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Abstract

Whole-body computed tomography (CT) image registration is important for cancer diagnosis, 

therapy planning and treatment. Such registration requires accounting for large differences 

between source and target images caused by deformations of soft organs/tissues and articulated 

motion of skeletal structures. The registration algorithms relying solely on image processing 

methods exhibit deficiencies in accounting for such deformations and motion. We propose to 

predict the deformations and movements of body organs/tissues and skeletal structures for whole-

body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the 

conventional biomechanical modelling, our approach for building the biomechanical models does 

not require time-consuming segmentation of CT scans to divide the whole body into non-

overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) 

algorithm is used for tissue classification to assign the constitutive properties automatically at 

integration points of the computation grid. We use only very simple segmentation of the spine 

when determining vertebrae displacements to define loading for biomechanical models. We 

demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering 

from cancer and aortic disease. The results confirm that accurate whole-body CT image 

registration can be achieved using a patient-specific non-linear biomechanical model constructed 

without time-consuming segmentation of the whole-body images.
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1 Introduction

Reliable and accurate radiographic image registration that aligns the source and target 

images is critical for application of medical imaging in cancer diagnosis, therapy planning 

and treatment (Black et al., 1997; D'Amico et al., 2000; Jenkinson and Smith, 2001; Spicer 

et al., 2004; Van Sint Jan et al., 2006; Warfield et al., 2005; Zaidi, 2007). A large number of 

medical image registration algorithms solely relying on image processing methods have 

been successfully developed over the years (Cao and Ruan, 2007; Jenkinson and Smith, 

2001; Sotiras et al., 2013; Wells et al., 1996). Many of them have been demonstrated to be 

effective for selected organs, such as the brain, breast, prostate and lungs (Goerres et al., 

2002; Mattes et al., 2003; Oguro et al., 2011; Rueckert et al., 1999; Warfield et al., 2005). 

However, it has been also recognised that large differences between the source and target 

images caused by complex rigid-body motion of articulated bones, skeletal segments and 

body organs and large deformations of soft tissues associated with whole-body CT/MRI 

registration are very challenging for such algorithms (Baiker et al., 2007; Li et al., 2008; 

Martin-Fernandez et al., 2005; Wittek et al., 2007). Despite some successful attempts to 

improve robustness of registration algorithms (Toews and Wells, 2013) and registration 

accuracy for selected body segments for limited range of rigid body motion and soft organs/

tissues deformation (Mahfouz et al., 2003; Stromqvist et al., 2009), the whole-body CT 

image registration still remains a largely unsolved problem (Li et al., 2008).

Therefore, patient-specific biomechanical modelling methods that account for the 

mechanical behaviour of organs/tissues were recommended by many researchers for 

registration problems involving large differences (deformations) between the source and 

target images (Al-Mayah et al., 2010; Hopp et al., 2013; Warfield et al., 2002; Wittek et al., 

2007). Unlike image-based matching, registration algorithms using biomechanical models 

do not require selection of specific type of source-to-target image transformation and 

optimisation of the transformation parameters to maximise a selected similarity measure 

between the transformed and target images. Instead, they rely on principles of mechanics to 

compute deformations that transform source image to target image. This ensures plausibility 

and robustness of the predicted deformations. In particular, patient-specific biomechanical 

modelling has been successfully used in numerous studies on computing the brain 

deformations for neuroimage registration (Garlapati et al., 2014; Hu et al., 2007; Ji et al., 

2009; Mostayed et al., 2013; Wittek et al., 2010; Xu and Nowinski, 2001).

Challenges to overcome when applying biomechanical modelling for medical image 

registration include quick and reliable generation of patient-specific computational models, 

automatic segmentation of radiographic images and efficient solution of the models (Miller, 

2011; Miller et al., 2010; Mostayed et al., 2013). To facilitate rapid generation of patient-

specific biomechanical models for whole-body CT image registration, we abandon time-
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consuming image segmentation that divides the problem domain into non-overlapping 

constituents with different material properties. Instead, we apply tissue classification based 

on the Fuzzy C-Means (FCM) algorithm to assign the constitutive properties automatically 

at integration points of the computation grid (Bezdek et al., 1984; Zhang et al., 2013). This, 

allows us to generate the patient-specific biomechanical model automatically and rapidly.

