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Abstract

A novel approach to determine the global topological structure of a microvasculature network 

from noisy and low-resolution fluorescence microscopy data that does not require the detailed 

segmentation of the vessel structure is proposed here. The method is most appropriate for 

problems where the tortuosity of the network is relatively low and proceeds by directly computing 

a piecewise linear approximation to the vasculature skeleton through the construction of a graph in 

three dimensions whose edges represent the skeletal approximation and vertices are located at 

Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations 

of relatively large curvature along the centerline of a vessel. Our method consists of two phases. 

First, we provide a CP detection technique that, for junctions in particular, does not require any a 

priori geometric information such as direction or degree. Second, connectivity between detected 

nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine 

whether a potential edge between nodes is or is not included in the final graph. The utility function 

in this problem reflects both intensity-based and structural information along the path connecting 

the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this 

method. This approach provides a mean of correctly capturing the connectivity patterns in vessels 

that are missed by more traditional segmentation and binarization schemes because of 

imperfections in the images which manifest as dim or broken vessels.
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 1. Introduction

Quantitative analysis of connectivity patterns in complex biological tubular networks such as 

the brain vasculature has recently received growing attention for a variety of biological 
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questions, ranging from vascular development (e.g. angiogenesis and vascular patterning), 

and vascular physiology (e.g. regulation of brain perfusion and blood flow), to vascular 

diseases, surgical planning, and therapy (Jackowski et al., 2005; Lesage et al., 2009; Kim et 

al., 2011; Blinder et al., 2013). Motivating the effort in this paper is the recent discovery of a 

correlation between microvascular and neuronal densities in the murine cortex (Tsai et al., 

2009) where it was shown that in the range of 1–10 mm of the gray matter, neuronal and 

vascular densities are correlated to each other in that the functional behavior of the neurons 

in granular lamina detected from the brain images was consistent with and measurable from 

the distribution of blood vessel densities. In addition, analysis and classification of blood 

vessel networks in terms of the length of vessels and the number of bifurcations in a given 

volume have been shown to provide pathological insight into the biological properties of a 

sample (Jackowski et al., 2005). Finally, the connectivity model of vascular networks has 

been used to aid in the registration of Magnetic Resonance Angiography images acquired 

from the same vasculature at separate points in time (Aylward et al., 2003; Bullitt et al., 

1999; Kirbas and Quek, 2004). A graph-based model such as the one suggested in this paper 

provides both topological and quantitative insight into vascular systems via piecewise linear 

approximation to their centerlines. These graph-based models can be applied to all the 

problems mentioned above. For example, junction degree can trivially be determined from 

the graph and vessel length approximated by the physical length of the edges on the shortest 

path between two junctions in the graph.

Typically, problems of finding such a graph-based model are solved in a three-step fashion. 

First, a comprehensive segmentation of the image is obtained using methods such as active 

contours (Chan and Vese, 2001; Yan and Kassim, 2006), geometric model-based techniques 

(Qian et al., 2009; Mahadevan et al., 2004), or region growing approaches (Eiho et al., 

2004). Then, the tubular structure’s skeleton is found using methods such as thinning 

(Homann, 2007). Finally, a graph-type model is derived from the skeleton as a post 

processing step. These methods face a number of difficulties. Perhaps most importantly, 

common detailed segmentation methods are difficult to automate. Even state of the art 

methods require extensive human interaction (Kirbas and Quek, 2004; Lesage et al., 2009; 

Olabarriaga and Smeulders, 2001). This can be a major shortcoming for large data sets and 

when the vascular network is comprised of very closely spaced structures. Also, in the 

presence of high noise level, intensity contrast between the object and background decreases 

and boundaries weaken resulting in a loss of accuracy in segmentations obtained by region 

growing and edge detection methods (Wang et al., 2009). Additionally, a segmentation-first 

approach does not necessarily give rise to an accurate network graph. For example, many of 

the skeletonization methods struggle when segmentation yields gaps in the vessels (Lesage 

et al., 2009). Establishing a graph based on the skeleton needs a tracking step that adds to 

the complexity and error rate of the process. These three-step types of methods have been 

developed primarily for networks with tree-type structures such as neural, bronchial, and 

breast ductal networks (Gulsun and Tek, 2008; Megalooikonomou et al., 2009; Olabarriaga 

et al., 2003; Pisupati et al., 1995; Türetken et al., 2011). For these cases where the graph has 

a tree structure, different implementations of the minimum spanning tree using Euclidian 

(Bullitt et al., 1999) or Mahalanobis distances (Jomier et al., 2005) have been proposed to 

determine the graph from the segmented images. Because vasculature networks are not 
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always of a tree-based shape given fluorescence microscopy data of mixed image quality, 

these techniques are not applicable and new methods are required.

Recently there have been some efforts in identifying centerlines directly from the data 

without first performing a high-resolution segmentation. Ridge-based methods (Aylward and 

Bullitt, 2002) and minimal path techniques (Li and Yezzi, 2007) are the most common 

algorithms of this type. The former locates the tubular structures’ skeleton by finding and 

following the image’s intensity ridges (Kirbas and Quek, 2004). Vessel tracking algorithms 

start from a set of seed points and follow the centerline by maximizing an energy function 

correlating to the vessel centerlines (Lesage et al., 2009). These methods both require the 

beginning and end points generally or the root point for vascular trees and hence are most 

appropriate for interactive work (Lesage et al., 2009). Due to the needed human interaction, 

they are inefficient for manipulation of large data sets where manual selection of such points 

would be burdensome. Error accumulation along the tracking routes produced by the noise 

or other imaging artifacts is another drawback of these types of methods (Rittscher et al., 

2008).

