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Abstract

Brain networks based on resting state connectivity as well as inter-regional anatomical pathways 

obtained using diffusion imaging have provided insight into pathology and development. Such 

work has underscored the need for methods that can extract sub-networks that can accurately 

capture the connectivity patterns of the underlying population while simultaneously describing the 

variation of sub-networks at the subject level. We have designed a multi-layer graph clustering 

method that extracts clusters of nodes, called ‘network hubs’, that display higher levels of 

connectivity within the cluster than to the rest of the brain. The method determines an atlas of 

network hubs that describes the population, as well as weights that characterize subjectwise 

variation in terms of within- and between-hub connectivity. This lowers the dimensionality of 

brain networks, thereby providing a representation amenable to statistical analyses. The 

applicability of the proposed technique is demonstrated by extracting an atlas of network hubs for 

a population of typically developing controls (TDCs) as well as children with autism spectrum 

disorder (ASD), and using the structural and functional networks of a population to determine the 

subject-level variation of these hubs and their inter-connectivity. These hubs are then used to 

compare ASD and TDCs. Our method is generalizable to any population whose connectivity 

(structural or functional) can be captured via non-negative network graphs.

Graphical abstract

The aim of this work is (a) to create a hub atlas for a population by mapping a collection of multi-

node brain networks into a system of network hubs, and (b) given a subject's network, quantify the 

contribution of each network hub at the subject level (illustrated by the size of the hub) as well as 

the strength of the inter-connectivity between pairs of hubs in the subject's network (illustrated by 

the thickness of hub inter-connections)
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1. Introduction

Computational techniques applied to neuro-imaging data have shown anomalies in brain 

activity (Ghanbari, Bloy et al. 2013) and structural connectivity (Ingalhalikar, Smith et al. 

2013, Matthews, Filippini et al. 2013) in neuro-developmental disorders such as 

schizophrenia (Price, Cercignani et al. 2007, Skudlarski, Jagannathan et al. 2010) and autism 

spectrum disorder (Jou, Jackowski et al. 2011, Vissers, Cohen et al. 2012). Structural 

connectivity relies on diffusion imaging to characterize anatomical connections between 

brain regions (Mori and van Zijl 2002, Friman, Farneback et al. 2006). It is quantified using 

probabilistic (Behrens, Johansen-Berg et al. 2003, Behrens, Woolrich et al. 2003, Friman, 

Farneback et al. 2006) or streamline (Mori and Barker 1999, Mori, Crain et al. 1999, Mori 

and Zijl 2002) tractography performed on the diffusion imaging data, resulting in non-

negative measures indicative of structural connectivity between brain regions. Functional 

connectivity based on fMRI, MEG or EEG is investigated at rest or during tasks by 

quantifying the similarity of temporal characteristics or coherence of brain activity between 

brain regions using methods such as correlation (Martijn and Hilleke 2010), synchronization 

likelihood (Barttfeld, Wicker et al. 2011, Kim, Bolbecker et al. 2013, van Dellen, Hillebrand 

et al. 2013), and coherence (Sakkalis 2011), or phase-amplitude coupling (PAC) (Berman, 

Liu et al. 2014). Such measures tell us whether there is a structural pathway or functional 

communication between the two regions (or with PAC connectivity in a local region as well 

as between regions), and the strength of the connection. While task-related functional 

connectivity captures brain networks associated with information processing (Sporns, 

Tononi et al. 2000), resting state functional connectivity facilitates the study of connectivity 

in the absence of external stimulation, (Mantini, Perrucci et al. 2007, Assaf, Jagannathan et 

al. 2010).

Autism spectrum disorder (ASD) is a developmental disorder characterized by social and 

communication impairments, as well as repetitive and restricted behaviors (APA 1994, APA 

2000). Research indicates that many ASD symptoms are associated with abnormal structural 

and functional brain connectivity (Vissers, Cohen et al. 2012, Edgar, Heiken et al. 2014, 

Ghanbari, Smith et al. 2014). Current theories of brain connectivity in ASD primarily report 

local over-connectivity in the frontal regions and long range under-connectivity (Just, Keller 

et al. 2012, Vissers, Cohen et al. 2012). For example, MRI structural connectivity studies 

suggest ASD is characterized by enhanced short-range and decreased long-range 

connectivity (Courchesne and Pierce 2005). MRI functional connectivity studies also report 
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abnormalities, with atypical connectivity between brain regions reported in fMRI studies of 

ASD, in domains such as social interaction (Perkins, Stokes et al. 2010), face processing 

(Critchley, Daly et al. 2000, Schultz, Gauthier et al. 2000), as well as in other cognitive tasks 

(Castelli, Frith et al. 2002, Just, Cherkassky et al. 2004, Just, Cherkassky et al. 2007). 

Electroencephalography (EEG) and magnetoencephalography (MEG) have also examined 

resting-state activity in ASD, showing that brain connectivity in ASD does not fit into the 

small-world network model observed in controls (Barttfeld, Wicker et al. 2011), and that in 

ASD functional connectivity is deficient in long-range fronto-occipital connections and is 

excessive in short-range frontal connections (Coben, Clarke et al. 2008, Barttfeld, Wicker et 

al. 2011). Local occipital-parietal resting-state connectivity abnormalities have also been 

recently reported (Berman, Liu et al. 2014).