In principle, any verified method of non-linear computational mechanics accounting for both 

geometric and material nonlinearity can be used to solve biomechanical models for 

computing soft organ/tissue deformations for image registration. Non-linear finite element 

analysis with either implicit (Allard et al., 2007; Taylor et al., 2008) or explicit (Hu et al., 

2007; Joldes et al., 2009b; Miller et al., 2007; Wittek et al., 2007) integration in time domain 

remains the most commonly used approach. In our previous research, we have developed 

and verified a suite of efficient algorithms for computing soft tissue deformations in the 

context of neuroimage registration (Joldes et al., 2009b; Miller et al., 2007; Miller et al., 

2011). In this study, we adapt and apply these algorithms in registration of whole-body CT 

images.

To demonstrate feasibility and accuracy of whole-body CT image registration using the 

proposed non-linear biomechanical model, we analysed sets of whole-body/torso CT images 

of seven patients. Deformation within the patient’s body to align a source image to target 

image is predicted using a patient-specific model that relies on Total Lagrangian Explicit 

Dynamics TLED non-linear finite element algorithm (Joldes et al., 2009b; Miller et al., 

2007; Miller et al., 2011). Accuracy of the registration is quantitatively assessed using the 

Hausdorff distance metric to measure the spatial distance between the corresponding Canny 

edges in the registered (i.e. deformed using the deformations computed by means of 

biomechanical model) and target images (Fedorov et al., 2008; Garlapati et al., 2013; 

Garlapati et al., 2014; Huttenlocher et al., 1993).

This paper is organised as follows: the proposed patient-specific non-linear finite element 

model and the TLED algorithm are presented in Section 2; the computational results, 

including accuracy evaluation, are given in Section 3 which is followed by the discussion 

and conclusions in Section 4.

2 Methods

2.1 CT Image Datasets Used in the Study

As CT carries health hazard due to large radiation doses, there are very strict clinical 

guidelines limiting the number of situations where acquiring whole-body CT should be 

considered (Environmental Protection Authority, 2013; American College of Radiology, 

2011a; American College of Radiology, 2011b). Therefore, we created a challenging test-

bed for our registration method not through registration of a large number of image datasets, 

but by applying them to image datasets for different diseases/pathologies: cancer (Cases II-

V in Fig. 1) and aortic diseases (Cases VI and VII in Fig. 1). Each of the analysed datasets 

consists of two sets of images of a given patient acquired at different times. We treated one 

of them as moving/source image and another as a target image (Fig. 1 shows sagittal 

sections for each dataset).
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Case I is from the publicly available Slicer Registration Library (Case #20: Intra-subject 

whole-body/torso PET-CT (http://www.na-mic.org/Wiki/index.php/

Projects:RegistrationLibrary:RegLib_C20b). The Slicer Registration Library contains no 

information about a pathology type for Case I. The CT image datasets of cancer patients 

(Cases II, III, IV and V) were obtained the National Biomedical Image Archive (https://

public.cancerimagingarchive.net/ncia/login.jsf) — freely available to browse, download and 

use for commercial, scientific and educational purpose under the Creative Commons 

Attribution 3.0 Unsupported Licence.

Case VI is from the University Hospital Limerick, Ireland, and CT scan data was acquired 

for surgical planning and treatment of abdominal aortic aneurysm. Case VII was acquired at 

the Fremantle Hospital, Australia, with scans taken as part of type B aortic dissection 

diagnosis and treatment. Local ethics approval was obtained from both institutions. All 

imaging datasets were anonymous and not acquired specifically for this study.

The CT datasets used in this study were acquired in different resolutions (Table 1). Before 

conducting the analysis, we resampled them to a common resolution of 1 mm x 1 mm x 2.5 

mm. Resampling was conducted using linear interpolation — we applied the “Resample 

Scalar Volume” procedure in 3DSlicer open source software package for medical image 

computing (Fedorov et al., 2012).

