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Abstract

We propose a new approach to register the subject image with the template by leveraging a set of 

intermediate images that are pre-aligned to the template. We argue that, if points in the subject and 

the intermediate images share similar local appearances, they may have common correspondence 

in the template. In this way, we learn the sparse representation of a certain subject point to reveal 

several similar candidate points in the intermediate images. Each selected intermediate candidate 

can bridge the correspondence from the subject point to the template space, thus predicting the 

transformation associated with the subject point at the confidence level that relates to the learned 

sparse coefficient. Following this strategy, we first predict transformations at selected key points, 

and retain multiple predictions on each key point, instead of allowing only a single 

correspondence. Then, by utilizing all key points and their predictions with varying confidences, 

we adaptively reconstruct the dense transformation field that warps the subject to the template. We 

further embed the prediction-reconstruction protocol above into a multi-resolution hierarchy. In 

the final, we refine our estimated transformation field via existing registration method in effective 

manners. We apply our method to registering brain MR images, and conclude that the proposed 

framework is competent to improve registration performances substantially.
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1. Introduction

Non-rigid pairwise image registration aims to estimate the transformation field following 

which the moving subject image can deform to the space of the fixed template. The 

technique of image registration has acted a fundamentally important role in many 

applications related with medical image analysis during the past decades. After deforming 

all subject images under consideration to a certain template space, the task to understand the 

entire image population becomes much easier since the understanding towards a single 

image can then be propagated to others. Moreover, quantitative evaluations and comparisons 

upon individual images and image populations can be conducted accurately once all images 

are carefully registered. In general, the pursuit of accurate registration methods has inspired 

lots of researches in the area of medical image analysis.

Among existing image registration methods in the literature, most of them regard image 

registration as a typical optimization problem (Rueckert and Schnabel, 2011; Sotiras et al., 

2013), which (1) is favour of higher image similarity between the template and the subject 

images, (2) imposes certain regularization (i.e., smoothness constraint upon the 

transformation field usually) in order to suppress unrealistic deformations. The optimization 

of the transformation field often suffers from the notorious high-dimensional curse, in that 

(1) the image similarity has to be calculated from the high-dimensional image data and (2) a 

huge number of parameters need to be optimized for representing the transformation field. 

The robustness and the accuracy in image registration would especially be challenged, if the 

variability between the template and the subject is high (e.g., concerning the very complex 

cortical folding patterns of gyri and sulci in human brain MR images). Then, the 

determination of the optimal transformation could be easily trapped in local minima/maxima 

during the optimization.

Recently, several studies show that the challenges in registering a certain subject image to 

the template can be partially eased by introducing more intermediate images into 

consideration (Jia et al., 2012b). That is, the intermediate images provide useful guidance at 

the image scale to the registration of the subject, even though the registration problem is 

seemingly more complex due to the introduction of the additional intermediate images. The 

image-scale guidance in general presumes the highly correlated relationship between the 

entire image appearance and the transformation, as images with similar appearances often 

have similar transformation fields when registered with an identical template. Therefore, the 

registration of the subject image can be easily predicted, if there is a certain intermediate 

image that (1) is similar to the subject and (2) is registered with the template already. In 

particular, the image-scale guidance can be utilized in two directions as follows.

First, the image guidance to the registration of the specific subject image can be acquired by 

cherry-picking the intermediate image with the most similar appearances to the subject 

(Dalal et al., 2010; Hamm et al., 2010; Jia et al., 2011; Munsell et al., 2012; Wolz et al., 

2010). The subject can register with the selected intermediate image, and then borrow the 

pre-existing transformation field that deforms the intermediate image to the template. In this 

case, the introduction of the intermediate image is able to decompose the registration of the 
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subject into two separate tasks, i.e., to register the subject with the intermediate image and to 

register the intermediate image with the template. After composing the transformation fields 

associated with the two tasks, a single transformation then becomes available to initiate the 

registration of the subject image towards the template. The initial transformation can be 

further refined via contemporary registration methods in effective manners.

Second, instead of selecting the intermediate image, several models are proposed to generate 

or simulate the optimal intermediate image, given the subject under consideration (Chou et 

al., 2013; Kim et al., 2012; Tang et al., 2009). For example, in Kim et al. (2012), support 

vector regression (SVR) (Drucker et al., 1997) is applied to capture the correlation between 

features derived from the appearances of a set of training images and the associated 

transformation fields that register the training images to a certain template. When a new 

subject image comes, the well-trained regression model can immediately prompt the 

transformation field according to the appearances of the subject. In the other word, the 

template can be deformed to derive the simulated intermediate image based on the output of 

the regression model. The appearances of the simulated intermediate image are usually very 

similar to the appearances of the subject. Thus, the registration of the subject to the 

intermediate image is relatively easy, while the transformation field to deform the 

intermediate image towards the template is already known.

To utilize the intermediate images can effectively improve the performances (i.e., robustness 

and accuracy) in registering a pair of template and subject images. Obviously, it is critical to 

acquire the proper intermediate image that optimally approximates the to-be-registered 

subject image in appearances. Most methods, as described in the above, regard the entire 

image as a whole. For instance, the intermediate image is selected according to its similarity 

with respect to the subject that is computed in the image-to-image manner. The evaluation of 

the image similarity, however, is non-trivial due to the very high dimensionality of the 

image data. In particular, for brain MR images, high anatomical variations exist within the 

population. The subject and the intermediate images might share common anatomical 

structures in certain gyri or sulci, but differ significantly in other areas. As the result, the 

guidance contributed by specific intermediate images, or the image-scale guidance, might be 

undermined, since the subject can hardly be approximated by the intermediate images in the 

entire image space.

Different from the image-scale guidance, we will propose to utilize the patch-scale guidance 

from the intermediate images for the sake of brain MR image registration in this paper. Note 

that, in the conventional setting of the image-scale guidance, it is widely accepted that 

similar images should have similar transformations when registered with an identical 

template. We further examine this proposition and conclude that, in the patch-scale guidance 

setting, patches with similar appearances but from different images should also share similar 

transformation fields when registered to the identical template. Thus, for a certain patch 

from the to-be-registered subject, its associated transformation can be predicted by 

identifying patches of similar appearances from the intermediate images. Further, after 

predicting transformations at an enough number of locations in the to-be-registered subject, 

the entire transformation field for the subject can be easily reconstructed (i.e., by the means 

of interpolation).
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Our method relies on the point-to-point correspondences that are conveyed by image 

registration. Specifically, registration estimates the transformation field that deforms each 

point in the subject to the location of its correspondence in the template. The correspondence 

is defined such that the two points should be highly alike in terms of their local appearances 

(i.e., intensities or more sophisticated image context features extracted from the surrounding 

patches). We presume that all intermediate images are well registered with the template 

already. Therefore, for points in all intermediate images, their correspondences in the 

template are apparently available given the existing transformations. Then, for a point in the 

to-be-registered subject image, we are able to identify the correspondence between the 

subject point and a certain intermediate point based on the local appearance information of 

the two points. The correspondence of the intermediate point in the template can also 

function as the correspondence of the subject point. That is, the subject-template point 

correspondence is established indirectly and is applicable to the reconstruction of the 

transformation field for registering the subject. In general, the intermediate images 

contribute to the registration of the subject with the template by providing the patch-scale 

guidance, which bridges point-to-point correspondences between the template and the 

subject.

