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Abstract

Given the potential importance of marginal artery localization in automated registration in 

computed tomography colonography (CTC), we have devised a semi-automated method of 

marginal vessel detection employing sequential Monte Carlo tracking (also known as particle 

filtering tracking) by multiple cue fusion based on intensity, vesselness, organ detection, and 

minimum spanning tree information for poorly enhanced vessel segments. We then employed a 

random forest algorithm for intelligent cue fusion and decision making which achieved high 

sensitivity and robustness. After applying a vessel pruning procedure to the tracking results, we 

achieved statistically significantly improved precision compared to a baseline Hessian detection 

method ( 2.7% versus 75.2%, p < 0.001). This method also showed statistically significantly 

improved recall rate compared to a 2-cue baseline method using fewer vessel cues (30.7% versus 

67.7%, p < 0.001). These results demonstrate that marginal artery localization on CTC is feasible 

by combining a discriminative classifier (i.e., random forest) with a sequential Monte Carlo 

tracking mechanism. In so doing, we present the effective application of an anatomical probability 

map to vessel pruning as well as a supplementary spatial coordinate system for colonic 

segmentation and registration when this task has been confounded by colon lumen collapse.

Keywords

sequential Monte Carlo tracking; multiple cue fusion; particle filtering; random forest; computer-
aided detection; marginal artery; CT angiography

*Corresponding author and reprint requests: Ronald M. Summers, M.D., Ph.D., Senior Investigator and Staff Radiologist, Imaging 
Biomarkers and Computer-Aided Diagnosis Laboratory Radiology and Imaging Sciences, National Institutes of Health Clinical 
Center, Building 10 Room 1C224D MSC 1182, Bethesda, MD 20892-1182, Phone: (301) 402-5486, Fax: (301) 451-5721 
rms@nih.govhttp://www.cc.nih.gov/about/SeniorStaff/ronald_summers.html. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Presented in part at the 16th International Conference on Medical Image Computing and Computer Assisted Intervention, 2013.

NIH Public Access
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2016 January 01.

Published in final edited form as:
Med Image Anal. 2015 January ; 19(1): 164–175. doi:10.1016/j.media.2014.09.006.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.cc.nih.gov/about/SeniorStaff/ronald_summers.html


1. Introduction

Colorectal cancer is the second leading cause of cancer-related death in the United States 

with over 50,000 deaths reported per annum (Siegel et al., 2013). Key to the reduction in 

mortality rate is early detection of colorectal polyps. Computed tomography colonography 

(CTC) is an accurate and safe method of colon cancer screening, and computer-aided 

diagnosis (CAD) systems implemented in tandem potentially improve a radiologist’s 

detection performance (Dachman et al., 2010; Halligan et al., 2011; Johnson et al., 2008; 

Pickhardt et al., 2003; Summers et al., 2005). A standard CTC protocol requires patients to 

be scanned in both supine and prone position, thereby reducing false positive polyp 

detections and significantly improving sensitivity (Chen et al., 1999; Yee et al., 2003). 

Registration of supine-prone images relies upon either brute-force mental visualization by 

the interpreting radiologist or automated methods based on anatomic landmarks such as the 

hepatic and splenic flexures, haustral folds, or prominent longitudinal bands of smooth 

muscle known as the teniae coli (Hampshire et al., 2011; Roth et al., 2011; Wang et al., 

2011). Unfortunately, both mental visualization and automated registration based on these 

aforementioned anatomic landmarks can be confounded by lumen collapse. To address this 

problem, Wei et al. (2013) have recently proposed the use of the marginal artery (MA) and 

vein as a supplementary axis to coordinate supine-prone image registration. The marginal 

artery and vein, which courses along the longitudinal axis of the colon parallel to its 

mesenteric attachment, lie extrinsic to the colon and are therefore generally unaffected by 

lumen collapse (Fig. 1). Here we present a semi-automated method of detecting the marginal 

vessels on CT angiography (CTA) using sequential Monte Carlo (SMC) tracking so that a 

spatial coordinate system fiducial marker extrinsic to the colon may be attained.

2. Background

Vessel enhancement filtering, region growing, active contours, centerline extraction, and 

stochastic framework are five major approaches to 3D vessel detection and segmentation 

(Lesage et al., 2009). Among these methods, sequential Monte Carlo tracking, also known 

as particle filtering, is a stochastic solution that has been widely used in various tracking 

problems due to its accuracy, robustness, and computational feasibility. Frangi et al. (1998) 

first proposed a vessel enhancement filtering algorithm based on local multi-scale second 

order Hessian structure analysis of an image. The benefit of this technique was demonstrated 

on aortoiliac and cerebral magnetic resonance angiograms (MRA). While filtering 

enhancement-based methods (e.g. Frangi and Li’s vesselness detectors) demonstrate high 

sensitivity, they also have a high false positive rate for MA segmentation. Region growing 

based methods are easy to implement and usually work well on large vessels such as the 

aorta. However, they demonstrate poorer performance in the detection of small or poorly 

enhanced vessels like the MA. Additionally, region growing-based methods commonly 

demonstrate leakage into large organs which further exacerbates its false positive rate. 

Active contour-based methods are very effective on large vessels on 2D images, but perform 

less well on smaller, higher order vessels such as the MA due to its small caliber and 

complex branching pattern, corroborating the inherent difficulty in designing a universal 

internal, model-based force and external force for segmentation surface evolution.
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Many investigators have contributed to the stochastic-based vessel tracking field in recent 

years. Florin et al. (2005) proposed a particle filtering-based approach for the detection of 

coronary arteries. In their model, state variables included position, orientation, shape, and 

vessel appearance. Later, Schaap et al. (2007) presented a Bayesian tracking framework for 

tubular structures such as carotid arteries in CTA. The key contribution of their work was a 

novel observation model designed for tube-like objects which consisted of a series of tube 

segments identified by location, orientation, radius, intensity, and intensity variance. Lacoste 

et al. (2006) employed Markov marked point processes for the detection of coronary arteries 

on 2D CTA. Multiple investigators have used SMC- based vessel segmentation methods 

(Florin et al., 2005; Lacoste et al., 2006; Schaap et al., 2007) to fit the probabilistic model 

and make it computationally feasible, an approach which worked with large vessels. 