2.2 Patient-Specific Non-Linear Biomechanical Model

Biomechanics-based medical image registration requires incorporation of patient-specific 

data in the biomechanical model. However, how to generate biomechanical model quickly 

and reliably remains unsolved (Miller et al., 2011). A set of methods employed in this study 

can be regarded as one possible solution to this problem.

2.2.1 Element Type, Geometry and Mesh Generation for Patient-Specific 
Biomechanical Model

Element Type Selection: In practice, in computational biomechanics tetrahedral elements 

are often used for spatial discretisation of the problem domain due to availability of 

automatic mesh generators for complex geometries of the body organs (Irving et al., 2006; 

Wittek et al., 2007). However, a 4-noded tetrahedral element has an intrinsic drawback of 

volumetric locking for incompressible or nearly incompressible materials such as soft tissues 

(Hughes, 2000). Therefore, we used under-integrated (with one Gauss point) 8-noded 

hexahedral elements that do not exhibit locking (Flanagan and Belytschko, 1981; Irving et 

al., 2006). Practical aspects of application of hexahedral elements in biomechanical models 

include preventing of instabilities due to zero energy (hourglass) modes and ensuring the 

element quality (Yang and King, 2011). For hourglass control, we used the method proposed 

by Joldes et al. (2008). The efficiency and effectiveness of this method has been verified 

through application in the studies on computation of brain deformation for neuroimage 

registration (Joldes et al., 2009b; Wittek et al., 2010). Although no commonly accepted 

specific guidelines regarding the required quality of hexahedral meshes in biomechanics are 

available, several authors have formulated their experience-based recommendations (Ito et 

al., 2009; Mostayed et al., 2013; Shepherd and Johnson, 2009; Yang and King, 2011). 
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Following Ito et al. (2009), Shepherd and Johnson (2009) and Yang and King (2011), we 

used element Jacobian and warpage to assess mesh quality. We regarded hexahedral 

elements with Jacobian below 0.2 as unacceptable poor quality and elements with Jacobian 

between 0.2 and 0.3 – as questionable quality. In all models used in this study, the element 

Jacobian was above 0.35 and maximum warpage was 25.

Patient-Specific Geometry: The 3D patient-specific torso geometry was created from the 

CTs using the 3D SLICER (http://www.slicer.org/), an open-source software for 

visualisation, registration, segmentation and quantification of medical data developed by 

Artificial Intelligence Laboratory of Massachusetts Institute of Technology and Surgical 

Planning Laboratory at Brigham and Women’s Hospital and Harvard Medical School. 

Geometry creation involved application of automated level tracing algorithm available in 3D 

SLICER to distinguish the patient’s body from the rest of the image and creation of the 3D 

discrete representation (surface model) of the patient’s body. Internal organs, muscles, fat 

and other tissues were not segmented.

Patient-Specific Mesh Generation: 3D surface model of the patient’s body was used as the 

boundary for volumetric discretisation (meshing) using hexahedral elements. Hexahedral 

mesh was created using IA-FEMesh (a freely available software toolkit for hexahedral mesh 

generation developed at the University of Iowa) (Grosland et al., 2009) (http://

www.ccad.uiowa.edu/MIMX/projects/IA-FEMesh) and Hyper Mesh™ (a high-performance 

commercial finite element mesh generator by Altair, Ltd. of Troy, MI, USA). The maximum 

element size was designated a value of 5 mm (the maximum voxel in the analysed CTs). 

However, due to differences in body dimension between the patients, the generated meshes 

appreciably vary in size (as measured by the number of nodes and elements) as indicated in 

Fig. 2 and Table 2.

As we used Fuzzy C-Means (FCM) algorithm for tissue classification to assign the 

constitutive properties automatically at integration points, there was no need to distinguish 

internal organs when constructing the meshes (Fig. 2).

2.2.2 Load and Boundary Conditions—As suggested in our previous studies (Miller 

and Lu, 2013; Miller et al., 2011; Miller et al., 2010), for problems where loading is 

prescribed as forced motion of boundaries, the unknown deformation field within the 

domain depends very weakly on the mechanical properties of the continuum. In studies 

involving application of biomechanical models in image registration, the displacements to 

define forced motion of the boundaries are typically determined by comparing position of 

corresponding points in the source and target images (Wittek et al., 2010). Body surface 

(skin) appears to be one possible source of information to determine such displacements. 