To effectively utilize the patch-scale guidance from the intermediate images and apply it 

towards brain MR image registration, we will design a novel prediction-reconstruction 

strategy, namely the P-R protocol, in this paper. The P-R protocol consists of two coupled 

steps:

1. Predict the transformations associated with a subset of key points, which are 

sampled in the image space but cover the entire brain volume;

2. Reconstruct the dense transformation field based on key points and their predicted 

transformations for registering the subject image with the template.

In the prediction step, it is critical to establish point-to-point correspondences between the 

subject and the template, by utilizing highly reliable correspondences identified between the 

subject and the intermediate images. In order to perform correspondence detection 

rigorously, we have applied the patch-based sparsity learning technique that is widely 

applied in computer vision (Wright et al., 2010). For a specific subject point, we aim to 

estimate the linear representation of its surrounding patch given all possible candidate 

patches from the intermediate images. The optimal linear representation determined by the 

sparsity learning can locate a sparse set of intermediate patches, the appearances of which 

are highly similar to the subject patch under consideration. Therefore, all center points of the 

intermediate patches qualified by the sparse representation can be regarded as the 

correspondence candidates of the subject point, and then help identify the correspondence of 

the subject point in the template image. The subject-template point correspondence predicts 

the transformation, following which the specific subject point is expected to deform.

We apply the prediction procedure upon a subset of selected key points, each of which 

typically identifies several correspondence candidates in the template space via the sparsity 

learning technique. In the other word, multiple predictions of the transformation associated 

with a certain key point can often be collected. Afterwards, we integrate all key points and 
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the multiple predictions of their individual transformations for the reconstruction of the 

dense transformation field across the entire image space. That is, we compute the varying 

confidences of individual key points and all of their predicted transformations. Then, we 

apply an adaptive interpolation approach, which is based on a special family of compact-

support radial basis functions (RBFs), to reconstruct the dense transformation field. The 

reconstruction considers the computed confidences of predictions, as the predicted 

transformation with a higher confidence plays a more important role. Meanwhile, the 

reconstructed transformation field is required to be smooth, in order to suppress the 

unrealistic warping (i.e., folding) of brain tissues.

The P-R protocol is further embedded into a hierarchical framework, namely the P-R 

hierarchy, which adapts to the typical multi-resolution design in brain MR image 

registration. Specifically, the P-R protocol first predicts and reconstructs the transformation 

field at a coarser resolution. Then, the tentatively estimated transformation is further 

optimized at the finer resolution, where more abundant and detailed image information is 

taken into consideration. In the other word, the P-R protocol is iterated upon multiple 

resolutions, i.e., the low, middle, and high resolutions particularly in brain MR image 

registration. In the final, the reconstructed transformation field can be refined via existing 

registration methods. The refinement, which aims to boost the quality of the transformation 

field in registering the subject with the template, can usually be accomplished very 

effectively.

The manuscript in the next is organized as follows. In Section 2, we will explain the 

rationale of our method and detail its implementation. Experimental results are reported in 

Section 3 for the evaluation and the comparison of the performances of the proposed 

method. Finally, in Section 4, we will conclude this work with extended discussions.

2. Method

We provide an intuitive understanding towards the proposed method and demonstrate its 

advantages by using a simulated image dataset. As shown in Fig. 1(a), the dataset consists of 

a root image (highlighted by the red box in the top of the figure) and three branches, each of 

which consists of 20 images. For convenience, only a limited number of images, including 

the root and several samples from each branch, are shown in Fig. 1(a). The three branches 

reflect possible cortical folding patterns in human brains, as more details related with data 

simulation could be found in Jia et al. (2010).

Moreover, we can model the distribution of the entire image dataset in a tree, where all 

simulated images are expected to register with the root of the tree. The topology of the tree 

can be easily verified via principal component analysis (PCA). Specifically, by measuring 

the distance of two images as the sum of squared differences (SSD) of their intensities, we 

plot the distribution of all simulated images after projecting them onto the 2D plane (c.f., 

Fig. 1(b)), which is spanned by the first two principal components identified in PCA. The 

root, as well as three branches of the tree, is clearly visible in the PCA output.

The high inter-image variation could potentially hinder the registration of two images (Jia et 

al., 2012a; Munsell et al., 2012). For example, in order to register the non-root images with 
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the root directly (i.e., via state-of-the-art methods), we should better utilize the distribution 

of the dataset (i.e., in the tree structure) and acquire the transformation fields for the non-

root images recursively. The reason is that, for each non-root image, from the dataset we are 

able to identify the intermediate image, which is (1) similar with the non-root image under 

consideration and (2) more similar with the root than the non-root under consideration. The 

higher similarity between the intermediate image and the root corresponds to the fact that 

their registration can usually be done more easily. Bridged by the intermediate image, the 

registration of the non-root image with the root is thus decomposed into two less challenging 

subtasks, i.e., to register the non-root subject with the non-root intermediate image and also 

to register the intermediate image with the root.

Nevertheless, it is non-trivial to identify optimal intermediate images. Given the specific 

new subject that is highlighted by the blue box in Fig. 1(a), neither already known non-root 

image is similar enough and thus competent to provide registration guidance at the image 

scale. On the contrary, the proposed method allows us to utilize the guidance at the patch 

scale more flexibly. That is, for the green patch in the left part of the new subject, a 

correspondence patch can be identified from the end image of Branch I to help establish the 

correspondence between the new subject and the root. Similarly, the yellow patch in the 

right part can take advantage of the guidance from another intermediate image (i.e., the end 

image of Branch III). In general, even though we are unable to utilize the image-scale 

guidance properly, the intermediate images can still contribute at the patch scale to predict 

the registration of the new subject.

In the next, we will detail the hierarchical predictionreconstruction framework, which is 

inspired by the above, and apply it to brain MR image registration. For convenience, we will 

follow the Lagrangian convention to denote the transformation field. In particular, we term 

the transformation that registers the subject S to the fixed template image T as ϕ(·) : ΩT → 

ΩS, while the point xT ∈ ΩT in the template space locates its correspondence at ϕ(xT) ∈ ΩS in 

the subject image space. Reversely, ϕ−1 (·) is capable of deforming the template towards the 

subject image space. In order to estimate the transformation ϕ(·), we will utilize the patch-

scale guidance contributed by the set of intermediate images {Mi∣i = 0, ⋯, M}. For each Mi, 

the transformation ψi (·) that register it with the template is already known. That is, ψi(xT) ∈ 

ΩMi indicates the correspondence of the template point xT ∈ ΩT. Note that the template T is 

also referred as M0 in this paper, as ψ0(·) is simply an identity transform that registers the 

template to itself. In this work, we investigate the prediction of the non-rigid transformation 

only. Thus all images are necessarily pre-processed, including being aligned to a commons 

space by affine registration (i.e., FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 

2002)). For easy reference, we also prepare a list of important notations in Table 1.

