

non-orthogonality on a scale of 0 (orthogonal) to 1 (absolute non-orthogonal). Table 2 

shows the inner product between pairs of discriminative and developmental components, 

confirming their orthogonality.

5. Discussion

We have proposed a new framework capable of capturing the heterogeneity of the 

population important for group-discriminative and regressional analyses. In this paper, we 

investigated brain structural connectivity in autism spectrum disorder (ASD). ASDs are a 

category of neurobiological developmental disorders characterized by social and 

communication impairments, as well as repetitive and restricted behaviors (APA, 1994, 

2000). Research suggests that many ASD symptoms are associated with aberrant structural 

and functional brain connectivity (Vissers et al., 2012). In our analysis, we found 

discriminative sub-networks that differentiate autistic from typically developing brains. We 

also used age to find regressive sub-networks that characterize developmental aspects of the 

population as an important factor in ASD. The reconstructive sub-networks compensate for 
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what is not captured by the discriminative and developmental sub-network bases in 

reconstructing the original connectomes.

Fig. 7 displays the sets of discriminative, developmental, and reconstructive connectivity 

sub-networks obtained from 59 TDC subjects and 24 individuals having ASD. It is observed 

in this figure that the discriminatory and developmental components are quite sparse with 

localized patterns as expected, while the reconstructive network components ensure 

reconstructability of the original connectivity networks. The discriminative component (a) in 

Fig. 7 shows diminished inter-hemispheric connectivity in ASD (p = 0.002 as shown in first 

column of Table 1), mainly in the connections between sub-cortical regions (as shown in 

Fig. 7a). This is in line with many other studies in ASD suggesting that ASD brains suffer 

from reduced structural connectivity and altered diffusion measures like FA (Vissers et al., 

2012). Several findings report reduced FA of white matter in sub-cortical regions in ASD 

(Catani et al., 2008; Noriuchi et al., 2010). In addition, recent findings demonstrate inter-

hemispheric under-connectivity in adolescents with autism (Thomas et al. 2011; Lo et al., 

2011). Also, the corpus callosum, as the largest tract bridging the two hemispheres, has 

shown reduced FA in ASD (Alexander et al., 2007; Jou et al., 2011; Aoki et al., 2013), 

indicating decreased inter-hemispheric connectivity in autism.

In addition, our experiments have shown that the reconstructive components do not show 

any significant age-group differences or age correlation, but two mild significances 

(components h and j, 0.01 < p < 0.05) in ASD-TDC group difference; while interesting, for 

the purposes of the paper we have concentrated on the discriminative and developmental 

components. Also, we have observed that the average of the reconstructive coefficients is an 

order of magnitude larger than the discriminative and developmental basis coefficients. 

Thus, due to their relatively small coefficients, the discriminatory and developmental bases 

do not play a significant role in the reconstruction.

Our method is independent of the technique that is used to create the connectome. 

Streamline (Mori and Barker, 1999; Mori et al., 1999; Mori and Zijl, 2002) and probabilistic 

(Behrens et al., 2003a,b; Friman et al., 2006) tractography are among the many methods 

introduced in the literature for quantifying brain connectivity. It is debatable which 

technique is appropriate in more accurately measuring the brain anatomical connectivity in 

DTI (Descoteaux et al., 2009), and how DTI fiber tracts should be interpreted (Assaf and 

Pasternak, 2008; Jones et al., 2013). Although we used probabilistic tractography in this 

work, the proposed method here does not depend on it, and any method of tractography may 

be used based on user’s choice, to form connectivity matrices to serve an input to our 

method.

An important advantage of this technique is the fact that, as opposed to ICA, the components 

obtained from this method can directly be interpreted as a brain structural sub-network and 

their corresponding coefficients as the weights of those sub-networks in each subject. ICA 

was originally developed to solve problems similar to the “cocktail party” problem where 

the speech signal of each individual was to be extracted from the mixed signals from 

multiple speakers, recorded by a microphone (Bell and Sejnowski, 1995). ICA has since 

then been successfully applied to medical imaging problems in studies of pathology, e.g. in 
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autism (Assaf et al., 2010) or ADHD (Hoekzema et al., 2013), mainly to extract the group-

wise brain functional sub-networks such as default mode network (DMN) (Calhoun and 

Adali, 2012) in resting state fMRI (rs-fMRI) (Calhoun et al., 2008) or cognitive tasks 

(Calhoun et al., 2001), and in EEG (Chen et al., 2013). Moreover, there have been 

applications of ICA in recovering multiple tensors in voxels where crossing fibers occur 

(Singh et al., 2006), in extraction of eddy-current-induced components (Arfanakis et al., 

2002), and in parcellation of tractograms of the thalamus (O’Muircheartaigh et al., 2011). 