However, this approach is less successful with MA tracking and segmentation due to 

insufficient information employed for tracking. More recently, Friman et al. (2010) 

proposed a multiple hypothesis template tracking scheme for small 3D vessel structures. For 

other advances in the field of vessel detection and segmentation, readers may wish to refer 

to the recent review paper on this topic (Lesage et al., 2009).

SMC has also been used in computer vision to handle problems such as athlete or vehicle 

tracking in video sequences (Kristan et al., 2009; Zhou et al., 2004). For tracking, the 

collection and utilization of more target and background information typically provide 

increased accuracy and robustness for a given noise level. In recent years, incorporating 

multiple cues in the Bayesian tracking framework has been a focus of research for multiple 

investigators. Wu and Huang (2004) proposed a factorized graphical model to integrate 

multiple cues for Bayesian tracking. The authors asserted that the inference of a high-

dimensional state space could be factorized into many lower-dimensional state spaces to 

discover their co-inference. The main idea was that the use of several cues with rough 

models would be more robust and computationally efficient than a complex single cue 

model. Brasnett et al. (2007) proposed visual cues including color, edge, and texture for 

object tracking in video sequences. This work also included a multi-component, mixed 

dynamic model for motion prediction and a robust way to deal with target occlusion. Visual 

cues were histogram based, weighted adaptively, and represented in likelihood functions 

employing the Bhattacharyya distance. The work of Moreno-Noguer et al. (2008) focused 

on integrating multiple dependent cues for robust tracking. Cue dependence was considered 

and each feature was represented by a separate Bayesian filter. The group used object 

bounding box, Fisher color space, target and background color distributions, and object 

contour in a hypothesis-generation, hypothesis-correction format to create a generalized, 

probabilistic framework. Spengler and Schiele (2003) demonstrated the robustness of an 

adaptively weighted multi-cue fusion system for visual tracking. Tracking was performed 

under democratic cue integration, and the estimated state vector and probability distribution 

were provided as feedback for adaptive weighting. In this way the algorithm could depend 

on the appropriate strong cues for a given frame while suppressing unreliable cues. The 

democratic integration technique was also compared to the popular condensation integration 

method. These tracking methods developed in the computer vision field focus on natural 

images or scenes (Brasnett et al., 2007; Moreno-Noguer et al., 2008; Wu and Huang, 2004), 

for example, pedestrian tracking in a video. So for existing vessel segmentation and 
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computer vision tracking methods, none are directly applicable to our marginal artery 

segmentation problem. We cover some of the challenges unique to MA segmentation within 

this paper (Sec. 3). Because the MA is small in caliber, tortuous in course, and gives rise to 

innumerable tiny branch vessels, we chose a SMC-based method to track it and thereby 

reduce false positives.

In this work, we propose a novel Bayesian vessel detection method by fusing multiple cues 

extracted from CT images to automate the detection of the marginal artery on high-

resolution abdominal CT angiograms. In our previous work, cues extracted from CTA were 

fused using a cue independence assumption under Naïve Bayes methodology (Wang, 2013). 

Each cue was assigned a weighting parameter to control its impact on the tracking likelihood 

function. Such a weighting scheme involves parameter learning, making it difficult to 

introduce new informative cues. In addition, cues may not truly fulfill an independence 

assumption, especially as several cues are employed and redundancy and dependence exist 

inevitably. To overcome these problems, in this paper we propose to utilize supervised 

learning in the probabilistic modeling of a Bayesian tracking framework. For supervised 

learning we employ a random forest (RF) classifier to intelligently weigh and fuse multiple 

cues, and we embed the classification confidence score of RF in the tracking framework. We 

also train a random forest classifier to automate tracking termination and to perform vessel 

pruning to remove false positives.

3. Tracking challenges

The characteristics and structure of the marginal artery pose several unique and significant 

challenges to extracting the vessel path with high recall and precision. Several components 

of our algorithm were developed specifically to handle these challenges, and thus they merit 

a brief description.

a) The marginal artery is composed of several large, anastomosing loops of similar 

diameter (Fig. 1). This causes difficulty for a local, iterative tracking methodology such 

as sequential Monte Carlo which only has the ability to select a single most probable 

path. We integrate a robust bifurcation detection step (Sec. 7) in order to achieve high 

recall of the marginal artery.

b) In addition to large loops, the marginal artery feeds many smaller straight arteries 

and vasa recta branches which deliver blood supply to the colon (Fig. 1). These vessels 

are typically but not always smaller in caliber than the MA, distracting the algorithm 

from the correct path. (Supplementary file: Fig. S1 shows several straight artery 

branches perfusing the transverse and descending colon which were automatically 

tracked by our algorithm.) Learning-based stop criteria (Sec. 8) and pruning method 

(Sec. 9) minimized these false positives.

c) The marginal artery makes several connections to major abdominal vessels via the 

inferior and superior mesenteric artery thereby providing many opportunities to leave 

the true path. (Supplementary file: Fig. S2 shows an example of over-segmentation of 

abdominal vasculature of the small bowel which could occur without the appropriate 

stop criteria and segmentation pruning.)
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d) Due to varying blood flow or vessel constriction, some segments of the marginal 

artery will be poorly enhanced making segmentation difficult (Supplementary file: Fig. 

S3). In particular, distal segments of the marginal artery such as the region near the 

splenic flexure and descending colon typically have lower blood flow and are 

consequently less enhanced. To address this problem, we employ multiple features are 

employed to achieve robust tracking even in poorly enhanced vessel segments (Sec. 5).

4. Sequential Monte Carlo tracking

First we introduce the sequential Monte Carlo tracking framework and notation. 