Relevant to the problem of interest however are recent methods directed at recovering loopy 

structures (Türetken et al., 2013). The method proposed in (Türetken et al., 2013) first builds 

an overcomplete graph representing the network by connecting a set of evenly spaced nodes 

located on the directly connected structures. Subsequently, a globally optimal graph is 

computed from this initial graph. This approach though is not able to handle cases such as 

those encountered in the problem of interest here where challenges with the data are 

apparent including breaks or dimness in the vasculature. In another paper (Bogunovic et al., 

2013), the centerline is found by tracing the intensity ridge paths along a set of manually 

selected seed points. Additionally, as with the work in (Türetken et al., 2013), this “tracing-

based” algorithm was not developed to address the issue of broken vessels.

Motivated by the above discussion, we consider a semi-automated approach for determining 

a graph representing the piecewise linear connectivity pattern of a network without the need 

for first performing a detailed segmentation of the data, deriving the structure’s centerline, or 

manually selecting the seed points. Of particular interest to us is the case of cortical 

microvasculature determination in a murine model from fluorescence microscopy data 

stacks that manifest vessels of low tortuosity.

The specific processing chain is illustrated in Fig. 1. As it is common in vascular detection 

methods especially from microscopy images, an initial stage is used to denoise, enhance, 

and binarize the raw data (Sarder and Nehorai, 2006; Suri et al., 2002). The binary image is 

then used as the basis for the rest of the processing. Critical points that are comprised of 

both vasculature junctions and points of relatively high curvature along individual branches 

are detected in the next stage. Since the number of CPs in a microvasculature sample can be 

huge, manual intervention has to be minimal. Our approach is free of prior assumptions on 

the degree of junctions (i.e., the number of connections) or orientation of the connected 

branches making it well suited for the structural variability and compactness across a given 

volume. Graph extraction is accomplished in each image by solving a BIP problem 

(Hoffman and Ralphs, 2013) where the variables represent potential edges of the graph. A 
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binary variable is associated with every possible edge linking pairs of CPs. Using the binary 

images, each such edge is assigned a “utility” constructed to reflect both local and global 

features of the microvascular structure (see Section 4). The BIP then determines the 

inclusion of edges in the final graph of each data volume in order to maximize the associated 

utility.

This paper contributes to the existing state-of-the-art through the development of a novel 

graph-based microvascular network model identification approach using BIP that 

approximates microvasculatures’ loopy skeleton by their connectivity graph. The common 

need for feeding seed points to the algorithm has been eliminated here while the graph is 

built based on the structurally critical points found by direction and scale invariant 

techniques. Since the graph’s edges are not weighted solely based on local image attributes 

but rather more global measures, this method can easily overcome many common challenges 

such as slight vessel breakages, faint vessels, or the presence of spurious branches. Given all 

these features, graph-based post processings (Lesage et al., 2009) are not required here.

The remainder of this paper is organized with Sections 2–4, describing the microvasculature 

network identification algorithm in detail including pre-processing, critical point detection, 

and graph-based connection mapping. Section 5 discusses the qualitative and quantitative 

empirical results. Conclusions are provided in Section 6.

 2. Pre-processing

The graph-based model extraction process is designed to be performed on a rough binary 

estimation of the microvascular structure. Here, the level set method (Chan and Vese, 2001) 

has been selected to binarize the raw images. However, due to the poor contrast and higher 

level of imaging artifacts of fluorescence microscopy images, obtaining a reasonably 

accurate binarization is difficult. As illustrated in Fig. 2, fluorescence microscopy images are 

challenging to process due to noise, non-uniform illumination, fluorescent background 

signal, and staining-related artifact contents (Boulanger et al., 2010; Sarder and Nehorai, 

2006). Larger vascular structures result in higher average intensity and consequently larger 

noise variance while smaller structures suffer from lower photon counts and less signal 

content. These issues, which are shown in Fig. 2, result in two challenges: (1) identifying the 

smaller structures along with their connectivity and (2) the recovery of larger vasculatures 

that tend to be surrounded by heavy noise.

To address the challenges discussed above, we make use of the local normalization method 

(Sage, 2014) as a means of initializing the level-set binarization step. The local 

normalization method transforms an input image, I, according to

(1)

where I(x, y, z) is the original image intensity, mI(x, y, z) is the local average intensity, σI(x, 
y, z) is the local standard deviation of intensity, and ILN(x, y, z) is the locally normalized 

intensity at point (x, y, z). The quantities mI and σI are computed in Gaussian windows with 
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standard deviations w1 and w2 centered on (x, y, z). The quantities w1 and w2 are selected 

such that the locally normalized image will have a bimodal intensity distribution that is ideal 

for a clustering-based thresholding such as Otsu’s method (Otsu, 1979). Bimodality is 

maximized when the inter-class variance (Otsu, 1979) between two modes is maximized. 

Thus, the optimal values of w1 and w2 are those that maximize the inter-class variance level. 

Through brute-force searching over different amounts of w1 and w2, we have found that w1 

= 15 and w2 = 20 produce the best results for our datasets. Otsu’s thresholding of the 

normalized images is then used for initializing the level set method. Specifically, the level 

set function is initialized as the union of circles of radius one voxel centered on each of the 

thresholded voxels. In the remainder of the paper, the binary image resulting from the level 

set segmentation is denoted IB. In Fig. 3, a sample fluorescence microscopy image, its 

normalized, thresholded, and final binary versions are shown.

 3. Critical point detection

Critical points are intended to capture locations of significant structural change in the 

microvasculature. These locations are where vessels either branch or significantly bend. 

Here, we refer to branch points as junctions and points of significant bending as waypoints.1 

The CP detection process is comprised of three stages: convexity filtering, CP clustering, 

and branching node detection. Fig. 4 illustrates the essence of each of these steps.

