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Abstract

Imaging and quantification of tongue anatomy is helpful in surgical planning, post-operative 

rehabilitation of tongue cancer patients, and studying of how humans adapt and learn new 

strategies for breathing, swallowing and speaking to compensate for changes in function caused by 

disease, medical interventions or aging. In vivo acquisition of high-resolution three-dimensional 

(3D) magnetic resonance (MR) images with clearly visible tongue muscles is currently not 

feasible because of breathing and involuntary swallowing motions that occur over lengthy imaging 

times. However, recent advances in image reconstruction now allow the generation of super-

resolution 3D MR images from sets of orthogonal images, acquired at a high in-plane resolution 

and combined using super-resolution techniques. This paper presents, to the best of our 

knowledge, the first attempt towards automatic tongue muscle segmentation from MR images. We 

devised a database of ten super-resolution 3D MR images, in which the genioglossus and inferior 

longitudinalis tongue muscles were manually segmented and annotated with landmarks. We 

demonstrate the feasibility of segmenting the muscles of interest automatically by applying the 

landmark-based game-theoretic framework (GTF), where a landmark detector based on Haar-like 

features and an optimal assignment-based shape representation were integrated. The obtained 

segmentation results were validated against an independent manual segmentation performed by a 

second observer, as well as against B-splines and demons atlasing approaches. The segmentation 

performance resulted in mean Dice coefficients of 85.3%, 81.8%, 78.8% and 75.8% for the second 
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observer, GTF, B-splines atlasing and demons atlasing, respectively. The obtained level of 

segmentation accuracy indicates that computerized tongue muscle segmentation may be used in 

surgical planning and treatment outcome analysis of tongue cancer patients, and in studies of 

normal subjects and subjects with speech and swallowing problems.
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1. Introduction

Oral cancer is among the most prevalent cancers in the world, with an estimated 274,000 

new cases in 2002 (Parkin et al., 2005) and 264,000 in 2008 (Jemal et al., 2011). Although 

the mortality rate of oral cancer patients is not considered to be high, the disease and its 

treatment severely affect their speech, swallowing and mastication, and thus their quality of 

life. Assessing and understanding the tongue morphology is valuable for proper surgical 

planning, which may considerably reduce post-operative complications and lead to a faster 

rehabilitation (Matsui et al., 2007). Besides, quantification of tongue anatomy may help to 

better understand how humans adapt and learn new strategies for breathing, swallowing and 

speaking to compensate for changes in function caused by disease, medical interventions or 

aging. The main imaging modalities that serve these purposes are ultrasound (US) and 

magnetic resonance (MR) imaging.

During the last couple of decades, real-time US has been the primary imaging modality for 

providing information on the morphology and motion of the tongue, and thus enabling 

linguistic and swallowing studies. To perform a computerized analysis of tongue anatomy, 

Unser and Stone (1992) applied deformable contours, i.e. snakes, to determine tongue 

boundaries from two-dimensional (2D) US images, which required user interaction to 

specify the region of interest or correct the snakes if they started to follow wrong 

boundaries. On the other hand, Akgul et al. (1998) proposed a fully automatic segmentation 

approach, where snakes were applied to segment US images acquired during speech. The 

same authors augmented snakes by prior knowledge in the form of predefined speech 

patterns, which increased the accuracy of tongue boundary detection (Akgul et al., 1998). Li 

et al. (2005) combined features based on gradients, regions of interest and orientation of 

boundaries for robust semi-automatic tongue detection. Roussos et al. (2009) proposed to 

use active appearance models, which allowed tongue segmentation from a limited field of 

view and extrapolation of tongue boundaries outside the target US image. Fasel and Berry 

(2010) first filtered US images by applying a type of neural networks called deep belief 

networks, and then tracked tongue boundaries as paths through the most emphasized image 

pixels. Tang et al. (2012) modeled 2D tongue movements by Markov random fields and 

demonstrated the superiority of their segmentation results in comparison to snake-based 

approaches. Although standard US imaging is inexpensive and noninvasive, the obtained 

images have a limited field of view and often do not clearly depict important anatomical 

details, which limit the applicability of US in tongue anatomy studies. By providing better 

contrast of soft tissues, MR imaging may overcome the drawbacks of US.
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Similarly to US images, MR images with short acquisition times facilitate the investigation 

of tongue motions, including segmentation of the vocal tract (Bresch et al., 2008, Proctor et 

al., 2010), statistical modeling of speech patterns (Stone et al., 2009), comparison of such 

patterns between healthy and diseased subjects (Stone et al., 2008), and segmentation of 

tongue area structures including lips, hard and soft palate, pharyngeal wall, etc. (Bresch and 

Narayanan, 2009). Chong et al. (2004) applied seeded region growing to semi-automatically 

segment tongue carcinoma, and validated the obtained results against manual segmentation. 