However, there are only very few features (landmarks) on the skin that can be reliably 

distinguished in CT images. Therefore, we used the spine (vertebrae) when determining the 

displacements (between the source and target images) to prescribe forced motion of the 

boundaries — in CT images vertebrae are easy to distinguish from the surrounding soft 

tissues and their shape does not change between the images.

Li et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.slicer.org/
http://www.ccad.uiowa.edu/MIMX/projects/IA-FEMesh
http://www.ccad.uiowa.edu/MIMX/projects/IA-FEMesh


For a given vertebra, spatial distance between the source and target position was calculated 

using rigid registration (a built-in algorithm from 3D SLICER) (Fedorov et al., 2012):

(1)

where D is the distance vector between two corresponding points in the source and target 

images: Pm(xm, ym, zm) in the source (moving) image and Pf(xf, yf, zf) in the target (fixed) 

image. R is the rotation transformation, T is the translation transformation and I is a diagonal 

(identity) matrix.

For the seven CT image sets analysed in this study, the magnitude of the distance vector 

between the vertebrae in source and target images ranged from 19 mm to 21 mm.

When conducting the registration, the body surface (skin) was allowed to move freely 

without any contact conditions and constraints. Our method, however, allows for adding 

correspondence between easily distinguishable surface points as constraints if desirable.

2.2.3 Material Properties—As stated in Section Load and Boundary Conditions, our 

previous studies (Miller and Lu, 2013; Miller et al., 2011) suggest that for problems where 

loading is prescribed as forced motion of boundaries, results of computation of (unknown) 

deformation field within the domain depend very weakly on the mechanical properties of the 

continuum. However, given large tissue deformations between the source and target images 

and overwhelming experimental evidence that soft tissues behave like hyperelastic/

hyperviscoelastic continua (Bilston et al., 2001; Estes and J.H., 1970; Farshad et al., 1999; 

Fung, 1993; Jin et al., 2013; Miller, 2000; Miller and Chinzei, 1997, 2002; Pamidi and 

Advani, 1978; Prange and Margulies, 2002; Snedeker et al., 2005; Snedeker, 2005), a 

constitutive model compatible with finite deformation solution procedures is needed. 

Therefore, following Miller et al. (2011) we used the Neo-Hookean hyperelastic model — 

the simplest constitutive model that satisfies this requirement.

(2)

where  is the second Piola-Kirchhoff stress, µ is the shear modulus, k is the bulk modulus, 

J is the determinant of the deformation gradient, I is the first invariant of the deviatoric 

Right Cauchy Green deformation tensor C (the first strain invariant), and I3 is the identity 

matrix.

Despite recent progress in magnetic resonance (MR) and ultrasound elastography (Kwah et 

al., 2012), there is no reliable non-invasive method to determine constitutive properties of 

human soft tissues in-vivo (Miller and Lu, 2013). Therefore, we adapted a method for tissue 

classification and material properties assignment based on the Fuzzy C-Means (FCM) 

algorithm. This method has been successfully used in our previous study for computation of 

the brain deformations due to craniotomy-induced brain shift (Zhang et al., 2013). The study 

by Zhang et al. (2013) indicated less than 1 mm differences between the organ deformations 
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predicted using the model relying on tissue classification based on the FCM algorithm and 

model with detailed representation of anatomical structures determined through tedious 

segmentation. A key step in implementation of the FCM algorithm for whole-body tissue 

classification is to determine the relationship between types/classes of tissues depicted in the 

image and image intensity. For a given number of intensity cluster centres, the FCM 

algorithm divides the image intensity into different groups by computing the membership 

functions that link the intensity at each pixel with all the specified cluster centres (Bezdek et 

al., 1984; Zhang et al., 2013).

(3)

Where N is data samples (i.e. pixels in CT images), C is the number of cluster centres (tissue 

types/classes), q is the weighting factor referred to in the literature (Balafar et al., 2010) as 

the fuzziness degree of clustering, uij is the fuzzy membership function that expresses the 

probability of one data sample xi (pixel) belonging to a specified cluster centre θj (tissue 

class), and d is the spatial distance between data sample xi and cluster centre θj. We used the 

fuzziness degree of clustering q of 2 which is a value commonly applied for soft tissue 

classification (Hall et al., 1992; Pham and Prince, 1999).