 3.1. Convexity filtering

By relating the primary geometric structure of CPs to the non-convexity of the vasculature in 

their vicinity, we obtain an easy and effective method for identifying groups of points as 

potential CPs as shown in Fig. 5. In this figure, we show three typical cases of vasculature 

geometry model and their associated convex hulls. For the straight vessel in Fig. 5(a), there 

is negligible difference between the vessel and its convex hull. For the bending vessel in Fig. 

5(b) as well as the junction in Fig. 5(c), the convex hull volume, νcx, differs markedly from 

that of the vascular structure, ν.

Given the binary image, the convex hull of groups of voxels is easily determined and 

provides a reliable measure of the structural bending that does not require the explicit 

segmentation and smooth discretization of the vasculature surface. Thus, we consider a 

convexity metric  computed in small neighborhoods of the foreground points to find 

the CPs.

To locate CPs by means of the convexity metric, we start by computing the H feature over 

cubes of width a. The quantity νcx is then the number of voxels in the convex hull of the 

foreground points and ν is the volume of foreground points in the cube. We let a = 4ρ where 

ρ, the nominal vessel radius measured in voxels, is roughly estimated using the method 

proposed in (Aylward and Bullitt, 2002). This value of a allows for inclusion of enough 

structure of interest in the cube and exclusion of the neighboring vessels for more precise 

computation of H. Critical points are then defined to be those points whose convexity metric 

1In constructing our vascular graph, these waypoints basically allow for a piecewise linear approximation of the vasculature.
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is above a threshold that is automatically determined using Otsu’s method applied to the 

entire data set.

 3.2. Critical point clustering

Convexity filtering results in a collection of voxels in the vicinity of each CP. We employ 

hierarchical agglomerative clustering (Day and Edelsbrunner, 1984) with Euclidean distance 

as the dissimilarity measure to cluster these voxel collections and take CPs as the clusters’ 

centroids. An example of this process is shown in Fig. 6 where clusters are indicated by 

dashed circles and CPs are marked by cross signs. For this instance, agglomerative 

clustering successfully has distinguished CPs in spite of their patches discontinuity.

For experiments, the dissimilarity threshold is set equal to the diameter of the vessel to 

which the voxels belong. This threshold value provides results within an acceptable 

structural resolution. This method is particularly useful for our application, as it does not 

require prior knowledge about the number of clusters and forms clusters based entirely on 

the distances between voxels. Without the clustering, each connected group of voxels would 

produce a CP resulting in multiple points associated with a single junction or waypoint. 

Therefore, it provides more robustness to image artifacts that remain even after the 

binarization and more accuracy in the CPs location.

 3.3. Branching node detection

Finally, in preparation for the graph construction considered in Section 4, we separate 

junctions from waypoints. Given the CPs, junctions will be distinguished from waypoints by 

an improved version of the spherical shell filtering method employed in (Almasi and Miller, 

2013). This approach is based on the geometrical fact that masking of a junction with a 

concentric 3-D spherical shell, {x|r1 ≤ |x − x0| ≤ r2}) with inner radius, r1, greater than the 

junction radius, x0 the center of the mask, and r2 the outer radius gives three or more 

connected components within the shell region. Indeed, in Fig. 7 we see in cases “a” and “b”, 

the number of connected components is three for nominal junctions with three branches 

while case “c,” a CP located at a waypoint, would give rise to two connected components.

The parameters r1 and r2 are set as ρ and ρ + δρ, where ρ is the nominal vessel radius 

determined in the convexity filtering step, and δρ is the shell thickness. We find that setting 

δρ equal to two works well for the problem of interest. Due to the compactness of 

microvasculature, it is possible that parts of the neighboring vessels will be included in the 

spherical shell filtering of a given point. This proximity would result in false junction 

detections caused by a rise in the number of connected components produced by the 

spherical shell filtering of that point. One instance for this problem is the case “d” in Fig. 7, 

where the number of masked connected components is three due to the presence of a 

structure from a neighboring vessel in the spherical shell region. To avoid false junction 

detection, we only need to ensure that the number of connected components in the larger 

sphere will not exceed one. After this stage, the collections of junction points and waypoints 

will be denoted as J = {jk, k = 1, …, nJ} and W = {wl, l = 1, …, nW} where nJ and nW are 

the number of junctions and waypoints respectively.
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 3.4. Boundary points

It is necessary to supplement the junction and waypoint sets with an additional set of 

boundary nodes defined as the center of vessel cross sections at the boundaries of the image. 

As seen in Fig. 8, such structures are typically circular except in cases where a boundary 

divides a vessel along its length. To separate these two classes, Frangi’s vesselness measure 

(Frangi et al., 1998) is used to find the non-vessel shapes and the Eucleadian centers of the 

resulting regions, signified by R = {ri, i = 1, …, nR} where nR is the number of boundary 

points are taken as border points. Finally, the CP set is defined to be P = (J ∪ W ∪ R) and its 

cardinality is nCP = nJ + nW + nR.

 4. Graph-based connection mapping

Given the CPs identified in Section 3, we formulate graph-based model identification as a 

BIP problem. Binary integer programs, which are known to be NP-hard, are a type of linear 

programming problems with extra requirement that each decision variable can only take on 

the value of 0 or 1 (Nemhauser and Wolsey, 1988). Indeed, while most BIP problems have a 

finite number of feasible solutions, this number can grow exponentially with the number of 

decision variables (Hoffman and Ralphs, 2013). In this paper, we use a “branch and bound” 

approach to find an optimal solution. The interested reader is referred to (Nemhauser and 

Wolsey, 1988) for details on this approach.