Observations {yt ; t ∈{1 : T}}, yt ∈ Rmywhere my = 8, are typically captured in a sequential 

order. Each observation has an associated hidden variable {xt ; t ∈ {1 : T }}, xt ∈ Rmy where 

mx = 3, which generally corresponds to the location of the target at time point t. For each 

time point t, the observation yt is only conditionally dependent on xt , i.e. p (yt|y1:t−1, x1:t) = 

p (yt|xt), where y1:t−1 represents all observations from time point 1 to time point t-1 and x1:t 

represents all hidden variables from time point 1 to time point t. We also assume that the 

time sequence xt , t=1,2,…T has a Markov property of order one: p(xt|x1:t−1) = p(xt|xt−1). 

The dynamics of the Markov chain can be described by the following two steps:

1) Prediction step:

2) Update step:

In our implementation, the state variable x was composed of x = (x, y, z) where x, y, and z 

are the coordinates of the current tracker location.

4.1. Prediction model using eigenvector field

The majority of vessel segments are smooth in 3D space and exhibit a tubular structure, so a 

constant velocity model was appropriate at most time points. The constant velocity model 

captures this smooth translational motion:

where matrix F controls the speed at which the target (vessel detection) can proceed during 

the tracking process. dt follows a zero-mean Gaussian distribution N. v = (x, x', y, y', z, z') 

where x, y, and z are the coordinates of the current location and x’, y’, and z’ are 

components of the moving speed of the tracker. However, some vessel segments change 

direction abruptly and cannot be captured by a simple translational motion model, especially 

at vessel bifurcation points. In order to track this movement, we employed a vector field 

model for motion prediction. A vector field was extracted by eigenvector decomposition of 
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the Hessian matrix (Sec. 5.2). For eigenvectors (el, e2, e3), e3 is the eigenvector associated 

with the lowest magnitude eigenvalue and indicates the direction of least curvature. This 

corresponds to the direction along the length of the vessel. Selective eigenvector information 

was similarly used by Bloch et al. (2010) in vessel tracking on CT angiography and 

magnetic resonance angiography. In that work, the authors used the e3 vector to define the 

normal direction to a cross-section plane for a circular vessel feature. To our knowledge, 

such an eigenvector field has never been used previously as a prediction model for SMC 

tracking in medical imaging. Our proposed algorithm jointly uses vector field motion, where 

the marginal artery turns sharply, and translational motion, which is based on the previous 

time step. Fig. 3 shows the vector field on a short, curved segment of the marginal artery.

5. Vessel feature cue extraction

In previous Monte Carlo vessel detection work on CT (Florin et al., 2005; Schaap et al., 

2007), intensity is used as the primary source of information. Upon visual inspection of CT 

images for vessel detection, radiologists not only observe intensity, but also utilize spatial 

information, such as organ location, proximity of surrounding fat and muscle, and the 

smooth, continuous, tubular structure of vessels. Thus, human vision combines multiple cues 

to identify and track vessels. Inspired by this intuitive method used by radiologists, in this 

work we propose a new likelihood model for vessel detection by fusing multiple cues. 

(Supplementary file: Fig. S4 shows four tracking features overlaid on an axial CT image.)

5.1. Intensity cue

As with traditional vessel detection methods, intensity is the most important information for 

vessel tracking on CT, and the basis of derivation of all other cues. CT scans are performed 

with arterial phase intravenous contrast, and the vessel appears bright against a dark 

background. For a particle xt at time point t, we extracted a spherical search region (radius 

of 2 voxels) centered on the particle location. The summation of the intensity of all voxels 

within the sphere was used as a composite cue for tracking.

5.2. Vessel response cue

Because short, local vessel segments typically exhibit tubular structure, a vesselness cue is 

extremely beneficial to differentiate true vessels from noisy blob-like areas also enhanced by 

contrast agent or organ boundaries. We employed a 3D multiscale vessel enhancement filter 

described in Li et al. (2003) to provide this vesselness measurement. Li et al. claim that this 

method was able to enhance line structures while suppressing responses from other shapes 

which led to improved specificity when compared to other methods. Vessel response is 

formulated as follows,

where σ is the Gaussian filter scale and |λl| > |λ2| > |λ3| are the three eigenvalues extracted by 

eigenvector decomposition of the Hessian matrix,
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where f is the 3D image volume. Frangi et al. (1998) state that the condition for 3D bright 

tubular structure against a dark background is λl ≈ λ2 « λ3 ≈ 0. For the Gaussian filter, 

spatial scale standard deviations from 0.5 voxels to 2 voxels with 0.25 voxel incremental 

steps were used in multi-scale analysis. The maximum vesselness response across all scales 

was used as a feature.

5.3. Ray casting cue

Organs abutting the marginal artery are a major source of false positives. Organ boundaries 

frequently have a non-zero Hessian vesselness response due to partial line or curve 

character, and can mislead the algorithm from the true marginal artery path. Vessels 

relatively larger in caliber or following a relatively straight trajectory compared to the MA, 

such as the aorta or renal vessels, also provide an opportunity for the algorithm to track into 

other areas of the abdomen. To avoid these particle tracks, we employed a 3D ray casting 

technique and applied it at each particle. Rays were cast in 26 spatial directions and stop 

when reaching either low intensity or a maximum distance, both determined heuristically. 

Particles received a ray casting score, which was the sum of the 26 ray lengths. High scores 

indicated false positives such as an organ or large bore vessel.

5.4. Maximum intensity projection cue

Maximum intensity projection (MIP) provides a method to amplify intensity signal in a 

selected direction. This is an informative cue for noisy data and thin, non-continuous, 

peripheral vessel segments with poor contrast enhancement. A MIP was calculated during 

the feature extraction phase based on the three projection directions of the transverse, 

sagittal, and coronal planes. Overlapping 16 mm slabs were used to construct 2D images and 

vessel enhancement filters generated detections. We then projected the 2D detections back 

to 3D space to create a binary mask. More information about this feature is available in 

Zhang et al. (2013). The sum of binary mask voxels within the spherical search region was 

used as a vessel tracking cue. This feature was sensitive to not only the marginal artery but 

also numerous small branch vessels.