Following Pohle and Toennies (2001) and Balafar et al. (2010), we calculated the 

membership functions uij at each cluster centre θj using the following formula

(4)

where

(5)

and d(xi, θj) is the Euclidean distance d2(xi, θj)=║xi–θj║
2 between the data point xi and 

cluster centre θj. For the image datasets analysed in this study, the minimum was achieved 

within 100 iterations.

FCM algorithm minimises the objective function JFCM (see Eq. 3) by updating of the 

membership function uij and centres of clusters. θj For the image datasets analysed in this 

study, the minimum was achieved within 100 iterations.

The only parameter that has to be selected by the analyst in Equation (3)–(5) is the number 

of cluster centres C. Detailed explanation of how this parameter was selected for the image 

datasets analysed in this study is given in Section 3.1.
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2.3 Numerical Solution

We used Total Lagrangian Explicit Dynamics (TLED) algorithm proposed by Miller et al. 

(2007) with dynamic relaxation to improve rate of convergence to the steady state solution 

(Joldes et al., 2009a). This algorithm refers all variables to the original configuration, i.e. the 

second Piola-Kirchoff stress and Green-Lagrange strain are used. The advantage is that all 

the derivatives with respect to spatial coordinates can be pre-computed. Another important 

feature of the TLED algorithm is that it utilises central difference method to discretise the 

temporal derivatives so that the discretised equations are integrated in stepping forward 

manner without any iteration. Detailed description of the TLED-based suite of finite element 

procedures used in this study is given in Joldes et al. (2009a, b) and Miller et al. (2007). 

These procedures rely on explicit integration in time domain and can be easily parallelised 

to harness computational power of Graphics Processing Units (GPUs) as shown in Joldes et 

al. (2010).

2.4 Evaluation of the Registration Accuracy

2.4.1 Qualitative Evaluation—Following Garlapati et al. (2014) and Mostayed et al. 

(2013), we qualitatively compared the contours/edges automatically detected using Canny 

edge (Canny, 1986; Li et al., 2013; Mostayed et al., 2013) filter in the registered (i.e. source 

image warped using the deformations predicted by means of a biomechanical model) and 

target images.

2.4.2 Quantitative Evaluation—Following our previous studies, edge-based Hausdorff 

distance (HD) metric (on consistent edges detected using Canny filter) is used here to 

objectively measure the spatial misalignment between the registered (warped using the 

deformations predicted by means of a biomechanical model) and target images (Canny, 

1986; Garlapati et al., 2013; Garlapati et al., 2014; Mostayed et al., 2013):

(6)

and

(7)

where X={x1,x2,…xm} and Y={y1,y2,…yn} are the consistent (i.e. depicting the same 

anatomical features) Canny edges in the deformed (registered) and target image 

respectively.  and  are the point sets that contain the 

consistent points from two consistent edges. Operator ║ ║ represents the calculation of 

direct distance between two points as used in the point-based HD metric (Huttenlocher et al., 

1993).

From Equation (7) we construct percentile edge-based Hausdorff distance (Garlapati et al., 

2013; Mostayed et al., 2013):
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(8)

Following Garlapati et al. (2014) and Mostayed et al. (2013), we do not report here a single 

Hausdorff distance value, (Equation 6), but use Equation (8) to report Hausdorff distance 

values for different percentiles. A plot of the Hausdorff distance values for different 

percentiles (see Section 3.2.1) immediately reveals the percentage of edges that have 

acceptable misalignment errors. Following Mostayed et al. (2013), two-times the voxel size 

of the original CT image was regarded here as an acceptable error.

3 Results

3.1 Selection of Cluster Centres for Tissue Classification

With exception of our preliminary analysis of a single CT scan set (Li et al., 2014), there 

have been no attempts to apply FCM tissue classification for biomechanical models for 

whole-body CT registration. Therefore, there are no guidelines regarding the number of 

tissue types (intensity cluster centres) (Fig. 3) that need to be distinguished to achieve 

desired registration accuracy. Below, we explain, how we determined the number of tissue 

types (cluster centres) for the Fuzzy C-Means FCM algorithm for seven CT datasets used in 

this study.