For the problem considered in this paper, the binary variables represent the possible edges in 

our vasculature graph. The set of edges is denoted as E = {el, l = 1, 2, …, nE} where 

 is the number of possible edges of a complete graph built 

from the pair of points from set of CPs. The BIP problem for finding a subset of edges from 

the complete graph that are to form the microvasculature network model then takes the form

(2)

The utility functions, αl, associated with each of the edge variables are defined to 

quantitatively capture structural qualities from the binarized image such as the degree to 
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which possible edges are localized on and aligned with vessels. The constraint ∑el∈EJi
 el ≥ 3 

ensures that the degree of a junction is greater than or equal to three where EJi is the 

collection of edges attached to the node ji ∈ J. Similarly, the constraint ∑el∈EWj
 el = 2 

ensures that the degree of a waypoint is strictly equal to two where EWj is the collection of 

edges attached to the node wj ∈ W.

The utility function αl is defined as

(3)

and is comprised of three components of αL,l, αA,l, and αS,l where the subscripts L, A, and S 
stand for the vessel Localization, vessel Alignment, and Shortcutting degree (to be define 

below) of each edge. The first element αL,l is intended to provide high utility for edges 

passing through the microvasculature itself as opposed to the background and is analytically 

modeled as

(4)

where Il is a vector comprising intensities along the edge el in IB, the binary image, and dl is 

the edge’s Euclidean length. Eq. (4) is motivated by the fact that the microvasculature 

network is a collection of tubular, or generally, elongated structures. In such networks, an 

edge either cuts through multiple vessels cross-sections or stands mostly on a vessel. Thus, 

averaged binary intensities along each edge, , is expected to be around zero for the 

former or one for the latter cases. The function Hζ(x) defined as 1 if x > ζ and zero else, is 

required to exclude highly unlikely edges from the computations. This function increases the 

utility when an edge is located on vascular regions (  increases). Otherwise, the first 

term goes to zero, indicating that the edge lies mostly on the background voxels with zero 

intensities. In light of this, we take the threshold ζ as the mean of the two cluster centroids 

found by k-means (k = 2) clustering of the set  over all l.

The quantity αA,l is motivated by two factors. First, due to the imperfections of fluorescence 

microscopy data discussed in Section 1, many smaller vessels manifest as faint and narrow 

structures in the image such that their accumulative intensity and consequently αL,l are quite 

small. Also, while the enhancement improves dim vessels’ presentation, it still fails to 

provide a detailed approximation of the vasculature. Most notably, many vessels remain 

broken. These structures would be undervalued in terms of αL,l and ultimately missed in the 

creation of the graph-based model. Second, for large vessels, two nodes that do not belong to 

the same edge may be located close enough to one another resulting a large αL,l. Such a 

situation is illustrated in Fig. 9 by means of a dashed red line where the true graph edges are 

shown by gray solid lines. Here, the directional filtering component is designed specifically 
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to overcome these issues by selecting edges in a manner that reflects the underlying 

directionality of the structure in the vicinity of the potential edges. This alignment of 

potential edge with the corresponding vessel ensures accuracy of the final result as an 

estimation of the skeleton.

To obtain the local directionality information, we have chosen to employ direction filtering 

ideas implemented using 3-D steerable filters (Freeman and Adelson, 1991) and define αA,l 

as

(5)

where Estr,l is the energy or Frobenius norm of the directional filter’s output calculated in a 

tubular region around the lth edge from the binarized image, 

, with ρ1 and ρ2 being 

the local vessel radii at two ends of the lth edge computed from IB. The energy measures the 

alignment of that region of interest (ROI), Īl, in the structure with the edge and is calculated 

as  with

(6)

The  is calculated by convolving Īl first with a Gaussian kernel with standard deviation 

σG = 3 to smooth the structure. Then, the result is filtered by , the Hilbert transform of 

 (defined below), in order to map the alignment degree of the vessel boundaries with the 

direction made by the spherical coordinate pair (θ, ϕ) for each edge as shown in Fig. 10(a). 

The term  refers to the second order 

directional derivative of a 3-D Gaussian kernel G(x, y, z) = e−(x2+y2+z2) where

(7)

Almasi et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, the αA,l quantity is normalized by the edge length dl for coherency between different 

edges. Fig. 10(b) shows three edges with different orientations with respect to the 

vasculature in a 2-D demonstration. The first edge e1 is located on a solid vascular branch. 

The second edge e2 represents a broken vessel. The last edge, e3, is an incorrect edge 

unaligned with the structure in its vicinity. Fig. 10(c) provides visual understanding of how 

αA,l contributes to the graph model extraction by emphasizing the first two examples and 

penalizing the last case. The ROIs for the three scenarios are shown in the top section of Fig. 

10(c). The absolute values of the directionally filtered ROIs with respect to each edge’s 

direction are plotted and the computed αA,ls are shown in the bottom part of this figure. The 

filter’s outputs are larger in area and brighter in intensity for the e1 and e2 that are aligned 

with the vascular structure. The result for the e3 is smaller with lower intensity in 

comparison to the other edges.

The last component of the edge-based utility function is αS,l. The microvasculature network 

has a rather high spatial density (compactness) so that it may happen that a prospective edge 

“shortcuts” a path made by two or more other edges as shown by the blue line in Fig. 9. 

These types of edges have relatively large αL,l and αA,l that happens to increase their utility 

and produce spurious and false edges in the resulted graph. The term αS,l defined below 

penalizes such scenarios

(8)

where Cl is the set of two end nodes of the lth edge, ρ is the nominal vessel radius, , Pk 

is a CP, and G is the Gaussian function defined in the αA,l formulation. By convolving the 

nodes with a Gaussian (see Fig. 11), Eq. (8) effectively decreases the utility of an edge when 

either (a) the number of nodes around that edge increases from zero or (b) the distance of 

other nodes to the edge decreases to less than the vessel radius. In Fig. 11(a), two correct 

edges with no node in their Gaussian neighborhood are shown. The effect of close nodes to a 

shortcutting edge’s utility function is schematically shown in Fig. 11(b). The standard 

deviation of the Gaussian kernel convolving with the edge is selected as one third of the 

vessel radius so that farther nodes have negligible effect on the inner product.