5.5. Spanning tree cue

Due to poor contrast enhancement, some vessel segments are not well distinguished by 

either intensity or vesselness cues alone, which requires regional context information to 

track vessels. We employed a minimum spanning tree algorithm to connect segments with 

very high vesselness response. We utilized intensity or vesselness values to determine the 

weight of a node in the spanning tree. High vesselness values play the dominant role in 

extracting the marginal artery except in the image regions with vesselness values of zero. If 

we purely used vesselness in these regions, the spanning tree would choose random image 

points because the weights of all nodes were equal. In these regions, we used the image 

Cherry et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



intensity values for the nodes’ weights, and the spanning tree picked image points with high 

intensity values as the artery candidates. By combining intensity and vesselness, we guide 

the minimum spanning tree to reconstruct the marginal artery subgraph.

6. Vessel prediction during tracking by cue fusion

In recent years, random forest classifiers have developed as a fast and accurate ensemble 

learning technique, and have also been used to integrate multiple cues for target tracking 

(Shi, 2011). As an additional method for comparison to the cue fusion vessel likelihood 

function, we leveraged a random forest classifier to weigh cue information and make 

tracking decisions.

In a seminal paper, Breiman (2001) defines a random forest classifier as a composition of 

many tree-structured classifiers, each of which cast a vote for classification of a given input 

vector yt. To generate a classifier tree h(yt , (θ)) in a random decision forest, a vector θ is 

selected at random from training data having K features. Tree h is then grown as a hierarchy 

of nodes with a root (vector input) node and terminal leaf nodes holding the final prediction 

for that tree. At each node in the decision tree, a feature split is optimized to partition the 

data into two subsequent branches. For an observed input vector yt during tracking, the 

information works its way from the root node to a terminal leaf node to make the prediction 

for that vector. Each tree in the forest is generated independently and at random by selecting 

a subset of features and training data. For random forest regression, the prediction given 

input yt is continuous and made by taking an average of decisions from all trees in the forest.

Random forests are rapidly trained and tested and therefore are adept at learning on large-

scale datasets, such as datasets used in medical imaging. Compared with state-of-the-art 

kernel based learning methods, random forests showed comparable performance, better 

scale-up ability and require much less memory space. Random forests are also very robust to 

outliers and noise. Random forest regression has been used previously by Criminisi et al. 

(2010) for anatomical detection. Our random forest implementation was from the work of 

Abhishek Jaiantilal (https://code.google.com/p/randomforest-matlab/), and was applied to 

the vessel prediction step, termination decision making, and vessel pruning. For vessel 

tracking, a random forest with 50 trees was trained on the eight vessel cues as described 

above (Sec. 5). The positive samples were the ground truth segmentations from the 10 

training patients. The negative samples were randomly selected from an area within 20 mm 

of the ground truth. The parameter mtry, the number of predictors sampled for splitting at 

each decision node, was set to 2. The number of trees and the number of predictors sampled 

for splitting at each node were selected empirically based on the performance of the random 

forest on the manually labeled training data. The random forest input is a feature vector 

describing a voxel and the output is a continuous confidence score ranging from −1 to +1 

indicating whether or not the voxel belongs to the marginal artery. This input-output strategy 

is also used in the other termination and pruning random forests.

7. Automatic bifurcation detection

Two techniques are commonly used to robustly identify bifurcation. One method by Allen et 

al. (2008) used k-means particle clustering at each step of vessel segmentation. The other 
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method samples voxels from a spherical shell at each step and has previously been used for 

detecting bifurcations in airway tree segmentation (Xiong et al., 2012). To handle our 

abdominal vessel bifurcation problem, we implemented an automatic bifurcation detection 

system using the spherical shell technique due to its demonstrated robustness. At each step, 

the shell with a radius of 2 voxels was sampled. The features for each voxel in this shell are 

fed to the random forest vessel detector and connected component analysis is performed to 

find patches of high vessel confidence. A single vessel path entering and leaving the shell 

produces two high confidence patches. A bifurcation will cause three patches of high 

confidence (Fig. 4). In the latter case, multiple parallel particle filter paths were initialized to 

complete the vessel tree.

8. Termination checking

The marginal artery’s meandering course, numerous branch vessels, broad geographic span, 

and proximity to other abdominal organs present substantial challenges to tracking and 

segmenting with high precision. In addition to a robust tracking algorithm and bifurcation 

detection system, robust self-termination criteria are necessary to prevent tracking onto 

alternate vessels and organs. To determine if a tracked segment diverged from the 

vasculature, a random forest classifier was trained using the 10 training patients. Positive 

samples were the ground truth segmentations. Negative samples were randomly chosen from 

a region surrounding the ground truth. The training data was balanced with 50 percent 

positive and 50 percent negative samples, with a total of 350,000 samples. The trained 

random forest used 100 trees and selected from a subset of 5 of the 25 features at each tree 

node. Besides the vessel cues mentioned previously (Sec. 5), the vessel terminating random 

forest had a few additional features:

a) Low intensity histogram: Segmented paths frequently follow bifurcations to small 

branches supplying blood flow directly to the colon (Figs. 1 and S1in supplementary 

file). This results in indefinite tracking along the colon. For this reason, at each step the 

local region is examined for ultra low intensity information, indicating patches of air 

within the bowel. A histogram of all values below -224 HU with bins of 50 HU was 

used to train the random forest classifier for termination decision making. The path self-

terminates when identifying a low-intensity region of air in close proximity.

b) Region growing: The marginal artery is unique relative to surrounding vasculature 

and tissue with respect to its thinness and relatively uniform intensity. Thus, at each step 

a region growing algorithm is performed limited by distance (7 mm) and percentile 

change in intensity (3.5%). The total percentage of a 7 mm radius sphere filled by 

region growing at each step was used for the termination cue. By this technique tracks 

are terminated when reaching large-bore arteries or veins, or structures such as the 

kidney, stomach, and liver.

c) Kernel density estimators: In our previous work (Wang, 2013), we used kernel 

density estimation to build probability density functions (PDF) for each cue. We 

continue using these features in vessel termination; however, instead of fusing the 

probability density as a product of likelihoods, we feed the values to the more advanced 

random forest learning algorithm. PDFs were built using features extracted from the 
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segmentations of the 10 patient training set. Fig. S5 shows the estimated probability 

density function for each feature.