Recently, Lee et al. (2013) addressed the problem of tongue segmentation from dynamic 

three-dimensional (3D) MR images. In this work, a user was required to manually determine 

the approximate position of the tongue and locate a small number of seed points in the 

background, which were then propagated to consecutive time frames by non-rigid B-spline 

registration, and finally used to initialize the random walker segmentation algorithm. In 

contrast to MR images with low acquisition time, lengthy high-resolution 3D MR imaging 

preserve a large amount of anatomical detail, which is essential for studying individual 

tongue muscles. Tongue muscle segmentation obtained from high-resolution 3D MR images 

with high muscle contrast combined with the whole tongue segmentation and tongue motion 

estimation, both obtained from dynamic 3D MR images, brings the community closer to 

automatic computerized analysis of the behavior of individual tongue muscles during speech 

and mastication. Modern MR protocols allow limited field of view imaging with a resolution 

of around 1.25 mm3 per voxel, which was demonstrated to be sufficient for in vivo speech 

studies (Kim et al., 2009). However, the achieved level of contrast and image detail are still 

not adequate, and make tongue muscle boundaries ambiguously defined and poorly visible 

for computerized or manual delineation. In vivo acquisition of high-resolution 3D MR 

images with visible inter-muscle boundaries requires subjects to stay motionless for 4–5 

minutes, which is almost impossible due to breathing and involuntary swallowing. Despite 

the existence of cine and multi-slice MR imaging, up until now this obstacle represented a 

limitation for visualization and analysis of individual tongue muscles and postoperative 

monitoring. However, recent achievements in image reconstruction allow the generation of 

super-resolution 3D MR images of the tongue from sets of orthogonal images, acquired at a 

lower resolution and combined using super-resolution techniques (Fig. 1) (Woo et al., 2012).

In this study, we propose, to the best of our knowledge, the first attempt to segment 

individual tongue muscles from MR images. Tongue muscle segmentation is a challenging 

task because the tongue is a muscular hydrostat, i.e. a composition of agonist/antagonist 

muscles without any rigid structures for the muscles to act upon (Levine et al., 2005). 

Because of this, tongue muscles have a relatively similar physical structure and appearance 

when observed in MR images, and finding the boundaries of individual muscles in muscular 

hydrostats is therefore challenging even for an experienced observer. Moreover, non-trivial 

speech and swallowing motions, and lack of anchor bones are reflected in a complex 

morphology of tongue muscles. To address these challenges, we propose to apply the game-

theoretic framework (GTF) for landmark-based image segmentation, which was already 

successfully applied to segment lung fields from radiographs, heart ventricles from MR 

cross-sections, and lumbar vertebrae and femoral heads from computed tomography (CT) 

images (Ibragimov et al., 2012b, 2014). In the present study, GTF is adapted to segment the 

genioglossus and inferior longitudinalis tongue muscles from super-resolution 3D MR 
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images. However, poor visibility of tongue muscle boundaries and presence of 

reconstruction artifacts, such as intensity mismatches, blur, blank image regions, etc., call 

for improving and extending the original GTF. For this aim, to describe landmarks we first 

replace individual voxel intensity-based appearance features by more sophisticated Haar-like 

features, and the consecutive computational costs are reduced by selecting and computing 

the optimal set of most descriptive Haar-like features for each landmark. Moreover, the 

landmarks are no longer positioned on the surface of objects of interest, as such surfaces are 

often poorly visible, but inside and, more importantly, outside of these objects, which makes 

GTF-based segmentation more universal, accurate and robust. To objectively estimate the 

performance of GTF, we also apply and evaluate the performance of B-splines and demons 

atlasing approaches. The obtained results are compared with the inter-observer segmentation 

variability, which facilitates to understand the complexity of the segmentation problem and 

its potential for computerized tongue muscle analysis.

The paper is organized as follows. Section II presents the details of GTF, augmented by 

Haar-like appearance features for landmark detection. Section III focuses on the tongue 

image database with the corresponding tongue muscle reference segmentation and landmark 

annotation, and comparison of the obtained results to alternative segmentation approaches. 

Section IV discusses the obtained results from the perspective of segmentation performance, 

computation time and applied methodology. We conclude in Section V with directions for 

future research.

2. Game-Theoretic Segmentation Framework

In GTF, segmentation of the object of interest is composed of two steps, namely landmark 

detection followed by landmark-based atlasing. Each landmark is characterized by its 

intensity appearance and spatial relationships against other landmarks, both learned from a 

training set of images, in which the object of interest is already segmented and annotated 

with corresponding landmarks. For an unknown target image, we first compute the 

appearance and shape likelihood maps according to the prior knowledge extracted from 

images in the training set, then apply the appearance likelihood maps to detect landmark 

candidate points, and finally combine the appearance and shape likelihood maps with a 

selected graph-based shape representation to obtain the optimal candidate points that 

represent landmarks. After landmarks are detected, we perform landmark-based atlasing to 

propagate the segmented object of interest from each image in the training set to the target 

image. The described framework is schematically shown in Figure 2.

2.1 Appearence Likelihood Maps

Let the training set of images T consist of super-resolution 3D MR images of the tongue 

region, and let each image be annotated with a set  = {p} of | | corresponding landmarks 

that describe the object of interest. Suppose that each landmark p ∈  is associated with 

some distinctive appearance features, which can be learned from images in the training set 

and later used to detect the position of the same landmark p in an unknown target image. 