 5. Experimental results

The utility of the proposed graph-based network model identification algorithm is supported 

by the experimental results provided in this section. We evaluate the performance of our 

approach using synthetic and real data. We quantify the performance in terms of the network 

model detection precision and, in the case of the synthetic data, robustness to noise. The 

proposed method needs no manual interaction or parameter tuning except for the δρ and σG 

parameters in the junction detection and directional filtering stages which are set as 2 and 3 

respectively. The BIP has been solved by means of the built in MATLAB function 

“bintprog” that uses the branch and bound method for which the branch variables with the 
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maximum integer infeasibility will be chosen for branching and the node variables with the 

lowest bound on the objective function will be selected in the search tree.

 5.1. Validation metrics

The performance accuracy of the method has been investigated by means of six metrics that 

are defined to quantitatively measure the similarity degree of the identified network and the 

ground truth. Both of the geometrical and topological specifications of a curvilinear network 

are taken into account in definition of these metrics. Four of these metrics, CFPR, CFNR, 
GFPR, and GFNR, come from the NetMets software package (Mayerich et al., 2012) where 

CFPR is Topological False Positive Rate defined as

(9)

The Topological False Negative Rate, CFNR, is

(10)

The metrics, GFPR and GFNR, are defined in the same way as their topological peers except 

that instead of edge number, they reflect the edge lengths.

(11)

(12)

Finally, JFPR and JFNR determine the junction detection precision by calculating the 

following ratios respectively:

(13)

(14)
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 5.2. Synthetic image formation

Synthetic images are formed by developing tubular interconnected networks from ground 

truth graphs inspired by the approaches discussed in (Collins et al., 2011; Fudenberg and 

Paninski, 2009). First, the ground truth graph is transformed into a binary 3-D volume, S, by 

means of the Bresenhamn’s line algorithm (Bresenham, 1965). Next, each of the lines in this 

binary image is dilated with a spherical structuring element of the same diameter as the 

related vascular branch’s radius. The resulting image is then convolved with a 3-D Gaussian 

function with standard deviation of two in order to smoothing the boundaries. From these 

“noise-free” images, simulated data are generated as Poisson(λ0 + N̅
q,q,q(x, y, z)). Here 

N̅
q,q,q(x, y, z) is the mean of Nq,q,q(x, y, z) that is a 8-neighborhood of point (x, y, z) with 

radius q in the noise-free image. Despite the lack of meaningful structures in dark regions of 

fluorescence microscopy images, voxels of these areas are slightly noisy (Boulanger et al., 

2010). We have modeled this background noise by adding an offset amount λ0 in the mean 

value. Finally, the intensity range is scaled to span the range of seen in real data.

 5.3. Simulated data results and discussion

With λ0 = 10 and q = 10, we have generated an image of size 400 × 400 × 200 of a network 

as shown in Fig. 12(a). We have employed a common approach used in Poisson settings of 

scaling the maximum intensity in an image for establishing a target PSNR (Bindilatti and 

Mascarenhas, 2013; Luisier et al., 2011) defined as

(15)

with MSE being the mean square error between the clean and noisy images.

The ground truth and extracted graph model are shown in Fig. 12(c) and (d) for PSNR = 5 

dB. The performance metrics are also presented in Table 1. While all the error rates are 

relatively low, the method’s performance in lower false negative rate of the junctions has 

shown to be outstanding. Higher false positive error rate in junction detection has given rise 

to the edge related error rates though they are still small. For the purpose of noise analysis, 

the noiseless synthetic image has been transformed into 100 volumes where every ten 

volumes have the same PSNR level. The maximum intensity has been scaled with ten 

discrete values to the range of (5, 255) such that the PSNRs will fall in the range of 2–15 

dBs. Quantitative results are provided in Fig. 13(a)–(f). For lower PSNR values, JFNR is 

increased noticeably indicating that more junctions are missed by the CP detection method. 

In such cases, small loops involving thick vessels may be closed as all the junctions around 

them are transformed into a single junction. Also, thicker branches get closer to each other 

such that junctions that are located close to them will be omitted by the constraint in the 

spherical shell filtering. However, we see that JFPR is less impacted by the higher noise 

levels.

Concerning the metrics CFPR and CFNR shown in Fig. 13(c) and (d), a dependency on the 

noise level is more obvious. When an image is noisier, its enhanced binary version will be 
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more dilated. The inflation of the structures comes with smoother and less concave 

boundaries decreasing the convexity degree. Thus, more voxels will not pass the convexity 

filtering step resulting in missing some of the waypoints. An increase in missed waypoints 

yields a less complete graph and missed connections as a consequence.

Finally, the results for GFPR and GFNR are presented in Fig. 13(e) and (f). In comparison to 

the CFPR values, GFPR is slightly larger especially for the lower PSNR values indicating a 

tendency for detection of longer edges by the method when there are missed junctions. From 

the analytical perspective, the utilities increase for longer edges since the “skeletonness” of 

them increases as a result of higher missing nodes. On the other hand, geometrical false 

negative rates have not deviated from the CFNR rates noticeably, and for a number of PSNRs 

it is higher than the CFNR. This observation complies with the above statement that the 

longer edges have greater utilities and consequently shorter edges will be missed with a 

higher rate.