2.1. Prediction Rule and the P-R Protocol

We establish the predictability of the transformation field upon the point correspondences 

between images, which can be identified from similar patch-scale appearances of 

corresponding points. Fig. 2 helps illustrate the rationale of our method. In Fig. 2(a) 

particularly, we enumerate three individual patches (in the top-bottom order) from the 

template T, a certain intermediate image Mi, and the subject S. All three patches are 
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represented by circles, while their center points are noted by xT ∈ ΩT, x̃Mi ∈ ΩMi, x̃S ∈ ΩS, 

respectively. Without losing generality, we define that xT and x̃Mi are correspondences to 

each other such that x̃Mi = ψi(xT) or ). Then, assuming that x̃Mi and x̃S are also 

correspondences to each other, we can have . The reason is 

straightforward, as x̃Mi bridges the correspondence between xT and x̃S.

From the above we are able to predict ϕ−1(·) from the inverted collection . 

However, it might introduce additional numerical inconsistency to invert the transformation 

fields. To make our method practically feasible, we can further improve the model to predict 

ϕ(·) directly from ψi(·), instead of its inverse. Specifically, as in Fig. 2(b), we can derive the 

following proposition.

Proposition 1—If (1) xMi ∈ ΩMi and xS ∈ S are correspondences to each other AND (2) 

xMi is spatially close to ψi(xT), then

(1)

where ∇ indicates the Jacobian operator.

Proposition 1, the proof of which is shown in Appendix A, allows us to predict and 

reconstruct ϕ(·) from the collection {ψi(·)} of the intermediate images. To handle all 

variables (i.e., i, xT, xMi, and xS in Eq. 1) properly, we propose the P-R protocol and apply it 

to brain MR image registration. The P-R protocol generally consists of two steps, namely 

the prediction and the reconstruction. In the prediction step, we first select a set of key 

points from the template image space. More details regarding the selection of key points will 

be introduced in Section 2.5. Each key point is then fed as an instance of the variable xT to 

Eq. 1. We further relate xS with the tentative estimation of ϕ(xT) and convert Eq. 1 to the 

incremental optimization style as

(2)

Here, t records the timing (or iteration) in optimizing ϕ(·). We also use ∇ϕt−1(xT) to 

approximate the Jacobian of ϕt(xT) by assuming that ϕt(xT) can only be generated by 

changing ∇ϕt−1 (xT) mildly. Next, we determine the variables i (as well as ψi(xT)) and xMi, 

such that xMi ∈ ΩMi is the correspondence to the previously estimated ϕt−1(xT) ∈ ΩS given 

the patch-scale appearances of the two center points. In the reconstruction step (Section 2.4), 

we are able to interpolate the continuous transformation field for the entire image space, 

based on all key points and their predicted transformations.

Given the key point xT, several intermediate images with their individual contributions as 

ψi(xT) might be available. Moreover, multiple instances of xMi can potentially be identified 

as correspondences to ϕt−1(xT) as well. Though the number of correspondences can be 

arbitrarily reduced to 1 for each instance of xT, to allow multiple correspondences can 

greatly improve the robustness and the accuracy for correspondence detection (Chui and 

Rangarajan, 2003). To this end, we apply the sparsity learning technique (Wright et al., 
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2010) for the determination of i and xMi, while details can be found in Sections 2.2 and 2.3, 

respectively. In general, the sparsity learning technique allows multiple yet only a limited 

number of instances of ψi(xT) and xMi to contribute to the prediction in Eq. 2. Meanwhile, 

we are able to attain the confidences to the instances of ψi(xT) and xMi that are active in the 

prediction. The products of the confidences of ψi(xT) and xMi are further regarded to measure 

the confidences of the resulted predictions. All key points and their multiple predicted 

transformations, along with the varying confidences, are passed to the reconstruction of the 

dense transformation field.

2.2. Prediction: Determine i and ψi(xT)

The correspondence between ϕt−1(xT) and xMi implies that the locations of the two points 

should be close to each other, especially in brain MR images after affine registration. 

Therefore, we expect that ψi(xT) can better predict ϕt(xT) if the two transformations are more 

similar. In Fig. 2(c), for example, we assume that the point ϕt−1(xT) identifies its 

correspondence xM,1 from M1 and another correspondence xM,2 from M2. However, the 

challenges in determining xM,1 and xM,2 are different concerning ψ1(xT) and ψ2(xT). As 

ψ2(xT) is closer to ϕt(xT) than ψ1(xT) (in reference to the marked location of xT), the 

correspondence detection for xM,1 thus should be conducted in a much larger area in that 

∥xM,1 − ϕt−1(xT)∥ > ∥xM,2 − ϕt−1(xT)∥. In this case, ψ2(xT) is obviously a better selection for 

the sake of predicting ϕ(xT).

In order to determine ψi(xT) that is similar to ϕt(xT) and compute the accompanying 

confidence, we investigate the sparse representation of ϕt(xT) over the dictionary that is 

spanned by ψi(xT). Assuming that ϕt(xT) and ψi(xT) are signified by the vectors  and , 

respectively, we aim to solve

(3)

Here,  indicates the vector of the coefficients for the linear representation of  given the 

dictionary Ψ, which consists of potential contributions from all intermediate images. The l1 

constraint , weighted by the non-negative scalar α, favors a sparse subset of column 

items from Ψ to represent . The coefficient ui yielded by the sparsity learning also acts as a 

similarity indicator between  and  (Wright et al., 2010).

To attribute signatures to both ϕt(xT) and ψi(xT), we vectorize the corresponding 

transformations into the vectors  and , respectively. On the other hand,  cannot be 

acquired directly in that ϕt(xT) is still pending for estimation. As an alternative, we generate 

the signature  from ϕt−1(xT), based on the assumption of the mild changing between 

ϕt−1(xT) and ϕt(xT). In general, via the optimization in Eq. 3 we are able to identify (or 
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activate) several intermediate images, with their contributions {ψi(xT)} and the non-negative 

coefficients {ui}, for the sake of the prediction upon ϕt(xT). We further regard ui as the 

measure of the confidence in predicting ϕt(xT) from ψi(xT).