Local appearance information, such as the intensity of individual voxels, is not descriptive 

enough, as soft tissues belonging to adjacent anatomical structures often share similar 

intensities when observed in MR images. Moreover, reconstructed MR images are usually 
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corrupted by intensity artifacts (e.g. intensity inhomogeneity). Therefore, Haar-like features 

are used instead of individual voxel intensities. Haar-like features are described by linear 

combinations of the sums of voxel intensities inside adjacent rectangular parallelepipeds 

(Fig. 3a), with the coefficient of each term of a linear combination being either +1 or −1. As 

Haar-like features capture larger image regions, they are less sensitive to local intensity 

variations and therefore provide a more robust description of landmark appearance (Viola 

and Jones, 2004). Moreover, they can be computed very fast by using an integral 

representation of the target image (Viola and Jones, 2004). For each landmark p ∈ , Haar-

like features are extracted at different scales in the neighborhood of the voxel representing 

landmark p (Fig. 3b). Although such determination is computationally efficient, obtaining 

all possible features can still be demanding, taking into account the number of landmarks | | 

and the size of super-resolution 3D MR images. Among all features, we automatically select 

| p| features with the highest predictive power and use them to define the appearance 

likelihood map fp of landmark p by applying Gaussian kernel density estimation:

(1)

where ap(k) is the mean and σp(k) is the standard deviation (SD) of the k-th Haar-like feature 

from set p of features selected for landmark p across all images in the training set, and a(k, 

ν) is the observed value of the k-th Haar-like feature for an arbitrary point at location ν in 

the target image. The resulting appearance likelihood map values are normalized against the 

maximal detected value so that ∀ν: 0 ≤ fp(ν) ≤ 1.

2.2 Shape Likelihood Maps

In general, it cannot be guaranteed that by using only the appearance likelihood map fp (Eq. 

1), the location ν in the target image with fp(ν) = 1 will best correspond to locations of 

landmark p in images from the training set. To increase the possibility of finding the best 

location for landmark p in the target image, spatial relationships against other landmarks are 

used. We model spatial relationships among landmarks by shape features defined in the 

polar coordinate system, i.e. we define the distance d, azimuth angle φ and polar angle θ for 

every pair of landmarks p, q ∈ . The probability distribution of a shape feature for a 

selected pair of landmarks p, q ∈ , is estimated by the corresponding histogram Hp,q, 

generated by Gaussian kernel density estimation:

(2)

where hp,q(i) is the feature value for landmarks p,q ∈  in the i-th image from the training 

set T, h is the observed feature value and σH is a predefined SD of the kernel. The histogram 

is normalized so that Σ Hp,q(hp,q, σH, h) = 1. For every pair of landmarks p and q in images 

from the training set, and according to Equation 2, we define three histograms: Dp,q(d) = 

Hp,q(dp,q, σD, d) for the distance dp,q, Φp,q(φ) = Hp,q(φp,q, σΦ, φ) for the azimuth angle φp,q, 

and θp,q(θ) = Hp,q(θp,q, σθ, θ) for the polar angle θp,q. The shape likelihood map gp,q is 

obtained as a linear combination of the three shape feature histograms:
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(3)

where parameters λi; , ∀ i : λi ≥ 0, weight the contribution of each histogram, and 

Δ, ϒ and Θ scale and/or rotate the system of landmarks p, q ∈  to compensate for the 

difference in scale and/or rotation between the observed and the average object of interest.

2.3 Shape Representation

The shape of the object of interest described by landmarks can be represented by the 

complete set of connections among landmarks, i.e. by the complete graph. In such a case, ½|

|(| | − 1) shape likelihood maps gp,q (Eq. 3) have to be computed, which is a 

computationally expensive task. However, by using a shape representation that consists only 

of the most representative connections among landmarks, not only the computational 

efficiency can be increased, but also the segmentation accuracy can be improved (Ibragimov 

et al., 2013, Sawada and Hontani, 2012). Among existing shape representations, the optimal 

assignment-based graph with landmark clustering (OAG-C) proved highly accurate and 

computationally efficient (Ibragimov et al., 2014).

In OAG-C, landmarks are first separated into k clusters i; i = 1,2,…k, with each cluster 

consisting of an equal number k ̄ of landmarks (if k̄ · k < | |, then | | − k̄ · k dummy 

landmarks located infinitely far from (or close to) other landmarks are added to ). To 

minimize the complexity of OAG-C, the number of clusters is set to , which 

implies that the number of landmarks in each cluster is . For every landmark 

from each cluster i, intra-cluster connections are established by connecting that landmark 

with n landmarks from the same cluster i, while inter-cluster connections are established by 

connecting that landmark with one landmark from every other cluster j. The total number 

of connections in the resulting shape representation is therefore ½| |(n +k − 1). For each 

landmark cluster i, the optimal intra-cluster connections are obtained by:

(4)

where cp,q represents the connection between landmarks p and q from cluster i, up,q is the 

distance between the two landmarks that evaluates the connection representativeness, and n 

is the number of connections per each landmark. The globally optimal solution  is obtained 

by solving the corresponding transportation problem (Dantzig, 1951), and is represented by 

a set of functions  that indicate whether the connection between landmarks p and q 

from cluster i is established  or not . For each pair of landmark 

clusters i and j, the optimal inter-cluster connections are obtained by:

(5)
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where p is a landmark from cluster i and q is a landmark from cluster j. The globally 

optimal solution  is found by solving a special case of the corresponding transportation 

problem called the assignment problem (Kuhn, 2010), and is represented by a set of 

functions  that indicate whether the connection between landmark p from cluster 

i and landmark q from cluster j is established  or not . The 

resulting OAG-C shape representation is obtained by merging the indicator functions of 

intra-cluster and inter-cluster connections into a single set , which contains ½| |(| | − 

1) elements (i.e. the number of connections in the complete graph) that indicate whether the 

connection between any chosen pair of landmarks p and q is established or not. Note that the 

generation of OAG-C does not involve the target image and is therefore performed during 

the training phase.