 5.4. Real data

Validation of the proposed algorithm has been completed by applying the method to four 

sets of 3-D vascular images from murine nervous tissue. Testing datasets were selected such 

that they show a range of structural and noise properties. To generate these data, 

heterozygous Plexin-D1-fGFP transgenic mice were used to visualize GFP-expressing 

developing blood vessels in the embryonic thalamus. All animals were maintained and 

treated with approved Institutional Review Board protocol according to the National 

Institutes of Health guidelines and approved by the Institutional Animal Care and Use 

Committee at Harvard Medical School. Three dimensional vascular images (z-stacks) were 

acquired using a Leica LSM 510 META confocal microscope in embryonic thalamus. The 

SNR of images ranges from 3 to 7 dB roughly. Quantitative evaluations of the acquired 

graphs have been performed based on the ground truth data and computation of the six error 

metrics. Corresponding results are provided in Table 2.

 5.4.1. Dataset 1—The first image which is of size 200 × 450 × 50 voxels is shown in 

Fig. 14(a) where the MIP of its binary version with the extracted graph overlaid is shown in 

Fig. 14(b). The 3-D ground truth graph model is shown in Fig. 14(c). The extracted graph 

through the BIP method is also shown in Fig. 14(d). The network model identification 

algorithm has proved to be quite accurate in obtaining the microvasculature’s model. While 

we generally observe good correspondence between the data and the graph in Fig. 14(b), two 

types of errors are highlighted. Purple ellipses identify vessels that are missed in the graph 

because of being connected to an end point rather than a CP. Edges shown in red are 

topologically correct but their locations are offset on one end. These cases occur when one 

end node is missed in the CP detection process, yet due to the existence of another CP close 

to the missing node and the strength of the directional term in the BIP utility funtion, these 

edges are detected. However, there are a few parts of the less visible and dimmer vessels 

along with the cut branches that have not been captured by the method. Quantitative 

measures of the performance are provided in Table 2. The NJ−GT, NJ−D, NE−GT, and NE−GT 

are the number of junctions and edges in the ground truth and detected graph model here.
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 5.4.2. Dataset 2—The second set of real data is from the murine hippocampus and 

shown in Fig. 15(a). This image is of size 600 × 200 × 24 voxels. In spite of its larger size, 

the microvasculature has a simpler network layout with smaller density of vessels relative to 

the other datasets we consider. This image also manifests a different structural shape; 

specifically, the manner in which it is “bent” along the left side of the image. In order to 

reproduce this curvature in the vasculature model, there has to be a higher ratio of waypoints 

to the total CPs number testing the proposed technique from another aspect. Qualitative 

results for the dataset 2 are presented in Fig. 15(a)–(d). The binary image is shown in Fig. 

15(b). The 3-D ground truth and derived graphs are shown in Fig. 15(c) and (d) and the 

performance measures computed for this dataset are provided in Table 2. The qualitative and 

quantitative results confirm the satisfactory performance of the method for the dataset 2. 

Also, the successful detection of CPs and waypoints in particular has resulted in a skeletal 

model quite close to ground truth.

 5.4.3. Dataset 3—The next data set relates to a more homogenous microvascular 

network in terms of vessel shape and size. However, the noise distribution differs markedly 

throughout the image as apparent from Fig. 16(a). This image is of size 500 × 500 × 45 

voxels. The binary image is shown in Fig. 16(b). The ground truth and extracted graphs are 

presented in Fig. 16(c) and (d) and the quantitative metrics are provided in Table 2. In spite 

of the noisy voxels remained after binarization, the graph extraction approach we have 

developed here performs quite well on this challenging data set.

 5.4.4. Dataset 4—The last dataset, which is of size 400 × 400 × 50 voxels, incorporates 

a very dense microvascular network with high noise content apparent in the original and 

binarized images shown in Fig. 17(a) and (b). The 3-D ground truth and extracted graphs of 

the upper left quarter part of data are shown in Fig. 17(c) and (d). This data is too large to be 

processed all at the same time using the BIP approach due to the large number of nodes, 

162,735, in the graph. As a result, we only have focused on the results obtained from a 

quarter of the full data set shown in Fig. 17(d) for this part of experiments. Quantitative 

results for this part are provided In Table 2.

 5.4.5. Computational complexity—As noted in the previous subsection, large BIPs 

can be challenging to solve. Here we explore the computational complexity and scalability 

of the proposed method empirically via testing the run times as a function of problem size. 

We take the full dataset 4 and consider “uniform”, “horizontal”, and “vertical” tessellations 

at three scales the coarsest of which is illustrated in Fig. 18 and is comprised of four blocks 

for each tessellation. At the mid-scale, we have three sets of 16 blocks while the finest 

decomposition is into three sets of 64 blocks. Note that no division is performed in the third 

dimension since, as noted in Section 5.4.4, the dimensionality is quite low. All calculations 

were carried out on a PC platform with 2.53 GHz CPU, 6.00 GB RAM, and 64 bit OS 

running Matlab.

For the algorithm in our paper, there are two components that drive the computational 

complexity: the calculation of the terms in the utility function for the BIP and the solution of 

the BIP itself. In Fig. 19(a), we plot the logarithm of the computation time against the 

logarithm of the problems size for all 192 + 48 + 12 = 252 blocks considered while in Fig. 
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19(b), the logarithms of the time versus the raw problem sizes are displayed. The linear 

nature of the relations in these plots indicate that the complexity of the utility function terms 

is proportional to problem size while, interestingly, the BIP solution processing time appears 

to rise exponentially with the size of the problem, but in a manner that varies with the scale 

of decomposition. From these plots, we also see that the processing time for our current 

implementation of our approach is dominated by the image processing operations required 

to compute the utility function as opposed to the solver for the BIP. Finally, the results in 

Fig. 19 also suggest that an approach based on decomposing the full problem into smaller 

sub-problems and then combining the results may offer a more efficient means of addressing 

large scale problems. We consider this possibility in Section 6.