One may expect that bones, muscles, fat, lungs, kidneys, heart, blood vessels and other 

abdominal organs (including liver, stomach/intestines) need to be distinguished in 

biomechanical models for computing the deformation for whole body CT registration. 

Bones and fat can be easily identified as they have distinctive image intensity (Fig. 3). On 

the other hand, the intensity of muscles, liver and kidneys is similar. Consequently, the FCM 

algorithm (solely based on image intensity) would classify them as belonging to the same 

tissue category. There is, however, no drawback as our previous studies on neuroimage 

registration (Miller and Lu, 2013; Miller et al., 2011; Wittek et al., 2009) suggest that if the 

loading is prescribed via forced motion of the boundary, the results of computation of 

deformation field within the domain depend very weakly on the mechanical properties of the 

analysed continuum.

In the CT scans we analysed in this study, the intensity range for lungs and bones was large, 

from −1100 to −200 and from 250 to 1100 respectively. Thus, we defined three intensity 

cluster centres for lungs and two intensity cluster centres for bones. Therefore, when 

assigning the material properties at the integration point using the FCM algorithm, we 

distinguished eight tissue classes: 1) Class 1, 2 and 3 for lungs and other gas-filled spaces 

(such as abdominal cavity); 2) Class 4 for fat; 3) Class 5 for muscles, liver and kidneys; 4) 

Class 6 for stomach and intestines; and 5) Class 7 and 8 for bones. This resulted in the FCM 

algorithm with eight intensity cluster centres as indicated in Table 3. The number of tissue 

classes was kept constant in this study, but the cluster centres have different values for 

different cases, i.e. the same number of intensity clusters and the different position of the 

cluster centres were used for all CTs in this study. Table 3 shows the position of cluster 

centres calculated using FCM algorithm for seven analysed cases.
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Table 4 shows the material property (shear modulus) calculated (Alcaraz et al., 2003; 

Bensamoun et al., 2011; Collinsworth et al., 2002; Gennisson et al., 2010; Samani et al., 

2007; Watters et al., 1985) at class centres defined in Table 3 for all seven analysed cases, 

and an example of applying the FCM algorithm to assign the material properties (shear 

modulus) at the integration points of the biomechanical model is shown in Fig. 4a. 

Comparison of this figure with the corresponding CT slice (Fig. 4b) indicates that, with 

exception of very few outliers, the shear modulus assigned by the FCM algorithm is 

consistent with a tissue type depicted in the image at location of the integration points

3.2 Results of Evaluation of the Registration Accuracy

3.2.1 Qualitative Evaluation—As shown in Fig. 5 (column A) and Fig. 6 (column A), 

for all seven whole-body/torso CT image datasets analysed in this study, large differences in 

the edge features between the source and target CTs were present. On the other hand, for the 

registered (i.e. the source images warped using the deformations predicted by biomechanical 

models) and target images good overlap (with some local misalignment) of edge features 

was observed (Fig. 5 — column B and Fig. 6 — column B). The overlap tended to be better 

in the posterior than anterior and lateral image parts. One possible explanation for this 

tendency can be that the biomechanical models for computing the tissue deformations were 

loaded by prescribing the vertebrae motion as described in Section 2.2.2.

3.2.2 Quantitative Evaluation—Analysis of Hausdorff Distance (HD) percentile values 

indicates that for Case I and Case II, the average HD (as presented in Suh et al. (2012)) 

between the edges in the registered and target images was less than the original (i.e. before 

resampling) CT image voxel size of 5 mm (Table 1). For none of the analysed cases, the 

average HD was greater than two times the voxel size (10 mm for Cases I and II, 5 mm for 

Cases III – VI and 6mm for Case VII) — a value selected here as the allowable 

misalignment threshold (see section 2.4.2). Using this threshold, it can be concluded from 

Fig. 7 and Table 5 that 95% of edges were successfully registered for Cases I and II, 85% — 

for Cases III – VI and 90% for Case VII. For Cases I and II the resolution in sagittal plane 

was 5 mm, 2.5 mm for Cases III – VI and 3 mm for Case VII.