As a means of preventing false positives, bifurcation branching level information was 

collected and used to limit the extent of vessel tree development. The maximum number of 

branching levels (not the number of possible branches) was set to 5. After reaching this level 

limit, tracking was terminated to prevent excessive tracking of the abdominal vasculature. 

Fig. S6 shows an illustration of branching levels, with each level labeled in a different color. 

Lastly, if the vessel tracker reached an image voxel that had been previously visited, the 

tracker was terminated to prevent redundant segmentation.

9. Vessel segmentation pruning

Due to the high vascularity of the mesentery and the robustness of the bifurcation detector, 

many undesired vessel branches were segmented by the SMC vessel tracker. These smaller 

vessels were not included in the marginal artery ground truth labels, which resulted in low 

precision values. The most problematic vessels were the aorta, common iliac arteries, and 

the straight arteries [Fig. 1, Fig. S1 (supplementary file), and Fig. S6 (supplementary file)]. 

In order to remove the false positives segmented by the vessel tracker, we trained a random 

forest pruning algorithm using the 10 patients in the training set.

The random forest was trained using the previously described vessel cues: intensity, 

vesselness response, ray casting, MIP, and spanning tree (Sec. 5). These features provide 

information about whether the voxel is part of a vessel, but they cannot distinguish between 

abdominal vessels and the desired marginal artery. To make this distinction, the random 

forest was trained with additional location information. We supplement the vessel cues with 

normalized coordinate location, Hessian eigenvectors, distance from user-generated seed 

points, and proximity to the colon.

Because the marginal artery closely follows the curvature of the colon, we approximated the 

location of the colon for each patient through the use of a colon probability map. Although 

the images used in our experiment were CT angiograms, we were still able to effectively use 

a probability map created using 66 colon centerlines labeled on CT colonography (CTC) 

data. Each centerline was registered to a target centerline using the iterative closest point 

(ICP) algorithm (Rusinkiewicz and Levoy, 2001). The centerlines were dilated, summed, 

smoothed with a Gaussian filter, and normalized. The ICP algorithm was next used to 

automatically align the completed probability map to each patient’s abdominal gas bubbles, 

mainly located in the colon, which were simply segmented by intensity thresholding. In a 

clinical application of our marginal artery segmentation framework to CTC images, 

segmentation of the majority of the colon would be achievable. Those segmentations could 

be used alone to register a colon probability map or jointly with the colonic gas bubbles. 

One of the goals of marginal artery segmentation is to provide a guide for better connecting 

collapsed segments of the colon. The colon probability map works in a similar fashion, 

providing a rudimentary guide for marginal artery segmentation in sections where the colon 

is difficult to locate. The marginal artery is a much more precise coordinate system for colon 

segmentation. (Supplementary file: the result of this probability map registration is 

visualized in Fig. S7. )

Cherry et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The random forest utilized 250 decision trees and selected from a random subset of 5 image 

features at each decision node. The positive training samples were the ground truth 

segmented voxels of the marginal artery. The negative voxels were randomly selected from 

areas near the ground truth, near the MIP mask, or near image intensities greater than −24 

HU. Positive samples were duplicated 10 times in order to achieve a balanced training set 

with a significant number of negative training samples. This was done in order to encompass 

the large variability of the negative samples. This sampling strategy resulted in 838,060 

training samples taken from the 10 patients in the training set. As expected, the feature 

importance determined by the random forest shows that the location-based features were 

more important than the vessel features in distinguishing unwanted abdominal vessels from 

the marginal artery (Fig. S8). When the random forest pruning algorithm was applied to the 

vessel segmentation results created by the SMC tracker, we were able to remove a 

significant amount of false positives with only a minor drop in recall rate. Performance of 

the pruning algorithm is shown visually in Fig. 5 and is quantified in the experimental 

results (Sec. 11) and supplemental data (Fig. S7 and Table S1).

10. Evaluation

10.1. Dataset

Data acquisition and analysis were conducted under an Institutional Review Board (IRB) 

approved protocol. Dataset contained 40 high-resolution contrast-enhanced abdomen and 

pelvis CT angiograms performed or evaluation of small bowel carcinoid. Scanning protocol 

required oral administration of 3 bottles Volumen, intravenous administration of 130 mL 

Isovue-300 with 5 mL/s injection rate and 30 second delay, and supine patient positioning. 

Scanning parameters included section collimation of 1.0 mm, reconstruction interval of 0.5 

mm, and in-plane pixel dimensions ranging from 0.82-0.94 mm.

10.2. Dataset processing

The ground truth used for training and evaluating our detection algorithm was generated by 

manual labeling. Manual labeling of the marginal vessels was performed by both a trained 

computer scientist and a board-certified radiologist using Fiji/ImageJ software with the 

Simple Neurite Tracer tool (Longair et al., 2011; Schneider et al., 2012). Given the extreme 

proximity of the marginal artery and vein which precluded the differentiation between artery 

and vein, a single label for either vessel was deemed sufficient. The marginal vessels 

coursing along the ascending colon were not manually labeled due to their uniformly poor 

enhancement which was in part due to the fact that the dataset’s CT examination protocol 

was not specifically designed for visualization of the marginal vessels. The consensus 

between the two readers established a single ground truth label. Random forest algorithm 

training was performed on 10 of 40 CT examinations. The remaining 30 of 40 CT 

examinations composed the test set.