 5.4.6. Parameter sensitivity—Finally, we turn our attention to exploring the 

sensitivity of the processing results to the non-automatically determined parameters, δρ and 

σG (the spherical shell thickness and the Gaussian kernel’s standard deviation used in 

directional filtering). The experiments are completed on each of the sub-images produced by 

8 × 8 × 1 partitioning of dataset 4, and error rates are averaged over all the sets. First, 

performance measures are provided in Table 3 for δρ equal to 1, 2, and 3 given σG = 3. 

Based on these results, the junction detection precision shows a trade-off between false 

positive and negative rates when δρ deviates from 2. However, the topological error rates 

seem to be directly affected by the junctions and consequently the same trade-off as in 

junction detection performance exists for edge identification process. The GFPR follows the 

same pattern as CFPR and is smallest at δρ = 2. Therefore, to balance the precision of the 

method δρ = 2 has been chosen for which both of the false positive and negative rates are in 

balance.

The results produced by tuning the σG with 2, 3, and 4 have been given in Table 4. Higher 

σG leads to over-smoothing of the structure where smaller values of σG does not change the 

image noticeably. Since, this parameter is used in forming the alignment term in the BIP 

utility function, it only affects the edge-related error rates. Based on the quantitative results, 

the trade-off also exists for the topological and geometrical false positive and negative rates. 

Finally, the best error rates are obtained with the δρ = 2 and σG = 3.

 5.4.7. Summary of the real data assessments—The quantitative results provided 

in Table 2 confirm the precision and sensitivity of the proposed algorithm. The method’s 

performance is quite strong in correct detection of junctions and edges where the false 

positive rates for both of these statistics are around 0.036 and 0.056. The method has 

performed the best in detecting the junctions for dataset 4. The highest false negative rate in 

junction detection is seen for dataset 1 which is characterized by many dim and broken 

vessels. Dataset 3 has the next highest rate of missed junctions because of the lack of good 

connectivity in the vasculature and a larger number of noisy voxels. These noisy voxels if 

located in the spherical shell will cause junctions to be missed due to the constraint on 

having one connected component in the larger sphere. In terms of edge detection, datasets 2 

has the highest false positive error rate. This is caused first by the fact that a higher number 

of falsely detected nodes results in higher number of false edges. Second, an increase in the 

number of waypoints, seen in curvy structures, gives rise to the falsely detected edges. Since 
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GFPR is higher than CFPR for all the datasets, we can conclude that falsely detected edges are 

mainly of longer length than the average edge lengths. On the other hand, while the false 

negative rates does not change in correlation with the false positive rates generally, on an 

absolute scale, they are still relatively low and show the efficiency of the method in 

identification of the graph model.

Finally, sensitivity of the method’s performance is tested for two non-automatically 

determined parameters δρ and σG. It has been shown that where δρ as the spherical shell 

thickness primarily affects the junction detection process, σG only changes the edge-based 

performance measures.

 6. Conclusions and future work

In this work, we have developed an accurate process for skeletal model identification of 3-D 

microvascular networks and demonstrated its capabilities in the processing of fluorescence 

microscopy data collected in a murine model. Novel algorithms for critical points detection 

and graph extraction have been developed that enable the semi-automatic delineation of 3-D 

interconnected tubular networks. Critical point detection required no prior information about 

the degree of junctions, direction of branches, or curvature of vessels. A binary integer 

programming approach was used to identify optimal edges connecting the critical points 

where optimality was defined in terms of the degree to which possible edges in the graph 

aligned with and overlapped vessel structure. Exploiting the structural specifications of 

loopy networks in addition to the local intensity statistics in the design of these algorithms 

has made them robust to the data imperfections like noise and inhomogeneous illumination 

that are very common specifically in fluorescence microscopy images. This claim has been 

empirically verified by the results of experimentations presented in Section 5.

One important area of future work is related to the scalability of the approach. The potential 

scalability of the algorithm follows from the results in Fig. 19. Indeed, a divide-and-conquer 

approach could be developed in which a large data set is decomposed into a collection of 

non-overlapping blocks, networks are identified in each, and then “stitched together” using a 

bipartite matching method (Conte et al., 2004; Vázquez-Reina, 2012) to connect boundary 

points (defined in Section 3) across neighboring block faces. With such a decomposition of 

the problem, all of the blocks could, given sufficient computing resources, be processed in 

parallel. In this case, the latency of the processing is dictated by the maximum time needed 

for a given block. For the data and multiple tessellations into blocks considered here, the 

maximum time over all blocks generated by the 12 four-block divisions of data discussed in 

Section 5.4.5 was 8542 s. For the forty-eight cases of 16-block partitioning case this number 

is 5696 s, while the maximum time to process any block from 64-block division was 161 s. 

Based on these numbers a parallel implementation of the method would likely be scalable. 