For all seven analysed CT image datasets, the percentile edge-based HD curves tend to rise 

steeply around 95th percentile (Fig. 7). Therefore, it can be suggested that most edge pairs 

that lie between 96th and 100th percentile are possible outliers as they do not have any 

correspondence (i.e. edges in the source/registered and target images do not correspond to 

each other).

No differences in the registration accuracy were observed between the datasets obtained 

from patients suffering from cancer (Cases II-V) and aortic disease (Cases VI and VII), 

(Table 5). This confirms feasibility and accuracy of our approach for patients suffering from 

different diseases.

4 Discussion and Conclusions

In this study, a comprehensive patient-specific non-linear finite element model is proposed 

for computing the deformations within the patient’s body for registration of whole-body CT 
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images. The proposed approach accounts for rigid body motion of bones/skeletal segments, 

large deformations, and non-linear constitutive properties of soft tissues. The most 

commonly used approach for generating patient-specific finite element models involves 

image segmentation to divide the human body into non-overlapping constituents with 

different material properties — a very tedious and time consuming process. Therefore, we 

replaced segmentation with the Fuzzy C-Means algorithm to quickly and automatically 

classify the tissues and assign the mechanical properties directly at the integration points 

based on this classification (see section 2.2.3). Therefore, we eliminated the need for body 

organ/tissue segmentation when constructing biomechanical models for registration of 

whole-body radiographic images. Selection of ‘fuzzy’ method rather than traditionally used 

“exact” (i.e. relying on image segmentation) approach to assign the mechanical properties is 

supported by the fact that when loading is prescribed through forced motion of the boundary 

(vertebrae motion in this study), the computed deformations are only very weakly sensitive 

to the mechanical properties of the modelled continuum providing that appropriate 

algorithms of non-linear computational mechanics are used (Miller, 2005; Miller and Lu, 

2013; Wittek et al., 2009).

The feasibility and accuracy of the proposed approach for whole-body CT image registration 

were verified for CT datasets of seven patients suffering from cancer and aortic disease 

obtained from publicly available image databases (http://www.na-mic.org/Wiki/index.php/

Projects:RegistrationLibrary:RegLib_C20b and https://public.cancerimagingarchive.net/

ncia/login.jsf) and two hospitals (the University Hospital Limerick, Ireland and the 

Fremantle Hospital, Australia). Hausdorff Distance HD metric between the corresponding 

features (Canny edges) in the registered (i.e. source image warped using the deformations 

predicted by means of a biomechanical model) and target images was used as a quantitative 

measure of the registration accuracy. The results indicate that for Cases I - VII 85%–95% of 

edge pairs were registered with an error within two times the voxel size which is a criterion 

of successful registration used in the literature (Mostayed et al., 2013). However, some local 

misalignments are clearly visible in Fig. 5 and Fig. 6. One possible source of these 

misalignments can be that we used very sparse information (vertebrae displacements 

between the source and target images) to define the model loading. Although one may argue 

that providing more information to drive computation of the organ and tissue deformations 

may improve the registration accuracy, the overall results are very promising. It should be 

noted that to define forced motion of the boundary we relied on simple segmentation of the 

spine to determine vertebrae displacements between the source and target images.

The present study can be regarded as a pioneering effort to solve challenging problem of 

whole-body CT image registration by applying a biomechanical model using non-linear 

finite element procedures to compute the deformations to warp a source image to the 

patient’s target geometry. For all the analysed image sets, the average Hausdorff distance 

between the pairs edges in registered and target images was within two times the voxel size, 

which compares well with the studies on non-rigid registration of whole-body CTs relying 

solely on image-processing algorithms. For instance, Suh et al. (2012) reported the 

maximum-likelihood HD (M-HD) of an order of 4 image voxels in their study for rat whole-

body CT non-rigid registration using a weighted demons algorithm. Similarly, Toews and 

Wells (2013) observed errors of an order of 6 image voxel when applying their feature-