2.4 Landmark Detection

To detect landmarks in the target image, appearance likelihood maps fp (Eq. 1), obtained in 

the target image for each landmark p ∈ , and shape likelihood maps gp,q (Eqs. 2 and 3), 

obtained in the target image for each pair of landmarks p,q ∈ , are combined with the 

OAG-C shape representation  (Eqs. 4 and 5) (Ibragimov et al., 2014). In GTF 

(Ibragimov et al., 2012b), landmarks are considered as players, candidate points for 

landmarks as strategies and likelihoods that candidate points represent landmarks as payoffs. 

Such reformulations performed for image analysis problems (Bozma and Duncan 1994) 

allow using concepts from the field of game theory. For each landmark p ∈ , the 

corresponding set of candidate points p = {sp} is defined at locations of M largest maxima 

of the corresponding appearance likelihood map fp (Eq. 1). For each pair of landmarks p, q ∈ 

 with corresponding sets of candidate points p = {sp} and q = {sq}, a matrix Wp,q is 

defined as the partial payoff of landmark p considering appearance likelihood maps of 

candidate points sp ∈ p, and shape likelihood maps of candidate points sp ∈ p and sq ∈ 

q:

(6)

where νsp is the location of candidate point sp for landmark p in the target image, and dsp,sq, 

φsp,sq and θsp,sq are, respectively, the distance, azimuth angle and polar angle between 

candidate point sp for landmark p and candidate point sq for landmark q in the target image. 

Parameter τ weights the contribution of the appearance and shape likelihood maps; 0 ≤ τ ≤ 

1. The set of optimal candidate points  that represent landmarks in the target 

image is obtained by maximizing the total payoff of all landmarks:

(7)

where ω = {wp,wq,…} describes all admissible combinations of payoffs,  = p ∪ q ∪ … 

is the set of candidate points for all landmarks, and  = {Wp,q, Wp,r, …, Wq,r, …} is the set 

of matrices of partial payoff for all pairs of landmarks. The indicator function , 
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obtained from the OAG-C shape representation, determines whether the connection between 

landmarks p and q in the target image is considered during optimization  or not 

, and in this case, the corresponding shape likelihood map gp,q and matrix of partial 

payoffs Wp,q are not computed).

As Equation 6 represents a non-deterministic polynomial-time hard (NP-hard) problem, only 

a locally optimal set of candidate points  can be obtained in polynomial 

time. The obtained set σ* is further improved by re-evaluating each candidate point  for 

landmark p within a spatial domain p in the target image that encompasses all candidate 

points from p. The re-evaluation of optimal candidate points considerably improves the 

performance of landmark detection (Ibragimov et al., 2012b), while the computational 

efficiency can be further improved by introducing the game-theoretic concept of strategy 

dominance (Ibragimov et al., 2014).

2.5 Landmark-Based Atlasing

Segmentation of the object of interest in the target image is obtained by atlasing the 

segmented objects of interest from images in the training set. For each image in the training 

set, we first find the B-spline-based non-rigid transformation that aligns landmarks  = {p, 

q, …} in the training image to landmarks  detected in the target image, and 

then apply the obtained transformation field to propagate the segmented object of interest in 

the training image to the target image. By accumulating the propagations of the object of 

interest over all images in the training set, segmentation of the object of interest in the target 

image is finally obtained from voxels that correspond to the majority voting of the 

accumulated propagations.

3. Experiments and Results

3.1 Image Database

A database of 10 super-resolution 3D MR images of the tongue of healthy subjects was used 

in this study. Each super-resolution 3D MR image was reconstructed from a set of 

orthogonal sagittal, coronal and axial MR images (Fig. 1), acquired on a Siemens 3 T Tim 

Trio MR system (Siemens Medical Solutions, Erlangen, Germany) with an 8-channel head 

and neck coil by applying the T2-weighted turbo spin echo sequence with echo time (TE) of 

62 ms, repetition time (TR) of 2500 ms and echo train length (ETL) of 12. The sets of 

orthogonal images were acquired in a sequence, where the acquisition of each set took on 

average 100 seconds for 10–24 2D images with a size of 256 × 256 pixels, in-plane pixel 

size of 0.78 × 0.78 mm and slice thickness of 3 mm, which resulted in reconstructed 3D MR 

images with a size of 256 × 256 × 256 voxels and isotropic voxel size of 0.78 × 0.78 × 0.78 

mm. The tongue is located in the center of the reconstructed image, where all three 

orthogonal images intersect, meaning that only the tongue region in the 3D image is of 

super-resolution, whereas the surrounding structures are of lower resolution. The images 

were acquired from 10 different subjects including five males and five females with the 

mean (± standard deviation, SD) age of 26.1 ± 3.8 years (range 22–34 years), which were 
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not affected by any tongue, speech or vocal tract disorder, and were not recovering from any 

tongue related surgery, e.g. glossectomy.