Although application of PCA and ICA for finding sub-networks is computationally possible, 

the computed components are not meaningfully interpretable in terms of DTI structural 

connectomes. This is due to the possibility of obtaining negative components and 

coefficients which is not possible as negative connectivity is meaningless in DTI and so is a 

coefficient being negative, as that would indicate a negative contribution to the anatomical 

substrate. Disregarding positivity constraints may even lead to identification of inaccurate 

sub-networks, as we showed in the simulation experiment of Fig. 4.

It is notable that non-negativity constraints are sufficient for interpretability but not enough 

for having components that characterize discriminatory or developmental aspects of a 

population. For example, solving Eq. (2) by minimizing the reconstruction error yields non-

negative components and coefficients that provide reconstructability but not necessarily 

discriminative and developmental components. To show this, we have computed a total of r 

= 12 sub-network components with the objective function lacking graph embedding terms 

(i.e. solving only F1(W) as in Eq. (2), based on the algorithm explained in (Ghanbari et al., 

2012)), and the results are shown in Fig. 8. It is seen that those discriminative and 

developmental components obtained with graph embedding (shown in Fig. 7) are not present 

in the set obtained with no graph embedding (shown in Fig. 8). Moreover, group-wise t-test 

between ASD-TDC coefficients of the components in Fig. 8 showed no significance except 

for component (f) with p = 0.045, and their correlations with age ranged between −0.37 and 

+0.24. This clearly demonstrates the advantage of graph embedding proposed in this work 

that has enabled the extraction of discriminatory and developmental sub-networks from the 

connectome of the ASD-TDC populations and a comprehensive capture of the pathology 

and age specific changes, which were the two major sources of variation in this population.

The number of components is population/application specific. While this continues to be a 

topic for future investigations, several methods are available in the literature to determine 

the optimal number of components, among which singular value decomposition (Hansen et 

al., 1999), minimum description length (Schöpf et al., 2011), Akaike and Bayasian 

information (Hui et al., 2011) are the most widely used techniques for such purposes.

As mentioned earlier, the coefficients resulting from projecting the connectivity matrices 

into the components are amenable to statistics. However, this requires the need to deal with 

the problem of multiple comparisons. Several techniques are available for multiple 

comparison correction including Bonferroni correction (Dunn, 1961), FDR procedure 

(Benjamini and Hochberg, 1995; Genovese et al., 2002), and extreme statistics (Blair and 

Karniski, 1993), yet analysis of brain connectivity with multiple comparison correction is 

challenging (Cheol et al., 2013). The advantage of the proposed method is its capability in 

alleviating the issue of multiple comparisons owing to the dimensionality reduction 
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obtained, leading to a considerable increase in the power of statistical significance while 

maintaining interpretability. For instance, in the connectivity dataset used here, the edge-

wise statistics of the 79 × 79 symmetric connectivity matrices require 3081 comparisons 

while our dimensionality reduction led to 12 statistical comparisons.

This method proposed here is generalizable to any non-negative connectivity network in 

functional or structural connectivity analysis. We showed the feasibility of our method by 

applying it to diffusion-based structural connectivity matrices that are positive. Functional 

connectivity of brain is defined as the coherence of neural activation patterns between brain 

regions (Li et al., 2009; Martijn and Hilleke, 2010; Sakkalis, 2011). Functional connectivity 

in fMRI, EEG, and MEG is measured using model-based, such as cross-correlation (Cao and 

Worsley, 1999), coherence (Sun et al., 2004), and synchronization (Fell and Axmacher, 

2011; Ghanbari et al., 2013), or data-driven-based methods, such as ICA (McKeown et al., 

1998) and fuzzy clustering (Golay et al., 1998). The proposed method is capable of handling 

functional connectivity when positive measures, such as synchronization likelihood 

(Barttfeld et al., 2011), are employed for creating the connectome.

We have demonstrated the applicability of the proposed method in a study of autism via the 

interpretable dimensionality reduction of structural brain networks. Future work includes 

validation with other datasets, and its application for meaningful feature selection in group 

classification studies and the regression of continuous measures such as age or clinical 

measures (i.e. phenotypic scores such as SRS and executive functioning), and in the creation 

of biomarkers of a disease.