2.3. Prediction: Determine xMi

Candidates of xMi can be identified via the correspondence detection, centered at the 

location of ϕt−1(xT), within each active intermediate image after the determination of i 

(Section 2.2). For convenience, we name all possible candidates of xMi as {xMij }, as xMij 
indicates the j-th candidate from the i-th intermediate image. The candidate collection 

{xMij } often consists of each grid point xMij ∈ ΩMi if ∥ϕt−1(xT) − xMij∥ ≤ rc and rc is the 

maximally allowed radius for correspondence detection. We define the signatures of the 

points ϕt−1(xT) and xMij as  and , respectively, as the similarity between two points can 

thus be acquired by comparing their signature vectors. In particular, we use the same 

sparsity learning technique for the purpose

(4)

In Eq. 4, the matrix Θ indicates the dictionary of contributions from the candidate collection 

{xMij}, the vector  records the coefficients for the linear sparse representation of  given 

Θ, and the non-negative scalar β controls the sparsity of . We define the vectorized patch 

as the signature (i.e., ) for the center point (i.e., xMij). Then, νij captures the similarity 

between the two patches centered at ϕt−1(xT) and xMij. Higher νij obviously implies that the 

correspondence between ϕt−1(xT) and xMij is more reliable given their individual patch-scale 

appearances. As the result, we regard νij as the confidence for predicting ϕt(xT) from xMij.

The correspondence detection via Eq. 4 is independent, thus may cause inconsistent outputs 

for points that are even neighboring to each other. To this end, we enforce the consistency in 

correspondence detection via the l2,1-norm constraint (Liu et al., 2009). In particular, we 

modify the optimization problem in Eq. 4 as

(5)

Eq. 5 aims to detect correspondence candidates for the centering point xT, as Δ in the 

subscript is associated with the point (xT + Δ) that is neighboring to xT. Similarly, 

represents the signature vector for (xT + Δ). The matrix Ξ captures signatures for all points 
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that are located within the radius of ε to the point xT, while their representation coefficients 

upon Θ are stored in individual columns of the matrix V. Identical to Eq. 4, the coefficient 

vector for (xT + Δ), namely  is encouraged to be sparse. Meanwhile, we favor that 

neighboring points should share similar coefficients as their patch-scale appearances could 

not change drastically. Therefore, besides the l1 constraint, we enforce the l2,1 constraint to 

the matrix V (Liu et al., 2009). That is, each column of V satisfies to the sparsity 

requirement, while the sparsity patterns of individual columns are expected to be highly 

similar. In the final, the column for Δ = 0 in V tells all possible correspondence candidates 

of the point ϕt−1(xT).

Any arbitrary combination of ψi(xT) and xMij yields an attempt in predicting ϕt(xT). In 

particular, we define the confidence wij for the attempt as the product of the confidences of 

ψi(xT) and xMij, or wij = uiνij. The sparsity enforced in selecting ψi(xT) and xMij results in 

multiple, but a limited number of, predictions with non-zero confidences. In this way, we (1) 

avoid local minima if only acquiring a single but incorrect prediction for the key point, and 

(2) suppress a majority of predictions of low reliability. We further normalize the confidence 

of each key point by wij ← wij/Σwij, to impose equal priors to all key points.

2.4. Reconstruction

We then reconstruct the dense transformation field to fit the multiple predictions of all key 

points. To this end, we turn to the radial basis function (RBF) for the representation of the 

transformation field. Suppose that the RBF kernel function is k(·) and  is the RBF 

coefficient vector for the key point xT, the dense field associated with the arbitrary location 

 is then computed by

(6)

We further define the kernel matrix K, in which the entry at the junction of the m-th row and 

the n-th column is calculated by feeding the Euclidean distance between the m-th and the n-

th key points to the kernel function k(·). If only a single prediction was ever attempted for 

each key point, the residuals for the dense transformation field to fit the predicted 

transformations of all key points could then be easily computed in the matrix form as ∥Φ − 
KΓ∥2. Here, the predicted transformation (in the transposed row vector form) of the m-th 

key point is recorded in the m-th row of Φ and its transposed RBF coefficient vector in the 

m-th row of Γ.

In order to accommodate multiple predictions of each key point, we expand the matrix Φ 

and further introduce the confidence matrix W for fitting. We enumerate all predictions, as 

well as the confidences, in Φ and W. Supposing that the p-th row of Φ records a certain 

prediction for the m-th key point weighted with the confidence wij, we set the entry of W at 

the junction of the p-th row and the m-th column as wij and set all other entries in the p-th 

row as zero. The overall residuals in fitting predictions, weighted by varying confidences, 

then become ∥Φ − WKΓ∥2.
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Smoothness regularization is essentially important to the reconstruction of the dense 

transformation field, in order to suppress any unrealistic warping that might be applied to 

brain tissues (Rueckert and Schnabel, 2011). To this end, the kernel functions k(·) is usually 

designed in the style of low-pass filters (Myronenko and Song, 2010). Further, if K is 

positivedefinite, the regularization can be attained by solving (Girosi et al., 1995)

(7)

where λ controls the strength of the smoothness constraint. The RBF coefficients Γ, which is 

needed to generate the dense transformation field according to Eq. 6, are thus solvable in the 

following

(8)

In Eq. 8, WT W is a positive-definite diagonal matrix, where the m-th diagonal entry equals 

the sum of squares of the confidences for all predictions upon the m-th key point.

The kernel k(·) is designed such that K is positive definite and k(·) has low-pass response. 

Abundant choices of RBF kernels are available, e.g., the thin plate splines (TPS) with 

polynomial decay in frequency domain (Bookstein, 1989; Chui and Rangarajan, 2003). Most 

RBF kernels, however, are globally supported, leading to a very dense matrix K and thus 

suffering from scalability and numerical instability. As a remedy, we use the compactly 

supported kernel (Genton et al., 2001) for the reconstruction of the transformation field

(9)

The kernel k(·) is obviously a truncated Gaussian, as it cuts to 0 if beyond the compact 

support . The resulted kernel matrix K is sparse and thus benefits solving Eq. 

8.

To alleviate the concern over the optimal parameters of the kernel, we apply the multi-kernel 

strategy (Floater and Iske, 1996) to recursively reconstruct the transformation field. To 

derive a set of RBF kernels kh(·), we fix σ in Eq. 9 and adjust c. The size of the compact 

support for kh(·), denoted by ch, satisfies to ch = ch−1/2. For the sake of the reconstruction, 

we always start with the kernel c1. Then, the residuals after using the kernel kh−1(·) are 

further fitted by the kernel kh(·), which owns better capability in modeling transformations at 

higher frequencies. The iterative procedure terminates when the stopping criterion is met, 

i.e. the residual ∥Φ−WKΓ∥2 is tiny enough, or the number of allowed kernels is exhausted. 

In the final, the dense transformation field is represented by integrating contributions from 

all kernels involved.
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2.5. The P-R Hierarchy

The P-R protocol can be naturally embedded into a hierarchical framework in order to better 

tackle the high complexity in brain MR image registration. The hierarchy gives a schematic 

solution that supports multi-resolution optimization upon the transformation field. That is, 

the transformation field predicted in an early level can initialize the next level of the higher 

resolution. In particular, by relating the variable t in Eq. 2 to the low-middle-high 

resolutions, we summarize the P-R hierarchy as follows

1: Load T, S, {Mi}, and {ψi(·)};

2: Initialize ϕ(·) to the identity transform;

3: Select a set of template key points X ⊂ ΩT;

4: for level ∈ {1, 2, 3} do

5:  Select a subset of key points Xlevel ⊂ X;

6:  for xT ∈ Xlevel do

7:   Determine i to activate ψi(xT) (c.f. Eq. 3);

8:   Determine xMi as correspondence candidates of ϕlevel−1(xT) (c.f. Eq. 5);

9:   Acquire multiple predictions of ϕlevel(xT) (c.f. Eq. 2);

10:  end for

11:  Reconstruct the dense transformation field ϕlevel(·) (c.f. Section 2.4);

12: end for

13: Save ϕ3(·) as the final output of ϕ(·).