Three manual seed points were designated at the junctions between the transverse and 

descending colon segments of the marginal artery and the SMA and IMA. One of the seed 

points was placed in the middle at the splenic flexure. Tracking computational time was 

approximately 2-3 hours per patient, and the algorithm was implemented in Matlab version 
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8.0 on a Dell Precision T7500 work station with 24 GB memory (X5690 Xeon CPU). The 

NIH Biowulf Linux cluster (biowulf.nih.gov) was utilized to perform parallel computation 

during tracking. Two factors in the algorithm accounted for the bulk of the processing time: 

the execution of local region growing at each step to evaluate for path termination, and the 

robustness of our bifurcation detection system which generates many potential new tracking 

paths.

10.3. Baseline comparison methods

Two baseline methods were employed in this study. One was a traditional Hessian vessel 

enhancement filtering method (Li et al., 2003) and the other utilizes the sequential Monte 

Carlo (SMC) framework with intensity and vesselness as the only features. These methods 

are referred to as “Hessian Baseline” and “2 Cue Baseline” throughout this text. The Hessian 

Baseline method consists of segmentation results from thresholding Li’s vessel enhancement 

filtering response. No manual seed points or tracking framework were used. The threshold 

was 30. Vessel enhancement filtering was described in Sec. 5.2.

The 2 Cue Baseline used the same sequential Monte Carlo (SMC) tracking framework 

presented in Sec. 4. It utilized bifurcation detection and experimentally determined stop 

criteria presented in our previous work (Wang, 2013). However, the key difference was the 

limited features available to the tracker. The 2 Cue Baseline method used the fusion of two 

vessel tracking cues as a product of likelihoods:

where L is the probability density function constructed using kernel density estimators 

(KDE). Features were the summation of intensity and the summation of vesselness within a 

spherical search region centered on the candidate voxel. Each cue was given equal weight. 

Cues were taken to be independent, which is a common assumption made in computer 

vision for a Naïve Bayes’ methodology (Brasnett et al., 2007; Moreno-Noguer et al., 2008). 

During the tracking prediction step, the cue observations made for each particle were 

weighted probabilistically using each KDE function and each particle’s vessel likelihood 

was generated. This likelihood was used to update the tracker location.

10.4. Measures of performance

The performance of the algorithm was evaluated by the metrics of recall and precision. 

Recall was defined as the fraction of ground truth voxels detected by the algorithm, and 

precision was defined as the fraction of detected voxels that were true detections. A 

segmented voxel was considered a true positive detection if it was within 5 mm of a ground 

truth label. This adjusted for the low probability of segmented voxels overlapping and led to 

rational metrics:
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The performance of a method can be difficult to ascertain. An increase in recall is often 

coupled with a decrease in precision. Adjusting each method to achieve a target performance 

metric in order to compare the other metrics is an impossible task due to the large variability 

in the patient images. Because both the recall and precision of the vessel tracker are 

important, the method’s accuracy was measured using a balanced F1 score. The metric is 

defined as the harmonic mean:

11. Experimental results

When determining the accuracy or practicality of a computer-aided detection (CAD) system, 

sometimes the performance metrics cannot capture the whole story. It is critical to have a 

deep understanding the advantages and disadvantages of different methods. Visual 

inspection convincingly demonstrates the importance of a method having both high recall 

and high precision. Fig. 6 shows results for all four methods on three different patients. 

These figures confirm why the added complexity of a multi-cue vessel tracker is necessary. 

The Hessian Baseline results had excellent recall because essentially all the abdominal 

vasculature was segmented. On the other hand, the 2 Cue Baseline approach had excellent 

precision because hardly any vasculature was segmented due to the limited number of image 

cues and simple cue fusion technique. Clearly a balanced approach was needed if the 

marginal artery of the colon was to be segmented for clinical use as a coordinate system for 

CT colonography.

In comparing our proposed method with other possible approaches to vessel segmentation 

(Fig. 7), we demonstrate that our Hessian Baseline method with very high recall (81.6%) 

and a 2 Cue Baseline method with very high precision (78.1%). A successful vessel 

segmentation framework should simultaneously approach the high performance metrics set 

by both of these baseline methods. Our proposed multi-cue random forest sequential Monte 

Carlo (RF SMC) algorithm with vessel pruning achieved an average recall rate of 67.7% and 

an average detection precision to 75.2%. These metrics were not statistically significantly 

different from the best metrics set by the baselines. The recall values for both RF SMC 

methods were statistically significantly higher than the recall of the 2 Cue Baseline method. 

Also, the precision values for both RF SMC methods were statistically significantly higher 

than the precision of the Hessian Baseline method. Importantly, the F1 score of all pairs of 

methods were statistically significantly different. Fig 8 shows the comparison of the F1 score 

for each method. Finally, Table 1 summarizes the results for statistical significance testing 

of all pair-wise comparisons. Significance was determined with an overall α=0.05 using a 

paired t-test with a Bonferroni correction to control for familywise errors resulting from 
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multiple comparisons. [A table with all performance metrics for each patient is included in 

the supplemental data (Table S1).]

12. Discussion

Here we present a novel Bayesian tracking framework using sequential Monte Carlo and 

multiple cue fusion to segment the marginal vessels of the colon on contrast-enhanced CT 

angiograms. By using multiple cue fusion of local and global information, we achieve an 

average recall of 67.7 ± 26.2% (one standard deviation) and precision of 75.2 ± 15.5%. 

These results represent significantly superior results compared to baseline Hessian analysis, 

whose average recall and precision are 81.6 ± 20.2% and 2.7 ± 1.1% respectively. Tracking 

with 2 cues as an alternative baseline method provided a recall of only 30.7 ± 18.6%, 

indicating the significant benefit of including a greater number of cues for more robust 

tracking. Importantly, each of our proposed methods showed a statistically significant 

increase in the F1 score when compared to the traditional Hessian vesselness method. 