Li et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C20b
http://www.na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C20b
https://public.cancerimagingarchive.net/ncia/login.jsf
https://public.cancerimagingarchive.net/ncia/login.jsf


based alignment (FBA) method for inter-subject registration of human whole-body CT 

images.
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Fig. 1. 
Sagittal sections of seven CT image datasets analysed in this study. For Case I, no 

information about the pathology type is available. Cases II-V are patients suffering from 

cancer. Cases VI and VII are patients suffering from aortic disease.
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Fig. 2. 
Patient-specific hexahedral meshes built in this study. We used Fuzzy C-Means (FCM) 

algorithm for tissue classification to assign the constitutive properties automatically at 

integration points, there was no need to distinguish internal organs when constructing the 

meshes.
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Fig. 3. 
Tissue classification for a torso CT transverse section. A certain number of organs/tissues 

(i.e. bones and fat) can be recognised by distinctive image intensity. Some organs/tissues 

have similar image intensity (i.e. kidneys, liver, small/large intestines and muscles).
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Fig. 4. 
(a) Material properties (shear modulus) assignment for body tissues using FCM algorithm 

for Case I. Shear modulus magnitude is represented by colour scale. (b) The corresponding 

CT slice. Note that the points belonging to the same tissue class have similar image intensity 

and concentrate around the class centre. This can be seen in (a) as a spatial clustering of 

pixels of the same colour. Only in the boundary areas between different tissue classes, some 

variation of the pixel colour (shear modulus) occurs.
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Fig. 5. 
Qualitative evaluation of the registration accuracy for seven CT image datasets analysed in 

this study (transverse slices). For each case, (A) comparison of the edges in the source and 

target image; and (B) — indicates comparison of the edges in the registered (i.e. warped 

using the deformation computed by biomechanical models developed in this study) and 

target image. Edges in the source image are indicated by red colour; edges in target image 

— by green colour; and the edges in the registered image — by pink colour. Good overlap 

(with some local misalignment) between the edges in registered and target images is evident.
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Fig. 6. 
Qualitative evaluation of the registration accuracy for seven CT image datasets analysed in 

this study (frontal slices). For each case, (A) comparison of the edges in the source and 

target image; and (B) — indicates comparison of the edges in the registered (i.e. warped 

using the deformation computed by biomechanical models developed in this study) and 

target image. Edges in the source image are indicated by red colour; edges in target image 

— by green colour; and the edges in the registered image — by pink colour. Good overlap 

(with some local misalignment) between the edges in registered and target images is evident.
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Fig. 7. 
Quantitative evaluation of the registration accuracy for seven whole-body CT image datasets 

analysed in this study: edge-based Hausdorff Distance (HD) between the registered (i.e. 

source images warped using the deformation computed by means of non-linear 

biomechanical models created in this study) and target images against the percentile of 

edges for transverse slices. The horizontal line is two times voxel size registration accuracy 

threshold. Plots for Cases I and II, Cases III–V and Case VII are shown separately due to the 

differences in image resolution (Cases I and II —sagittal resolution of 5 mm; Cases III–V — 

Li et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sagittal resolution of 2.5 mm; Case VII— sagittal resolution of 3.0 mm). (a) Cases I and II; 

(b) Cases III–VI; (c) Case VII.
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Table 1

Resolution (in mm) of seven CT image datasets analysed in this study

Source Image (mm) Target Image (mm)

Case I 0.98×0.98×5.0 0.98×0.98×5.0

Case II 1.00×1.00×5.0 1.00×1.00×5.0

Case III 0.84×0.84×2.5 0.80×0.80×2.5

Case IV 0.90×0.90×2.5 0.98×0.98×2.5

Case V 1.05×1.05×2.5 1.06×1.06×2.5

Case VI 1.00×1.00×2.5 1.00×1.00×2.5

Case VII 0.86×0.86×3.0 0.76×0.76×3.0
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Table 2

Numbers of hexahedral elements and nodes for seven analysed cases

Number of Nodes Number of Elements

Case I 55,944 51,479

Case II 88,265 82,301

Case III 54,190 49,950

Case IV 137,344 128,989

Case V 78,573 72,897

Case VI 86,016 92,625

Case VII 50,889 49,478
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