The hierarchy above functions in the way similar to state-of-the-art multi-resolution image 

registration methods, which are needed for registering all intermediate images with the 

template and for refining the transformation field predicted by our method. In particular, we 

use HAMMER (Shen and Davatzikos, 2002) to register all intermediate images to the 

template, and HAMMER explicitly matches correspondence points for estimating the 

transformation field in registration. The resulted transformation fields of the intermediate 

images are then used for the prediction of the transformation that registers a new subject 

with the template.

The key points are abundant in context information and thus crucial to accurate alignment of 

neuroanatomical structures. Meanwhile, the set of key points X can be pre-computed once 

the template image is fixed. As in HAMMER, the key points are mostly located from the 

transitions of individual brain tissues (i.e., white matter, grey matter, and cerebrospinal 

fluid). Then, we can acquire Xlevel that corresponds to a certain resolution by sampling X 

randomly. The subset of key points Xlevel enlarges its size gradually when the level increases 
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(i.e., 1.0×104 for the size of X1, 4.0×104 for X2, and 1.6×105 for X3 in the end). For other 

parameters, each key point is signified by its surrounding 5×5×5 patch, while its 

correspondence candidates are considered within the 9 × 9 × 9 neighborhood only. We set α 

= 0.35 in Eq. 3 and β = 0.1 in Eq. 5 empirically. The configuration in reconstructing the 

dense transformation field will be verified in Section 3.1. In the final, after the P-R hierarchy 

predicts the dense transformation field that registers the subject with the template, we further 

refine the estimated transformation field, e.g., by feeding the transformation field as the 

initialization and running diffeomorphic Demons (Vercauteren et al., 2009) and HAMMER 

(Shen and Davatzikos, 2002) at the high resolution only, respectively.

3. Experimental Results

In this section, we apply the proposed P-R hierarchy to both simulated and real datasets for 

the evaluation and the comparison of its performances. For the sake of refining the 

transformation predicted by our method, we use two state-of-the-art registration methods, 

i.e., diffeomorphic Demons (Vercauteren et al., 2009) and HAMMER (Shen and 

Davatzikos, 2002). The refinements are conducted within the original image resolution (or 

the high resolution) only and following the recommended configurations of the two 

methods. Details related to the experiments on the individual datasets are reported in the 

following.

3.1. Simulated Data

We independently simulate two sets of transformation fields, as each set consists of 100 

fields represented by B-Splines. The two image datasets are then generated by deforming a 

preselected template in accordance to all simulated transformation fields. The template 

serving both simulations is arbitrary and the same, which is the fourth image in the LONI 

LPBA40 dataset (Shattuck et al., 2008). In the pre-processing steps, the template is 

isotropically resampled to the size of 220×220×184 and the spacing of 1 × 1 × 1mm3. The 

control points of B-Splines in simulating transformation fields are placed 8mm apart 

isotropically. In the first simulation set, the B-Spline coefficients for control points along all 

axes are uniformly sampled from −10mm to +10mm. More drastic deformations are 

simulated in the second set, as the coefficients are sampled from −20mm to +20mm. 

Exemplar slices from the template and simulated images are shown in Fig. 3, where the 

appearance differences between each simulated image and the template is clearly larger in 

the second simulation set than in the first set.

From all simulated images, we can designate one as the subject. Other images in the same 

simulation set are then used as the intermediate. The transformation field that registers each 

intermediate image to the template is acquired by inverting the transformation field used for 

simulation directly by ITK (http://www.itk.org). Moreover, we regard the inverse of the 

simulated field of the subject as the groundtruth, against which the transformation produced 

in image registration can be quantitatively compared. Registration tasks and subsequent 

evaluations related to the two sets are conducted independently, though both sets share the 

same template. In each set, we randomly select 10 different subjects in order to repeat our 

tests.
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There are two specific aims in the quantitative comparisons upon the simulated datasets. 

First, we break down our method and test the performance gains of its two major 

components, i.e., transformation prediction of the key points and reconstruction of the dense 

transformation field. Second, we combine our method with the refinement via state-of-the-

art methods, and demonstrate the superiority of applying the patch-scale guidance to image 

registration over (1) the conventional direct registration and (2) the indirect registration with 

the image-scale guidance.

3.1.1. Errors of Predicted and Reconstructed Transformations—First, we 

examine the predicted transformation for each key point (located in the template image 

space) and compute the error with respect to the groundtruth. For each subject, we calculate 

the mean error for all key points. The errors are further averaged across all 10 testing 

subjects in each simulation set. The errors are summarized in Table 2, where we 

“downgrade” the proposed method for comparison. In particular, we loosen the requirements 

upon the consistency of correspondence detection for the downgraded method, which thus 

complies with the model in Eq. 4, instead of Eq. 5 in our full method. From the table, we 

observe that

1. The proposed full method (Set 1: 1.951mm; Set 2: 2.619mm) results in lower 

prediction errors than the downgraded method (Set 1: 2.117mm; Set 2: 3.203mm) 

on both simulation sets, implying the effectiveness of the neighborhood consistency 

enforced in Eq. 5.

2. Even though the appearance variation of the simulated images could be high 

especially in the second simulation set, our method is still capable of predicting the 

transformations of the key points by utilizing the patch-scale guidance from the 

intermediate images in a robust manner. The predictions are used for the 

reconstruction of the dense transformation field and subsequent refinement.

Second, we compute the errors related to the reconstruction of the dense transformation 

fields, based on the predictions of our full method (c.f., the right column in Table 2). As in 

Section 2.4, we use a set of compactly supported RBF kernels for the reconstruction of the 

transformation field, based on the key points and their previously predicted transformations. 

The error between each reconstructed transformation field and the groundtruth is then 

computed. The mean errors across all testing subjects, as well as the standard deviation, are 

provided in Table 3. Comparisons between our method and two alternative reconstruction 

methods are also conducted in the table.

1. We compare our method with TPS, which is often applied for interpolating the 

transformation field in the literature (Rohr et al., 2001; Chui and Rangarajan, 2003; 

Wu et al., 2010; Yap et al., 2010). In our experiment, we adopt the configurations 

and the parameters that are recommended in Wu et al. (2010).

2. We can also use a single RBF kernel, instead of multiple kernels in our method, to 

reconstruct the field. The optimal parameters (i.e., c and λ) are determined for each 

simulation set such that (1) no folding occurs in the predicted transformation field 

due to λ and (2) the residual error is minimal by manually inspecting outputs of 

different parameters.
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3. For our method, we cascade 3 compactly supported kernels (λ = 0.05) and set c1 = 

10mm for the first kernel. The settings are then adjusted automatically following 

the strategy in Section 2.4.