Furthermore, we compare this work with our previous results published in Wang et. al. 

(2013), which achieved an average F1 score of 32.1 ± 14.9% on a testing set consisting of 

seven patients. On those seven patients, our sequential Monte Carlo tracker using random 

forest achieved an average F1 score of 51.5 ± 9.2% (paired t-test, p < 0.05) without vessel 

pruning and 75.5 ± 11.9 (paired t-test, p < 0.05) with vessel pruning. These seven patients 

were well-suited for the KDE cue-fusion framework used in Wang et. al. (2013); however, 

the random forest-based cue fusion presented here made the tracker much more consistent 

and robust on a testing set that is 4-fold larger.

The vessel pruning procedure which took advantage of the marginal artery and colon 

location showed statistically significant improvement in precision and F1 score compared to 

our sequential Monte Carlo tracker using random forest without post-processing. This 

demonstrates the usefulness of post-processing procedure after vessel tree generation.

One of the primary limitations of this work is the systematically elevated false positive 

detections due to the vasa recta and straight arteries of the transverse colon. This geographic 

discrepancy of false positives within the transverse versus descending colon can be in part 

explained from an innate anatomic feature of the vasa recta; the vasa recta of the transverse 

colon are more numerous and frequent in the transverse colon, spaced less than 1 cm apart 

within the transverse colon within extensive collateral branches in comparison to the 

descending colon where vasa recta are spaced 2 cm apart with fewer collateral branch 

vessels (Allison et al., 2010). To address this systematic problem, we first consider an over-

grown vessel tree followed by a structural pruning scheme, which has been shown to be an 

effective means of false positive reduction (Kaufhold et al., 2012; Lu et al., 2009a). Our 

tracing method serves well as a pre-stage of focusing on the tracking efficiency using local 

image features and contexts and high recall on vessel detection. The higher false positive 

rate caused by tracking can be tackled by robust structural pruning and linking techniques 

(Kaufhold et al., 2012; Lu et al., 2009a) since more global vessel branch level features can 

be used to build a complementary statistical model on vessel shape and geometry. This can 

understand the geometrical structure of different branches on the vessel tree. For the 

stopping criterion to prevent tracing into too fine vasculature near the colon, the vessel 
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lumen radius, volume-to-length ratio features can also be effective, as in (Lu et al., 2009b) to 

distinguish finer small intestine segments from colon segments in colon segmentation.

Our previous work (Wei et al., 2013) demonstrated the feasibility of using a marginal artery 

segmentation to aid CT colonography (CTC) in two ways. Firstly, the alignment of the 

vessel with the colon can assist supine-prone registration of the colonic polyps. Secondly, 

the vessel can help properly connect collapsed segments of the colon. Here, our method has 

been validated on a non-CTC dataset in which many sections of the colon are collapsed or 

constricted, because the colon is not insufflated with air during bowl preparation. Sequential 

Monte Carlo tracking with random forest and vessel pruning shows potential usefulness in 

CTC, although the lack of intravenous contrast in CTC will need to be addressed. In contrast 

to the work of Wei et al., where the marginal artery was segmented manually, this 

manuscript demonstrates semi-automated segmentation of the marginal artery of the colon.

Segmenting the marginal artery of the colon is a challenging task. We overcame several 

obstacles during the development of the framework presented here. The looping and 

branching nature of the marginal artery makes sequentially tracking the vessel difficult 

(Figs. 1 and S1 in supplementary file). To address this problem, we developed a robust 

bifurcation technique to add braches to the segmentation (Fig. 4). Also, the marginal artery 

is connected to a large network of abdominal vessels which a vessel tracker can enter and 

cause extreme over- segmentation (Fig. S2 in supplementary file). We developed a vessel 

pruning technique and a termination check, both using random forest, in order to remove 

false positives and prevent over-segmentation (Fig. 5). Finally, a constricted blood supply to 

segments of the marginal artery and inconsistent imaging contrast can make tracking 

difficult. We utilized a method that can fuse information from multiple image cues into a 

vessel prediction in order to track the marginal artery with high recall.

Embedding machine learning techniques such as discriminative feature extraction and 

random forest classification in the vessel segmentation framework is a key contribution of 

the work presented in this paper. In the field of medical image analysis, the majority of work 

on vessel segmentation from radiological images focuses on modeling the appearance and 

structure of vessels (Lesage et al., 2009). Very few works have adopted a similar strategy to 

ours to solve the vessel segmentation problem. To name a few, Maiora et al. proposed an 

active learning mechanism for abdominal aortic aneurysm thrombus segmentation in CTA 

image (Maiora et al., 2014). They employed random forest to classify voxels based on 

intensity features extracted from the 2D neighborhood of a voxel. Ricci and Perfetti 

employed support vector machine (SVM) for retinal blood vessel segmentation from digital 

fundus imaging (Ricci and Perfetti, 2007). Similarly, Zuluaga et al. also employed SVM to 

detect abnormal vascular cross-sections in CT images (Zuluaga et al., 2011). Schaap et al. 

proposed a coarse-to-fine method to segment coronary arteries in CTA (Schaap et al., 2011). 

In the refinement stage, segmentation of vessel boundary is improved by non-linear 

regression. Cross-sectional intensity profiles around the vessel were extracted and fed to a 

regressor. In these works and ours, the proposed methods utilized classification techniques 

to solve various aspects of the vessel segmentation problems. However, they employed 

simple features like intensity profile whereas our method extracts more discriminative 

features from each voxel such as probability density functions, spanning tree and vessel 

Cherry et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



response cues. In addition, our classification module is seamlessly integrated with the SMC 

dynamic tracking framework. For other methods, vessel segmentation usually was derived 

directly from classification results after certain post-processing such as thresholding or 

morphological operations.