6. Conclusions

We have presented a novel technique for simultaneously extracting the discriminatory and 

regressional sub-networks of a population via graph embedding in NMF, enabling different 

kinds of statistical analyses. This also maps the connectivity patterns of the population onto 

a lower dimensional space to ease subsequent population statistics. Our method consists of a 

projective NMF basis learning scheme with locality preserving properties, and provides 

group-discriminatory as well as developmental network components. Application to a 

dataset of ASD subjects provided a discriminatory basis which revealed significant inter-

hemisphere sub-cortical connectivity deficiencies. The developmental bases captured sub-

networks which changed with age. The framework is generalizable to non-negative 

functional networks, as well as to modeling and identifying other forms of variation in the 

population.
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Fig. 1. 
Illustration of connectivity network decomposition into connectivity components. (a) A 

sample brain connectivity (top) composed of frontal (bottom left), temporal (bottom 

middle), and occipital (bottom right) sub-network modules. (b) A set of connectivity 

networks from n subjects (left) with three main components (top). The weight of each 

component in each subject is quantified by the corresponding coefficient cij.
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Fig. 2. 
Creating the connectome: (a) Parcellation of T1 images into 95 cortical and sub-cortical 

regions. (b) Transfer of region labels to diffusion space and computing the GMWM 

boundary. (c) Probabilistic fiber tracking from each seed ROI i to target ROI j. (d) 

Connectivity quantification between each ROI pair (i, j) computed from conditional 

probability of a pathway between two regions. (e) Construction of a weighted structural 

connectivity network.
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Fig. 3. 
The process of matrix decomposition of a set of connectivity matrix whose upper triangular 

elements are stacked into the matrix X. Each of the connectivity sub-network components 

are represented by the columns of the matrix W which is reconstructed back into a 

connectivity component matrix by reordering those elements into the upper triangular 

elements of their matrix. The three subsets of W represent the discriminative, developmental, 

and reconstructive components.
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Fig. 4. 
The effect of non-negativity constraints in identifying the components are shown using 

simulated symmetric connectivity matrices visualized by gray-scale images. (a) The three 

simulated basis components. (b) Ten linear combinations of the three components by 

random positive coefficients. (c) The components obtained from the fast-ICA algorithm. (d) 

The components obtained from the projective non-negative basis learning method described 

in Section 3.1.
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Fig. 5. 
Illustration of a two-group m-dimensional points lying on a 3-D manifold, shown as a cube 

in the m-dimensional space. (a) Point distributions when projected into x⃗, y⃗, or z⃗ vectors. (b) 

The 3-nearest-neighbor graph Ĝ of two selected magnified points. (c) The graph Ğ with 

edges connecting points whose subjects are of similar ages. (d) The 3-farthest-point graph G̃ 

of the same two points.
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Fig. 6. 
The scaling parameter effect on neighborhood graph construction. (a) Two synthetic clusters 

composed of normally distributed points in the 2-D space. (b) The node strength (elements 

of Dîi) of the graph constructed using the scaling parameter given in Eq. (14). (c) The node 

strength (elements of Dîi) of the graph constructed using our proposed scaling parameter in 

Eq. (15). It is clear that our method provides stronger connection around the center of the 

distributions as well as weaker connection for the outliers.
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Fig. 7. 
The r = 12 connectivity sub-networks obtained from the population of 24 ASD and 59 TDC 

connectivity matrices. (a)–(d) display the q = 4 discriminative sub-network components. (e 

and f) show the sub-network of p = 2 developmental components. (g)–(l) are the set of 6 

reconstructive sub-networks.
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Fig. 8. 
Twelve connectivity sub-networks obtained from solving the minimization of Eq. (2) based 

on the algorithm explained in (Ghanbari et al., 2012). These results do not involve the graph 

embedding term, and were obtained by only solving for projective NMF.
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Table 1

The statistical analysis of the components’ coefficients including patient-control group difference, age group 

difference, and age correlations. The components’ IDs are according to those given in Fig. 7.

Component ID ASD-TDC group 
difference t(p)-value

Age group II vs. age group I 
t(p)-value

Age group III vs. age group 
II t(p)-value

Coefficients’ 
correlation with age

(a) −3.2 (0.002) −1.6 (0.1) −0.7 (0.5) −0.24

(b) −1.2 (0.2) −0.6 (0.6) −0.3 (0.8) −0.14

(c) +0.5 (0.6) −1.5 (0.1) −1.3 (0.2) −0.32

(d) −2.3 (0.02) −2.1 (0.04) −2.3 (0.02) −0.48

(e) +0.7 (0.5) +1.9 (0.06) +3.0 (0.004) +0.55

(f) −3.1 (0.004) −4.0 (0.0002) −1.7 (0.09) −0.54

Med Image Anal. Author manuscript; available in PMC 2015 December 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript
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Table 2

The inner product measure between discriminative (a)–(d) and developmental (e) and (f) components as well 

as the angle between the component vectors given in the parentheses. The inner product is a measure of non-

orthogonality that is between 0 (orthogonal vectors with 90-degree angle) and 1 (absolute non-orthogonal with 

zerodegree angle). The components’ IDs are according to Fig. 7.

Component ID (e) (f)

(a) 0.00 (89.9°) 0.01 (89.2°)

(b) 0.04 (87.8°) 0.05 (87.1°)

(c) 0.02 (88.9°) 0.01 (89.7°)

(d) 0.01 (89.5°) 0.03 (88.0°)
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