From the results in Table 3, we can observe that

1. Our method (Set 1: 2.785mm; Set 2: 4.266mm) consistently yields lower 

reconstruction errors on both simulation sets, compared to two alternative 

reconstruction methods. The results suggest that our method could predict a more 

accurate transformation field for initializing the subsequent refinement.

2. The optimal parameters of the single-kernel-based reconstruction are different for 

two sets, implying the necessity to tune parameter per dataset. On the contrary, 

though we arbitrarily apply the same configuration to two sets in our method, we 

are still able to acquire lower reconstruction errors. To this end, we argue that our 

method is less sensitive to parameter tuning, which is practically more feasible.

3. The TPS-based reconstruction yields high errors, which are partly due to its 

scalability issue. In fact, the dense kernel matrix in the TPS-based reconstruction 

requires us to partition the image space into several blocks (Wu et al., 2010). The 

transformation fields in individual blocks are independently interpolated and then 

integrated. Distortions and errors are thus introduced to the adjacency of 

neighboring blocks inevitably. However, since the RBF kernel is compactly 

supported in our method, we can take advantage of the sparse kernel matrix and 

thus solve the problem much more conveniently.

4. We also note that only non-rigid transformations are simulated and need to be 

estimated in our experiment. Therefore, the capability of TPS to reconstruct affine 

and non-rigid transformations simultaneously has become redundant in our study.

3.1.2. Errors of Refined Transformations—Given the transformation field 

reconstructed by the proposed method (c.f. the right column in Table 3), we continue the 

refinement through Demons (Vercauteren et al., 2009) and HAMMER (Shen and 

Davatzikos, 2002), respectively. Each refined transformation field is compared with the 

groundtruth, as the residual errors between the two fields can be calculated. The errors 

averaged across all testing subjects are summarized in Table 4, where comparisons to the 

alternative methods are also conducted.

1. We compare our method (utilizing the patch-scale guidance from the intermediate 

images) with the conventional registration scheme, where the subject is directly 

registered with the template without using any guidance.

2. Meanwhile, we compare the proposed method to the case where the image-scale 

guidance, instead of the patch-scale guidance in our method, is applied. In 

particular, we use the SSD metric, which is popular in the literature, to measure the 

distance between images. The optimal intermediate image providing the image-

scale guidance to each subject is determined such that the distance between the 

intermediate image and the subject is minimal. After predicting the transformation 
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field based on the image-scale guidance, the same procedure with our method is 

used for the refinement of the predicted transformation field.

Based on the observations to Table 4, we are able to conclude that

1. For the first simulation set, the average errors are 0.592mm (refined by Demons) 

and 0.419mm (refined by HAMMER) for our method. Both errors are lower than 

the conventional direct registration (0.742mm for Demons, 0.499mm for 

HAMMER). Similar results can be found for the second simulation set, where the 

average errors for our method are 0.815mm (refined by Demons) and 0.803mm 

(refined by HAMMER). Meanwhile, the errors for direct registration are 0.975mm 

(Demons) and 1.203mm (HAMMER). The results suggest that, by using the 

transformation field predicted by our method as the initialization, the overall 

registration performance after refinement can be better than the direct registration.

2. Our method leads to lower errors upon the refined transformation fields by using 

the patch-scale guidance than the image-scale guidance. Detailed comparisons of 

the errors can be found in the right two columns in Table 4.

3. We also note that, as the variation of image appearance increases (e.g. in the second 

simulation set), the performance margin between our method and the image-scale 

guidance method becomes much wider. The results imply that our method handles 

large subject-template appearance difference better. A possible reason is that the 

guidance from a single intermediate image is not fully competent to guide the 

registration of the subject given the high appearance variation. Nevertheless, in our 

method, individual key points could take advantages of various intermediate 

images, resulting in a more flexible and effective utilization of the patch-scale 

guidance.

In general, we conclude that our method provides good initializations to image registration, 

as the initialization-refinement strategy can effectively reduce the errors of the 

transformation fields compared to using the direct registration or the image-scale guidance.

3.2. NIREP NA0 and LONI LPBA40 Data

Our method predicts and reconstructs the transformation field for the subject, which is 

refined via state-of-the-art registration methods subsequently. Here, we utilize two public 

datasets, i.e. NIREP NA0 and LONI LPBA40, to demonstrate that the proposed 

initialization-refinement framework is capable of better registering real brain MR images, 

compared to the conventional direct registration. To facilitate our experiments, necessary 

pre-processing (including bias correction, tissue segmentation, affine registration, etc.) is 

applied to all images in the two datasets. For each dataset, we can randomly designate a 

template and a subject. Other images in the dataset are then used as the intermediate. Note 

that the experiments of the two datasets are independently conducted.

After pre-processing, all intermediate images are segmented and then registered with the 

template via HAMMER (Shen and Davatzikos, 2002), while the key points in the template 

image space are determined at the same time. The predicted transformation field for the 

subject can be further refined via existing registration methods, i.e., Demons (Vercauteren et 
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al., 2009) and HAMMER (Shen and Davatzikos, 2002). Moreover, after registering the 

subject with the template, we adopt the Dice ratio of anatomical ROIs as the indicator of the 

accuracy of the registration. The Dice ratio measures the overlap of the corresponding ROIs 

in the deformed subject and the template, as the higher measure typically implies that the 

two images are registered more accurately (Klein et al., 2009; Rohlfing, 2012). All images 

in each dataset are tested as the template and the subject exhaustively, as the detailed 

performances are reported in the following.

NIREP NA0 Dataset—There are 16 images in the NIREP NA0 dataset, each of which is 

labeled by 32 ROIs. The ROI indices and names are provided in Table 5. We first refine the 

predicted transformation fields via Demons (Vercauteren et al., 2009). Compared to the 

direct Demons registration, the overall Dice ratio after refining our prediction increases by 

1.49%. Then, we refine the transformation fields via HAMMER (Shen and Davatzikos, 

2002). And the overall Dice ratio after refinement is 2.57% higher than directly registering 

two images via HAMMER. The box and whisker plots of Dice ratios with respect to 

individual anatomical ROIs are provided in Figs. 4 and 5. In the figures, the median Dice 

ratio of each ROI is indicated by the circle, while outliers are marked by crosses. We further 

examine the statistical significance of the improvement of our method over the direct 

Demons/HAMMER registration via the paired t-tests. When refined by Demons, our method 

is significantly better (p < 0.05) than the direct Demons registration on 19/32 ROIs. When 

refined by HAMMER, our method is significantly better (p < 0.05) than direct HAMMER 

on 16/32 ROIs. The ROIs where our method achieves significantly higher/lower Dice ratios 

are highlighted by the +/− signs along the horizontal axes of Figs. 4 and 5. Note that ROIs 

labelled in the NIREP NA0 dataset mostly covers the cortical areas of human brains, while 

the observation of the improvement of our method is not restricted to specific cortical areas.