3.2 Reference Segmentation and Landmark Annotation

For each super-resolution 3D MR image in the database, the objects of interest, represented 

by the genioglossus and inferior longitudinalis tongue muscles, were manually segmented 

and annotated with corresponding landmarks.1 Segmentation was performed by an 

experienced otolaryngologist, who identified the voxels belonging to each muscle without 

using any image smoothing or volume propagation tools (Table 1). The database represents 

a relatively heterogeneous subject pool, so that the smallest observed genioglossus and 

inferior longitudinal muscles were 2- and 3.8-times smaller than, respectively, the largest 

observed genioglossus and inferior longitudinal muscles. Landmark annotation was 

performed by placing 46 points on the surface of both muscles, and 319 points on the 

surface of surrounding structures, such as the mandible, teeth, chin, etc. (Table 2), resulting 

in 365 landmarks per image. Landmarks were distributed as evenly in space as possible, 

except in the case of the genioglossus, mandible, teeth and chin. Among the 18 landmarks 

assigned to the genioglossus, eight were placed along the contour of intersection with its 

mid-sagittal plane, which can be identified as a visually distinctive region, and 10 on its 

lateral sides. Among the 47 landmarks assigned to the lower jaw, 33 were placed on the 

frontal part of the mandible and 14 on the teeth. It has to be noted that landmarks were not 

placed on wisdom teeth, as they are often removed and therefore may not be present in the 

target image. The chin was described by 27 landmarks, which were distributed from the lips 

to the posterior part of the chin. The density of landmark distribution equals to 3.54 mm, 

meaning that, on average, each voxel from the tongue area has a landmark in its 3.54 mm 

large neighborhood.

3.3 Experiments

A leave-one-out cross-validation experiment was performed to evaluate the performance of 

the proposed segmentation framework, which means that GTF was iteratively trained on 

nine images and used to segment the remaining target image. Each of the | | = 365 

landmarks was searched for within a spatial domain that encompassed that landmark across 

all images in the training set. For each landmark p ∈ , we extracted nine types of Haar-like 

features (Fig. 3a) at 4-, 8- and 16-voxels large scales, computed at 125 voxels of the 133-

voxels large neighborhood of the voxel representing landmark p (Fig. 3b). Among the 

resulting 3375 features (9 types × 3 scales × 125 voxels), | p| = 200 features with the 

highest predictive power were automatically selected and used to define the appearance 

likelihood map fp of landmark p (Eq. 1), which was further used to select M = 50 candidate 

points for that landmark in the target image. For each pair of landmarks p, q ∈ , a shape 

likelihood map gp,q (Eqs. 2 and 3) was defined by using σD = 15 mm for the histogram of 

distances Dp,q, and σΦ = σθ = 15° for histograms of azimuth angles Φp,q and polar angles 

θp,q, and by weighting the contribution of these histograms by λ1 = 0.7, λ2 = 0.2 and λ3 = 0.1 

(Ibragimov et al., 2014). The OAG-C shape representation was obtained by applying the k-

1The image database is, together with reference segmentations and landmark annotations, planned to be publicly released.
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means algorithm to separate | |= 365 landmarks into k = 20 clusters, each consisting of k̄ = 

19 landmarks (as k̄·k = 380 < | |, fifteen dummy landmarks were added to corresponding 

clusters), and then solving the previously described transportation and assignment problems 

to obtain the set of indicator functions  (Eqs. 4 and 5). The generated appearance and 

shape likelihood maps were incorporated into matrices of partial payoffs Wp,q (Eq. 6) by 

using τ = 0.8 (Ibragimov et al., 2014), and then combined with the OAG-C shape 

representation to detect landmarks in the target image (Eq. 7). The segmentation of the 

object of interest in the target image was finally found by atlasing the segmented objects of 

interest from images in the training set according to landmarks detected in the target image 

(Fig. 4a). Note that most of framework parameters, including the number of candidate points 

M, standard deviations σD, σΦ and σθ for distance and angle likelihood maps, the rule for 

defining the number of clusters k and number of landmarks per cluster k̄, were adopted from 

our previous work (Ibragimov et al., 2014).

To validate the results of GTF segmentation, we compared the obtained results to an 

independent manual segmentation performed by a second observer, and to the results 

obtained by two alternative segmentation approaches, namely B-splines and demons 

atlasing, both of which are registration-based, not landmark-based. For computerized 

segmentation, images from the database (i.e. the GTF training set) were first registered to 

the target image using ever B-splines or demons registration and the obtained transformation 

fields were then used to propagate the segmented objects of interest from images in the 

database to the target image. Finally, a majority voting of the accumulated propagations was 

applied to segment the object of interest in the target image (Fig. 4b–c). In the case of B-

splines atlasing, a publicly available toolbox (Klein et al., 2010) was used for image 

registration, which consisted of an initial rigid followed by a B-spline transformation using 

the advanced mean square and normalized correlation metrics as similarity measures, i.e. as 

it was recommended for the head and neck segmentation from CT images (Fortunati et al., 

2013). In the case of demons atlasing, a publicly available implementation (Kroon) was used 

for image registration, which consisted of an initial rigid followed by a demons 

transformation using a voxel velocity field with the Gaussian kernel (SD of 4 voxels) and 

diffusion regularization (SD of 1 voxel). Moreover, as in the case of GTF each landmark 

was searched for within a spatial domain that was limited to the region encompassing that 

landmark across all images in the training set, the images were in the case of B-splines and 

demons atlasing cropped to a volume of interest containing the tongue in order to ensure a 

proper comparison of segmentation approaches. Restricting the volume of interest is a valid 

and safe step for the tongue muscle segmentation problem considering the nature of 

analyzed images. The original images with high in-plane resolution were acquired in such a 

way that all of them depict the tongue region. During the reconstruction procedure, the 

images are combined so that their intersection, i.e. the tongue region, is located in the center 

of the resulting volume.