Even where we are limited to processing blocks sequentially, the results are still 

encouraging. The median time to processing all four blocks one-after-the-other in the twelve 

cases was 15,149 s. These numbers drop to 1718 s in the 16-block case and 735 s for 64 

decompositions. Again, the total run time has greatly been affected by the partitioning as we 

see it has been reduced by factor of 20.6 from four to 64 partitions. Key to the success of any 

such approach is the development of an efficient means of combining the block results 
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together. Our initial results of extending the method in (Vázquez-Reina, 2012) indicate that 

accurate and computationally feasible techniques can be developed. Completing these 

studies and extending the method developed here to a broader range of tubular identification 

problems constitutes our primary areas of continued investigation.
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Fig. 1. 
Overall view of the proposed network modeling method. Dashed lines encompass the 

detailed steps of each stage while parallelograms indicate the outputs.
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Fig. 2. 
An example of false fractions in the structure caused by imaging imperfections and an area 

of more artifacts in a maximum-intensity projection (MIP) slice of a 3-D fluorescent 

microscopy image of microvasculature.
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Fig. 3. 
Fluorescence microscopy image enhancement/binarization: (a) original, (b) locally 

normalized, (c) thresholded, and (d) binary images.
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Fig. 4. 
Critical points detection process: (a) detected critical point patches obtained by convexity 

filtering, (b) clustered patches and identified cps as the clusters’ centroids, and (c) junctions 

are identified through the spherical shell filtering process and marked by cross signs where 

waypoints are shown by disks.
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Fig. 5. 
Three types of vascular structures with their convex hulls: (a) straight vessel: H ≈ 1, (b) 

waypoint: H > 1, and (c) junction: H ≫ 1.
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Fig. 6. 
Detected critical point patches are shown by white pixels overlaid on MIP of a real data. In 

three out of the four cases we see multiple, disconnected patches that are clearly associated 

with the same CP. Agglomerative clustering provides a single representation of these patches 

as the CP shown by a cross mark.
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Fig. 7. 
Critical points are divided into junction (crosses) and waypoint (circles) groups based on the 

number of connected components, darker red regions located on the spherical shells, made 

by the spherical shell filtering. An example of a non-junction point with three connected 

components in its masked spherical shell neighborhood is provided in the case “d”. Presence 

of more than one connected component in the larger sphere causes dismissal of the point 

from being declared as a junction. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 8. 
Front (left) and side (right) view of parallel (upper) and non-parallel (lower) vessel cross 

sections at the image edge.

Almasi et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
The motivation of alignment and skeletonness terms is shown as prevention of two cases of 

red and blue dashed lines that do not best match the microvasculature centerline. These 

edges are shown on a 2-D binarized frame with the intended graph overlaid by solid gray 

lines. Although αL,l and αL,m are rather large (edges being majorly located on the 

foreground), low skeletonness, small αS,l, of the blue line and low alignment with the local 

structure, small αA,m, of the red line make them undesirable results. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 10. 
(a) Spherical coordinates θ and ϕ of edge el along with other terms used for the directional 

filtering concept are shown in a Cartesian system. (b) An example consisting three different 

scenarios of the edge layouts on a vascular structure is provided. The utilities of e1 (which 

clearly passes through a vessel) and e2 (which is well aligned with the local direction of 

vasculature) are both higher than that of e3 (which is poorly aligned with the vasculature and 

passes through a good deal of the background). (c) Three ROIs of the edges (top) and the 

absolute value of the directionally filtered ROIs and their alignment term, αA,l, with respect 

Almasi et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to each edge’s direction (bottom). The edge e3 that is not aligned with the vasculature in its 

ROI has the smallest alignment value.
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Fig. 11. 
(a) A couple of correct edges with no node in their Gaussian neighborhood. (b) The effect of 

close nodes to a shortcutting edge’s utility function as the inner product of the node’s and 

edge’s Gaussian convolution. The standard deviation of the Gaussian kernel is selected such 

that farther nodes have negligible effect on the shortcutting degree.
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Fig. 12. 
(a) Synthetic noiseless image, (b) MIP of synthetic noisy image with PSNR = 5 dB, (c) 

ground truth, and (d) obtained graph-based model of the noisy synthetic dataset.
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Fig. 13. 
Error rate bars of the (a) false positive junction detection, (b) false negative junction 

detection, (c) false positive topological connections, (d) false negative topological 

connections, (e) geometrical false positive, and (f) geometrical false negative error rates in 

terms of their mean and standard deviation computed over ten data volume at ten PSNR 

levels.
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Fig. 14. 
(a) Maximum intensity projection of dataset 1, a real 3-D fluorescence microscopy image of 

murine cortical microvasculature, (b) enhanced binary image with illustration of the 

situations where graph extraction method fails to capture the correct structure. Purple 

ellipses identify vessels that are missed in the graph, and red edges are topologically correct 

but their locations are offset on one end, (c) ground truth 3-D graph model, and (d) extracted 

3-D graph-based model. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 15. 
(a) Maximum intensity projection of dataset 2, a real 3-D fluorescence microscopy image of 

murine hippocampal microvasculature, (b) maximum intensity projection of the binary 

image, (c) ground truth 3-D graph model, and (d) extracted 3-D graph-based model.
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Fig. 16. 
(a) Maximum intensity projection of dataset 3, a real 3-D fluorescence microscopy image of 

murine cortical microvasculature, (b) maximum intensity projection of the binary image, (c) 

ground truth 3-D graph model, and (d) extracted 3-D graph-based model.
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Fig. 17. 
(a) MIP display of dataset 4, (b) MIP of its binarization, (c) ground truth 3-D graph model, 

and (d) extracted 3-D graph-based model of the upper left quarter of the image.
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Fig. 18. 
Three tessellations into four blocks using (a) “uniform,” (b) “horizontal,” and (c) “vertical” 

decompositions.

Almasi et al. Page 38

Med Image Anal. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 19. 
Logarithm of the computation time for all 192 + 48 + 12 = 252 blocks obtained from 4-

block, 16-block, and 64-block partitioning and three different tessellations for (a) utility 

functions calculation and (b) BIP computation. A log–log plot is presented in (a) where the 

line indicates complexity rises linearly with problem size for this calculation. A log-linear 

plot is provided in (b) where the linear structures indicate an exponential nature of the BIP 

complexity that depends in the scale at which the problem is decomposed.
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