LONI LPBA40 Dataset—The LPBA40 images contains 40 images, each of which is 

labeled by 54 ROIs. The ROI indices and names are provided in Table 6. Similar to the 

experiment on the NIREP dataset, we refine the predicted transformation fields via Demons 

(Vercauteren et al., 2009) and HAMMER (Shen and Davatzikos, 2002), respectively. 

Compared to the direct registration via Demons, the overall Dice ratio after refining the 

outputs of our method increases by 1.47%. Compared to the direct registration via 

HAMMER, the combination of our method and the refinement improves the overall Dice 

ratio by 1.88%. The box and whisker plots of Dice ratios with respect to individual 

anatomical ROIs are provided in Figs. 6 and 7. In the figures, the median Dice ratio of each 

ROI is indicated by the circle, while outliers are marked by crosses. We further examine the 

statistical significance of the improvement of our method over the direct Demons/

HAMMER registration via the paired t-tests. When refined by Demons, our method is 

significantly better (p < 0.05) than the direct Demons registration on 23/54 ROIs. When 

refined by HAMMER, our method is significantly better (p < 0.05) than direct HAMMER 

on 34/54 ROIs, yet worse on 2/54 ROIs. The ROIs where our method achieves significantly 

higher/lower Dice ratios are highlighted by the +/− signs along the horizontal axes of Figs. 6 

and 7. Also, similar with the NIREP NA0 dataset, the improvement of our method can be 

found across the whole brain, instead of specific anatomical areas.
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From the above, we observe that

1. By refining the predicted transformation field, our method yields superior 

registration accuracy compared to two direct registration methods. The overall Dice 

ratios after the refinement in our method are significantly higher (p < 0.05) than 

direct Demons and direct HAMMER, respectively.

2. The numbers of outliers shown are much reduced after the refinement to our 

method, compared with the direct registration. Meanwhile, the lowest Dice ratio of 

each ROI in our method is generally higher than the direct registration. The results 

indicate that our method is effective to handle those difficult registration cases, 

where extremely low Dice ratios are often produced.

In general, on both two real datasets, the Dice ratios increase by refining the outputs from 

the proposed method, compared to applying state-of-the-art registration methods directly. 

Also, our method shows its improved capability of registering “outlier” images. We attribute 

this improvement to the introduction of the predicted transformation field, which initializes 

the following refinement.

3.3. ADNI Data

We use the ADNI (Alzheimers Disease Neuroimaging Initiative) data to further demonstrate 

that our method can effectively utilize the guidance contributed by the intermediate images. 

From the ADNI cohort, we select 40 images corresponding to normal controls (NC) and 10 

images for patients of the Alzheimer’s Disease (AD). All images are properly preprocessed, 

including bias correction, skull-stripping, tissue segmentation, affine registration, etc. The 

template is arbitrarily determined to be an NC image, while each time a certain AD image is 

selected as the subject. All other NC/AD images in the selected dataset serve as the 

intermediate typically. The test is repeated on all possible subject images.

We compare our method with using the image-scale guidance, where the optimal 

intermediate image for each subject is determined according to the minimal SSD measure. It 

is known that the appearances of AD images are often different from those of NC images. 

For example, as shown by Aljabar et al. (2012), the groups of NC images and AD images 

are mostly separable on the image manifold which could be learned from simple image 

distance metric (e.g., SSD). In fact, among all 10 testing cases, 8 subjects identify another 

AD image as the source of its image-scale guidance, while contributions from the majority 

of NC images in the dataset are not fully utilized.

We also design a situation where the sources of the patch-scale guidance are limited. That is, 

since the subject always belong to an AD patient, we arbitrarily remove all NC images from 

the intermediate image collection. The number of the intermediate images then becomes 

much smaller, though the appearances of the rest intermediate images are relatively more 

similar to the subject than the tentatively removed intermediate images. In this way, we can 

investigate the impacts of different collections of the intermediate images upon the final 

registration results.
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After the subject is aligned with the template in the final, we can compute the Dice overlap 

ratios of brain tissues (i.e., grey matter and white matter) for quantitative comparison. Note 

that we carefully check the regularized smoothness of all generated transformation fields. 

Therefore, the tissue Dice ratio can function as a valid indicator of registration performance 

in our experiment (Rohlfing, 2012). The results are summarized in Table 7, where we can 

observe

1. By applying the predicted yet unrefined transformation fields to the subjects, our 

method achieves the highest tissue Dice ratios compared to using the image-scale 

guidance and the limited patch-scale guidance. That is, the predictions of our 

method are the most accurate for registering the subjects with the template.

2. After the refinement via Demons/HAMMER, our method still yields the highest 

Dice ratios compared to not only using the guidance but also the direct registration. 

The difference of Dice ratio between our method and each other method is 

statistically significant (p < 0.05) as revealed by the paired t-test.

3. The results of using the image-scale guidance are generally not satisfactory, as the 

Dice ratios are lower than other three methods before/after the refinement (or direct 

registration). A possible reason is that the selected dataset consists of only very few 

AD images. Since the subjects preferably locate other AD images as the sources of 

their image-scale guidance, the number of AD images in the dataset might not be 

enough to provide the guidance properly.

4. By limiting the patch-scale guidance within AD images only, the final registration 

accuracy is higher than the direct registration and using the image-scale guidance. 

It is worth noting that, the collection of the intermediate images for the image-scale 

guidance is much larger than the limited intermediate collection for using the 

limited patch-scale guidance. However, much better registration quality can still be 

achieved by a few intermediate images and the mechanism to use the patch-scale 

guidance.

5. After lifting the limitation upon the intermediate images, our method further 

improves the registration quality. Although NC images and AD images have 

different appearances to certain extent, our method allows each AD subject to 

utilize the guidance from not only other AD images but NC images as well. In this 

way, our method can utilize more abundant guidance to complete the registration 

between the subject and the template.

In general, we conclude that our method provides an effective manner to utilize the patch-

scale guidance for the sake of registering the subject with the template, even though the two 

images have large appearance differences. Our results show that the proposed method can 

achieved higher registration quality compared to (1) the direct registration and (2) using the 

image-scale guidance.

4. Conclusion and Discussion

We have proposed a novel approach to predict the transformation field for registering a new 

subject to the template. The prediction utilizes the fact that a point from the subject and 
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another point from the intermediate image should own the same correspondence in the 

template, if the two points under consideration have similar patch-scale appearances and are 

correspondences to each other. As the result, by identifying correspondences of subject 

points in the collection of intermediate images, we are able to predict their associated 

transformation in registering the subject with the template. The dense transformation field 

that covers the entire image space can then be reconstructed immediately. We thus propose 

the P-R protocol and the hierarchical solution for the sake of brain MR image registration. 

Our method is able to provide satisfactory transformation fields that work as good 

initializations to the existing registration methods. After refinement, the transformation 

fields are more accurate in registering the subject, compared to the conventional way in 

which the subject is registered with the template directly.