3.4 Results

We evaluated the segmentation performance in terms of Dice coefficient κ and symmetric 

surface distance δ for the genioglossus and inferior longitudinalis muscles (Table 3). For 

both muscles, the resulting mean (± SD) values were • = 85.3 ± 2.0% and • = 0.79 ± 0.14 
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mm for the second observer, • = 81.8 ± 3.2% and • = 1.02 ± 0.19 mm for GTF, • = 78.8 ± 

5.5% and • = 1.10 ± 0.32 mm for B-splines atlasing, and • = 75.8 ± 6.6% and • = 1.27 ± 0.45 

mm for demons atlasing. The results are for a selected image shown in Figure 5.

We additionally evaluated the performance of landmark detection part of GTF. The resulting 

mean ± SD values of the landmark detection error (i.e. the distance between the detected and 

reference landmark positions) was 5.63 ± 3.83 mm, while the appearance likelihood value 

was 0.97 ± 0.04 for the detected landmarks and 0.85 ± 0.11 for the reference landmarks, all 

computed for the whole set of 365 landmarks. Relatively large values for the landmark 

detection error do not result in a comparable segmentation error, as landmarks located on 

object surface are very similar to the neighboring voxels, and can therefore slide along that 

surface, which increases the landmark detection error but does not considerably affect the 

segmentation results. The high appearance likelihood value of 0.85 ± 0.11 obtained for the 

reference landmarks indicates that the selected Haar-like appearance features can correctly 

model landmarks in the tongue area.

4. Discussion

We presented the first attempt to automatically segment tongue muscles from 3D MR 

images. Being a muscular hydrostat, the tongue does not contain any bony structures, which 

are, in general, easier to identify and segment because they have clearly visible boundaries 

and rigid shape. Moreover, without bony structures to act upon, tongue muscles form a 

complex system, where each muscle lengthens by acting upon other tongue muscles. Such 

tongue morphology therefore does not only limit the applicability of computerized 

segmentation methods based on intensity classification and surface evolution, but makes 

also manual segmentation challenging. In this study, we addressed this problem by adapting 

an existing computerized landmark-based segmentation framework to tackle the 

morphological properties of the tongue and its muscles, and validated the obtained 

segmentation results against manual and alternative computerized segmentation approaches.

All of the applied segmentation approaches suffer from artifacts in tongue images that are 

reconstructed from stacks of orthogonal 2D images. As each image has to be acquired in a 

short time frame, the orthogonal images do not completely cover the imaged 3D volume but 

overlap only with the tongue region (Fig. 1). This introduces abruptions followed by blank 

regions, i.e. regions without assigned intensities, in the reconstructed 3D image. These blank 

regions are located in the eight corners of the 3D image and considerably affect the 

computation of appearance likelihood maps for voxels close to the tongue surface or on the 

chin and mandible. Moreover, eventual rotations of the observed anatomy together with the 

natural variability of the size of the jaw do not allow an observer to estimate the anatomical 

regions, which will be covered by blank regions. The described limitation is less pronounced 

in the case of B-splines and demons atlasing, as the 3D images were cropped to the volume 

of interest containing the tongue. Another disadvantage of reconstructed images is related to 

intensity mismatches that appear due to slight misalignments of orthogonal images or when 

intensities of orthogonal images do not perfectly correspond. These mismatches introduce 

false boundaries and affect the performance of both appearance likelihood maps used in 

GTF and similarity measures used for registration in B-splines and demons atlasing.
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The previously described disadvantages of reconstructed images and poor visibility of inter-

muscle boundaries may lead to distorted segmentation results. The number and strength of 

distortions can be reduced by having a sufficiently large training database. Adding new 

training images is especially effective for B-splines and demons atlasing approaches, where 

distorted results for a single registration can be compensated by the remaining correct 

registrations that form the atlasing procedure. This issue can be additionally addressed by 

limiting the elasticity of registration transformations, so that the shapes of the depicted 

objects can be preserved during registration. However, if a false boundary is close to a true 

one or if the boundary is extremely poorly visible, which often occurs in the case of tongue 

muscles, distortions may not be avoided. GTF is theoretically more sensitive to distortions, 

as a single registration is performed after landmarks are detected. If most landmarks located 

on the periphery of the landmark set are considerably shifted from their actual positions, all 

training images will be the incorrectly registered to the target image. Similarly to B-splines 

and demons atlasing, the distortions can be reduced by limiting the elasticity of 

transformations for landmark-based registration. This implies that the detected landmarks, 

which are considerably shifted from the landmark set, will not be aligned with 

corresponding landmarks from the training set if the alignment requires an extremely elastic 

registration. Although such sensitivity to incorrectly detected landmarks can potentially 

reduce the segmentation robustness, GTF resulted in a higher mean value and lower SD of 

the Dice coefficient in comparison to B-splines and demons atlasing. Better results were 

obtained due to the manual annotation of images in the training set with landmarks that have 

distinctive appearance and spatial position, which reduces the number of incorrect 

detections.