In conclusion, we demonstrated that near-complete automation of marginal vessel 

segmentation is indeed feasible, and by doing so we present a supplementary spatial 

coordinate system for colon segmentation when this task has been confounded by lumen 

collapse. The significance of this work is two-fold. First, there has been no precedent for 

automated segmentation of this anatomic structure to date. Second, in the same manner 

Zhang et. al. (2012a; 2012b) showed how mesenteric vascular detection could be applied to 

automated small bowel segmentation, we demonstrate how to segment the colonic 

vasculature which can serve as a geometric scaffold by which to navigate the colon. We 

have made strides towards automating segmentation of a very challenging vessel within the 

abdomen that has application in the fields of CT colonography and colonic polyp detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We formulate vessel detection on contrast-enhanced computed tomography 

angiogram images as a Bayesian tracking problem.

• A new vessel detection method by fusing multiple cues extracted from CT 

images.

• Use of colon atlas and random forest to prune tracking results and reduce false 

positives.

• Our proposed method showed a significant increase in the F1 score when 

compared to the traditional Hessian vesselness method.
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Fig. 1. 
Illustration of the marginal artery. The marginal artery is an anastomic channel connecting 

the superior and inferior mesenteric arteries (SMA and IMA). The marginal artery runs 

parallel to the colon at a relatively constant distance making this vessel an ideal extrinsic 

anatomic landmark by which to base a coordinate system of the colon. Segmenting the 

marginal artery with high fidelity is challenging due to the presence of numerous 

surrounding straight arteries and vasa recta (bottom left). A ground truth segmentation of the 

marginal artery is shown in a maximum intensity projection of an abdominal CT 

examination. [Illustration adapted from (Wei et al., 2013).]
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Fig. 2. 
Workflow for the tracking algorithm. Computed tomography (CT) examinations from 40 

patients are randomly split into training and testing sets. All 10 patients in the training set 

are used to train each of three different random forest classifiers. These classifiers are 

utilized at different phases of the sequential Monte Carlo (SMC) tracking framework in 

order to produce the segmented marginal artery. The framework is demonstrated on 30 

patients in the testing set. Results from the SMC tracker are fed to a pruning algorithm for 

false positive reduction.
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Fig. 3. 
(Left) 3D eigenvector field plot extracted by Hessian analysis. For eigenvectors (el, e2, e3) 

associated with eigenvalues |λl| > |λ2| > λ3|, e3 is the eigenvector associated with the 

direction of least curvature. Thus, this vector points in the direction of blood flow and can be 

used to predict vessel movement in tracking. Plot coordinates are in voxel space. (Right) 3D 

rendering of raw CT volume. The portion of the marginal artery mapped to the vector field 

on the left is segmented in red. [Left figure reproduced from (Wang, 2013).]
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Fig. 4. 
Example of bifurcation detection using a 3D spherical shell. Images shown are a 2D cross 

section. The sampling shell centered on the current tracked segment is shown in yellow with 

high vessel confidence patches in red. a) Two vessel patches were extracted, indicating a 

straight segment without bifurcation. b) Three patches were extracted, indicating the 

presence of a bifurcation.
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Fig. 5. 
3D rendering of the marginal artery pruning algorithm in 3 different patients (a-c, patients 

1,2, and 23 from Table S1 respectively). Vessel segmentations from the sequential Monte 

Carlo (SMC) tracker are pruned to remove false positives using a random forest ensemble 

learning algorithm. The confidence color scale indicates th confidence assigned to each 

voxel by the classifier when distinguishing true marginal artery from other abdominal 

vessels. The dark blue transparent segments were the lowest confidence scores that were 

easily pruned by thresholding. The ground truth marginal artery centerline is visible in some 

places as a thin black line. Patient (a) has false positives in the straight arteries, while 

patients (b) and (c) primarily have false positives in the aorta.
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Fig. 6. 
Marginal artery segmentations (yellow) overlaid on computed tomography (CT) images. 

The Hessian Baseline is very overgrown and has very low precision. The 2 Cue Baseline 

tracker terminated after segmenting only a short length of the marginal artery. The random 

forest-based sequential Monte Carlo (RF SMC) tracker segmented most of the marginal 

artery along with some false positives. A pruning technique applied to the RF SMC results 

removed many false positives and improved the precision with only a small decrease in 

recall. White arrows were added to help point out the colon.
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Fig. 7. 
A comparison of the performance measures for each of the four different methods. Data is 

shown as mean (red dot) and one standard deviation (blue line) of recall (top) and precision 

(bottom). Each value for the 30 test patients is shown (gray dots). Horizontal distribution 

within groups is simply for visualization. Hessian Baseline is the vessel enhancement 

segmentation and 2 Cue Baseline is a sequential Monte Carlo tracker using two features. 

These baseline methods are described in Sec. 10.3. The random forest-based sequential 

Monte Carlo tracking (RF SMC) framework presented in this work is shown without and 

with the vessel pruning procedure described in Sec. 9.
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Fig. 8. 
A comparison of the performance measures for each of the four different methods. Data is 

shown as mean (red dot) and one standard deviation (blue line) of the F1 score. Each value 

for the 30 test patients is shown (gray dots). Horizontal distribution within groups is simply 

for visualization. Hessian Baseline is the vessel enhancement segmentation and 2 Cue 

Baseline is a Monte Carlo tracker using two features. These baseline methods are described 

in Sec. 10.3. The random forest-based sequential Monte Carlo tracking (RF SMC) 

framework is shown without and with the vessel pruning procedure described in Sec. 9.
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Table 1

Summary of statistical results. ‘r’ indicates the recall measures of the pair of methods is statistically 

significantly different. ‘p’ indicates the precision measures of the pair of methods is statistically significantly 

different. ‘f’ indicates the F1 score of the pair of methods is statistically significantly different. Significance 

was determined with an overall α=0.05 using a paired t-test with a Bonferroni correction to control for 

familywise errors resulting from multiple comparisons.
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