Our method owns good scalability in applying the P-R hierarchy to large-scale population of 

images. As in Sections 2.2 and 2.3, we activate several intermediate images from (ψi(xT)) 

the pool by determining i (and thus ψi(xT)) first. Then, we identify candidates of xMi that are 

correspondences to ϕt−1(x). The order is important. Specifically, the determination of i can 

be much more efficient than xMi, in that the column size of the dictionary Ψ is identical with 

the number of intermediate images, or O(M). Meanwhile, multiple correspondences may 

exist in even a single intermediate image. The dictionary Θ has to enumerate all possible 

instances of y, and thus increases the column size to  as rc represents the radius in 

searching for correspondences. By determining i first, we are able to control the number of 

activated intermediate images, only from which the contributions to the determination of xMi 
should be counted. Thus, the complexity in determining xMi is well scaled regardless of the 

size of the collection of the intermediate images, as most intermediate images are 

deactivated already in the determination of xMi.

It is worth noting that our method incurs additional computation cost compared to the 

conventional direct registration, and thus is slower even though we introduce the sequential 

scheme in determining i and xMi. The reason is that we need to identify correspondences 

between the subject and the intermediate images via sparsity learning in the proposed 

method; while the conventional registration requires subject-template correspondence 

information only. However, our method provides a potential solution to tackle the 

registration task between two images with significantly different appearances, which could 

be very challenging for direct registration. In our future work, we will apply the proposed 

method to more applications, including registration of multi-modal images, longitudinal 

sequences of neonatal data, etc. We will also work on to speed up the proposed method, e.g., 

by using parallel computation techniques.
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Appendix A. Proof of Proposition 1

As xMi is spatially close to ψi(xT), we can assume that xMi = ψi(xT + δx) where δx is a 

infinitesimal perturbation to xT. It is implied by ψi(·) that the point (xT + δx) locates its 

correspondence as xMi. Moreover, the points (xT + δx) and xS are also correspondences to 

each other, via the bridge of xMi ∈ ΩMi. Therefore, we have

(A.1)

(A.2)

We subtract the two equations to eliminate the perturbation variable δx

(A.3)

Eq. 1 can then be derived after rearranging the above.
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Highlights

1. Initialize brain MR image registration using the transformation field that is 

predicted by the prediction-reconstruction protocol/hierarchy.

2. Predict point-to-point correspondences between images by using sparsity 

learning and via bridges of the intermediate images.

3. Reconstruct the transformation field by using compactly supported radial basis 

kernels.
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Figure 1. 
In (a), three branches, as well as the new subject, are simulated by deforming the root. The 

new subject is able to utilize the patch-scale guidance from individual intermediate images 

for the registration with the root. The distribution of all images, after being projected to the 

2D PCA plane, is shown in (b).
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Figure 2. 
Illustration of the predictability of the transformation: (a) The correspondence between the 

template point xT and the subject point x̃S is established as both points identify x̃Mi as their 

correspondence in the intermediate image; (b) The subject transformation ϕ(xT) is 

predictable from the intermediate transformation ψi(xT) as in Eq. 1, if xMi and xS are 

correspondences to each other; (c) Multiple correspondence candidates of xM might be 

detected, thus resulting in multiple predictions upon the subject transformation ϕ(xT).
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Figure 3. 
The template (highlighted by the red box) and samples of the simulated images for Section 

3.1. In the first set, the B-Spline coefficients of the control points are uniformly sampled 

from −10mm to +10mm. In the second set, the coefficients are sampled from −20mm to 

+20mm. All control points are placed 8mm apart isotropically.
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Figure 4. 
The box and whisker plots of the Dice ratios upon the NIREP NA0 dataset after (1) direct 

registration by Demons and (2) refining the outputs of our method by Demons. The ROI 

names corresponding to their indices are listed in Table 5.
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Figure 5. 
The box and whisker plots of the Dice ratios upon the NIREP NA0 dataset after (1) direct 

registration by HAMMER and (2) refining the outputs of our method by HAMMER. The 

ROI names corresponding to their indices are listed in Table 5.
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Figure 6. 
The box and whisker plots of the Dice ratios upon the LONI LPBA40 dataset after (1) direct 

registration by Demons and (2) refining the outputs of our method by Demons. The ROI 

names corresponding to their indices are listed in Table 6.
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Figure 7. 
The box and whisker plots of the Dice ratios upon the LONI LPBA40 dataset after (1) direct 

registration by HAMMER and (2) refining the outputs of our method by HAMMER. The 

ROI names corresponding to their indices are listed in Table 6.
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Table 1

Summary of important notations in this paper.

Variable Note Variable Note

T Template image S Subject image

Mi The i-th intermediate image (i is the index) ΩT, ΩS, ΩMi Individual image spaces

xT Template point xM, x̃M Points in the intermediate images

xS, x̃S Points in the subject image t Resolution

ϕ(·) Transformation field to register S with T ψi(·) Transformation field to register Mi with T

, 

Signature vectors of ϕt(x) and ψi(x)
, ui

Confidence of ψi(x) in prediction

, 

Signatures of patches at ϕt−1(x) and yij
, νij

Confidence of yij in prediction

rc Maximal radius allowed in correspondence detection
, wij, W

Confidences of combined predictions

K(·), K RBF kernel function and kernel matrix σ, c Control the size of the support of k(·)

, Γ
RBF kernel coefficients Φ Predicted transformations
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Table 2

Errors (mm) of the predicted transformations of the key points.

Predicted by Downgraded Method (c.f., Eq. 4) Our Full Method (c.f., Eq. 5)

Simulatation Set 1 2.117 ± 0.980 1.951 ± 0.963

Simulatation Set 2 3.203 ± 1.715 2.619 ± 1.464
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Table 3

Errors (unit: mm) of the reconstructed transformation fields.

Reconstructed by TPS Single Kernel Our Method (Multiple Kernels)

Simulatation Set 1 3.472 ± 1.284 2.934 ± 0.932 (c = 9mm, λ = 0.05) 2.785 ± 0.908

Simulatation Set 2 4.991 ± 1.848 4.732 ± 1.692 (c = 7mm, λ = 0.05) 4.266 ± 1.539
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Wang et al. Page 34

Table 4

Errors (unit: mm) of the refined (or directly registered) transformation fields.

Refined by Demons No Guidance (Direct Registration) Image-Scale Guidance Our Method (Patch-Scale Guidance)

Simulatation Set 1 0.742 ± 0.172 0.628 ± 0.149 0.592 ± 0.161

Simulatation Set 2 1.175 ± 0.358 1.104 ± 0.331 0.815 ± 0.260

Refined by HAMMER No Guidance (Direct Registration) Image-Scale Guidance Our Method (Patch-Scale Guidance)

Simulatation Set 1 0.499 ± 0.073 0.427 ± 0.071 0.419 ± 0.063

Simulatation Set 2 1.203 ± 0.393 0.923 ± 0.224 0.803 ± 0.210
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