Object landmarking has received considerable attention in the literature during the last 

couple of decades. Landmarks are always defined according to the appearance conditions 

and/or geometrical conditions, i.e. as points that are clearly visible in the image and/or as 

points representing curvature extrema, terminal and centerline intersection points (Rohr, 

2001). Well-defined landmarks simultaneously satisfy several of the above mentioned 

conditions and mark anatomically meaningful points (Lu et al., 2009, Proctor et al., 2010, 

Liu et al., 2010, Donner et al., 2013), object corners and centers (Ibragimov et al., 2012a), 

and evenly cover object boundaries (Stegmann et al., 2003, van Ginneken et al., 2006). In 

the present work, all types of landmarks were used, namely anatomically meaningful points 

(e.g. landmarks marking teeth), object corners and centers (e.g. tongue tip and landmarks on 

genioglossus mid-sagittal plane), and points evenly distributed on object surfaces (e.g. 

landmarks on digastric and inferior longitudinalis).

Introducing prior knowledge in the form of landmarks gives a certain advantage to GTF, 

whereas B-splines and demons atlasing are not supported by any prior knowledge. However, 

the independence to prior knowledge allows B-splines and demons atlasing approaches to 

easily incorporate automatically segmented images into the atlas if the obtained 

segmentation results are of exceptional accuracy. Segmented target images can be also 

added into GTF to enrich the landmark detection part of the framework, which is however 

less straightforward. If the results of B-splines or demons atlasing can be quickly visually 

inspected or automatically validated, it is very time-consuming to ensure the correctness of 

landmark detection. An automated validation procedure should therefore estimate the 
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detection accuracy relying on partial payoffs for each individual landmark. The optimal 

candidate points with high payoffs correspond to high appearance and shape likelihood 

values, and therefore there is a higher probability that they are correctly detected in 

comparison to the optimal candidate points with low payoffs. This confidence estimation 

can be transformed into weighting coefficients so that newly detected optimal candidate 

points can participate in defining the appearance and shape likelihood maps, however, with 

smaller weighting coefficients than for the manually positioned landmarks.

The segmentation results (Table 3) obtained by all of the applied approaches are promising, 

with GTF performing better than B-splines or demons atlasing. In terms of the symmetric 

surface distance, segmentation results were similar for both the genioglossus and inferior 

longitudinalis muscle. In the case of GTF, the mean values were around δ = 1 mm with a 

relatively low corresponding SD, which can be considered satisfactory when taking into 

account image voxel size of 0.78 × 0.78 × 0.78 mm. In terms of the Dice coefficient, 

segmentation results were, on the other hand, better for the genioglossus than for the inferior 

longitudinalis muscle. However, the genioglossus is a larger object than the inferior 

longitudinalis, and larger objects are usually associated with higher Dice coefficients than 

smaller objects. In fact, the average size of the observed genioglossus muscles was around 

11987 mm3, whereas for the observed inferior longitudinalis muscles it was around 2631 

mm3. Apart from the difference in size, when observed in MR images the genioglossus has 

more clearly pronounced lateral boundaries in the region where it is connected with the 

sublingual gland and inferior longitudinalis. Moreover, there is a visually distinctive area in 

the mid-superior and mid-posterior part of the muscle (Fig. 5). On the other hand, the 

inferior longitudinalis can be easily mistaken for the sublingual gland.

All computerized segmentation methods show inferior results in terms of segmentation 

accuracy and robustness when compared to the performance of the second observer. This 

fact indicates that there is still room for improvement before computerized tongue muscle 

segmentation becomes a fully reliable diagnostic tool. On the other hand, the relatively low 

level of agreement between manual segmentations confirms that the problem is challenging 

and subject to ambiguities. This observation correlates with the general rule that muscles, 

lesions, tumors and glands have in MR images relatively blurred boundaries, and therefore 

cannot be segmented as accurately as bones in CT images. Intensity mismatches, blur and 

presence of blank regions originating from image reconstruction represent additional 

obstacles for both manual and computerized segmentation. However, the current results 

show that computerized tongue muscles segmentation has potential, and that the obtained 

results can be already used for assisting clinicians in diagnosis and postoperative 

monitoring.

The applied segmentation approaches are not limited to the genioglossus and inferior 

longitudinalis muscles. However, to segment a different object of interest, reference 

segmentations and, in the case of GTF, landmark annotations have to be available. 

Nevertheless, the inclusion of new objects of interest would not considerably affect the 

computation time. In the case of GTF, the computation time depends mostly on the number 

of landmarks, while in the case of B-splines and demons atlasing, it is related to the number 

of images in the database. According to the applied settings, GTF took on average 6.6 
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minutes for segmentation (implementation in C++ with code parallelization, execution on a 

personal computer with Intel Core i7 processor at 2.8 GHz and 8 GB of memory), which 

proved to be more than 7-times faster in comparison to alternative approaches. However, it 

must be emphasized that GTF and B-splines atlasing were both implemented in C++ using 

code parallelization, whereas demons atlasing was implemented in Matlab and without code 

parallelization. Although direct comparison of computation times is not fully transparent as 

different programming languages were used, the computational efficiency of GTF is 

supported by its single registration-based architecture.

5. Conclusion

Computerized segmentation of tongue muscles is valuable not only as a diagnostic tool but 

also as a support to manual segmentation. This study is the first attempt to automatically 

segment tongue muscles from 3D MR images. The muscles of interest represented by the 

genioglossus and inferior longitudinalis were automatically segmented by applying GTF as 

well as B-splines and demons atlasing. The obtained results were validated against two 

manual segmentations, one of which was used as a reference standard, whereas the other one 

served as the inter-observer variability estimation. Although only two tongue muscles were 

considered as objects of interest, the analyzed segmentation approaches can segment the 

whole tongue area without computation performance deterioration or training dataset 

modification. In the case of GTF, this universality is ensured by the fact that landmarks 

evenly cover not only the muscles of interest, but the whole tongue and some distinguishable 

anatomical structures around it. In the future, we therefore plan to segment other tongue 

muscles, such as the superior longitudinalis, hyoglossus, styloglossus, etc., without or with 

minor training dataset modifications. When a sufficient level of segmentation accuracy is 

reached, we can focus on analyzing pathological and postoperative cases. Segmentation of 

tongue muscles from high-resolution MR images combined with whole tongue segmentation 

from dynamic low-resolution MR images is namely of great importance in oral cancer 

surgery planning.
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Highlights

• The first attempt to segment tongue muscles from in vivo MR images is 

presented.

• Haar-like appearance features and optimal assignment-based shape 

representation are combined with the game-theoretic landmark detection 

framework.

• The performance of the genioglossus and inferior longitudinalis tongue muscle 

segmentation is validated by three approaches.

• The images, the corresponding reference segmentations and the manual 

landmarking data will be publicly released to facilitate the development of new 

segmentation methods and their objective comparison.

Ibragimov et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
An example of a super-resolution 3D MR image of the tongue, reconstructed from sets of 

orthogonal (a) sagittal, (b) coronal and (c) axial MR images with a limited field of view. The 

unshaded areas correspond to individual images, the lightly shaded areas to the intersection 

of two orthogonal images, and the strongly shaded areas to the intersection of three 

orthogonal images. (d) As a result, only the tongue region is intersected by all orthogonal 

images, whereas the corners of the volume are not covered by any orthogonal image and 

therefore represent blank areas.
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Fig. 2. 
A schematic illustration of the game-theoretic framework for landmark-based segmentation 

of tongue muscles from 3D MR images.
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Fig. 3. 
(a) Nine different types of Haar-like features are used to generate appearance likelihood 

maps. The feature response is the difference between voxel intensities inside shaded and 

unshaded regions. (b) Haar-like features are computed at 125 voxels (shaded) of the 133-

voxels large landmark neighborhood.
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Fig. 4. 
Atlasing results for a selected super-resolution 3D MR image of the tongue, shown in a 

sagittal cross-section and obtained by applying (a) the game-theoretic framework, (b) B-

splines atlasing and (c) demons atlasing. In the first row, the results are shown as semi-

transparent domains, where the red color indicates the accumulated propagations of 

reference segmentations from images in the training set, while the green color indicates the 

majority voting of the accumulated propagations. In the second row, the results are shown as 

colored volumes, where the yellow color indicates the segmented genioglossus muscle, 

while the blue color indicates the segmented inferior longitudinalis muscle
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Fig. 5. 
Segmentation of genioglossus and inferior longitudinalis tongue muscles for a selected 

super-resolution 3D MR image, shown in sagittal (top), coronal (middle) and axial (bottom) 

cross-sections, obtained by (a) manual segmentation, (b) game-theoretic framework, (c) B-

splines atlasing and (d) demons atlasing (d). The brown color indicates either the manual 

segmentation (a) or the overlap between manual and computerized segmentations (b–d) of 

the genioglossus muscle. The green color indicates either the manual segmentation (a) or the 

overlap between manual and computerized segmentations (b–d) of the inferior longitudinalis 

muscle. The red color indicates the disagreement between manual and computerized 

segmentations.
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Table 1

Overview of the reference segmentation of tongue muscles measured in terms of mean (± standard deviation), 

minimal and maximal muscle volume.

Tongue muscle Mean volume (mm3) Min. volume (mm3) Max. volume (mm3)

Genioglossus 11987 ± 2890 7543 15713

Inferior longitudinalis 2631 ± 1099 1245 4690
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Table 2

Overview of the number of landmarks used to describe the surface of the tongue, individual tongue muscles 

and surrounding structures.

Location of
landmarks

Number of
landmarks

Surface of tongue muscles (total) 125

  - Genioglossus 18

  - Inferior longitudinalis 28

  - Digastric 34

  - Mylohyoid 16

  - Superior longitudinalis 29

Surface of surrounding structures (total) 169

  - Mandible (lower jaw) 33

  - Teeth (lower jaw) 14

  - Chin 27

  - Soft palate and mucosa 61

  - Submandibular gland 34

Surface of the tongue (total) 71

Total 365
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