Given that many neurodevelopmental disorders are thought to be disorders of connectivity, 

the analysis of brain connectivity is of high importance. Recently, connectivity analysis has 

focused on representing brain connectivity using graphs, where the brain is divided into 

regions of interest (ROI), each of which is a node in the graph, with the edges weighted with 

the connection strength between two brain ROIs. Graph representations are, however, of 

high dimensionality, and thus difficult to analyze and interpret. Graph theory metrics 

(Bullmore 2009, Rubinov and Sporns 2010) have been recently introduced to analyze the 

complex organization of brain networks by providing features such as small-worldness, 

modularity, centrality, and participation coefficient (Sporns, Honey et al. 2007, Bassett, 

Brown et al. 2011, Ingalhalikar, Smith et al. 2013). Although some of these features have 

shown to be associated with pathology (Barttfeld, Wicker et al. 2011, Rudie, Brown et al. 

2012, Griffa, Baumann et al. 2013), they are difficult to interpret for non-sparse and highly 

variable connectivity networks.

Commonalities in these networks over a population, and the variation at the individual level, 

underline the need for a network analysis methodology that can extract sub-networks that 

are able to characterize the population network structure while reducing dimensionality. 

Ideally, these sub-networks will describe local brain processes, with sub-network 

interactions measuring communication between sub-networks, thereby characterizing long- 

and short-range connectivity patterns. This would provide an interpretable brain network 

map while also facilitating statistical analyses that describe how this brain network is 

affected by disease. Although traditional approaches such as principal and independent 

components analysis (PCA and ICA) (Calhoun, Kiehl et al. 2008) provide dimensionality 

reduction, such approaches when applied to functional or structural connectivity networks, 

in the absence of positivity constraints, produce components that often lack physiological 

interpretability. Such positivity constraints are needed in the case of DTI-based connectivity 

matrices, as the connection measures quantify the anatomical connectivity between regions; 

hence its relationship with anatomy is the constraining factor for it to be non-negative. In 

functional connectivity, too, when the connectivity is quantified by a non-negative measure, 

like synchronization likelihood, as opposed to correlation, the components or sub-networks 

obtained from analysis are interpretable in the same space of connectivity quantification if 

they are non-negative.
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Recently, hierarchical mixture model was used estimated functional networks in resting state 

fMRI (Liu, Awate et al. 2014). This model finds networks that account for both within 

subject coherence and between-subject consistency of the network label maps, however does 

not constrain the networks with non-negativity that is important for interpretability in 

applications such as MEG or DTI.

To overcome this issue, non-negative matrix factorization (NMF) and its alternatives have 

recently gained attention and have been effective in providing an interpretable set of bases 

characterizing multivariate data. Since its introduction by Lee and Seung (Lee and Seung 

1999), NMF has been successfully employed in applications such as signal processing, 

pattern recognition, data mining, and medical imaging (Berry, Browne et al. 2007, Yang and 

Oja 2010, Batmanghelich, Taskar et al. 2012, Ghanbari, Smith et al. 2013). Despite the 

advantages in interpretability that NMF offers over other dimensionality reduction 

techniques (PCA, ICA, etc), due principally to its part-based representation of data and non-

negativity constraints on both the bases and coefficients, it does possess drawbacks. Namely, 

traditional NMF requires that connectivity matrices be vectorized prior to being used as a 

feature vector in the analysis pipeline. This vectorization of the connectivity matrix simply 

treats the relationship (i.e. connectivity) between pairs of nodes as independent and 

overlooks the inter-dependency between the connections emanating from that node, thereby 

losing the graph structure that such nodes and their inter-connections form.

In this paper, we present a novel approach that extracts the underlying functional/structural 

sub-networks that describe the hubs of the brain connectivity network while capturing 

variation in the population. Our framework does not treat the connectivity between pairs of 

nodes as being strictly independent, but instead is based on the premise that there are a few 

underlying sub-networks that describe the population, with variations in these networks 

representative of variations in the subjects. We have therefore designed a method that 

extracts sets of nodes - called hubs - that communicate strongly within each set, with the 

collection of hubs characterizing the population. As the intra- and inter-connectivity of these 

hubs plays an important role in describing brain connectivity, the presented method 

determines the dominant network hubs that characterize commonality across subjects within 

a population, with connectivity between these hubs capturing the individualized variation 

(e.g., due to inherent heterogeneity or induced by pathology). This collection of network 

hubs is referred to as a network atlas. Fig. 1-left illustrates a hub atlas composed of four 

network hubs that are strongly connected within each hub (shown by thick connections) and 

with inter-connectivity between hubs shown by dashed lines.

The manifestation of the network atlas at the subject level can be highly variable (as 

illustrated in Fig. 1-right). Hence, the primary aim of this work is to identify the network 

hubs of the population, that define its atlas of connectivity. These hubs will determine the 

commonalities across the population networks, as illustrated in Fig. 2(a). As shown in Fig. 

2(b), given the connectivity network of a subject and the atlas of hubs, our proposed method 

will: (a) quantify the contribution of each hub to that subject's network (illustrated by the 

size of each hub on the right side of Fig 2(b)), and (b) quantify the overall interaction (inter-

connectivity) between pairs of hubs (illustrated by the thickness of connections between 
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hubs on the right side of Fig 2(b)). These subject-level measures will then be used for 

statistical analysis and group comparisons.

The approach we take to extract network hubs is based on multi-layer graph clustering. The 

advent of graph-based clustering techniques, such as spectral clustering, has led to a growing 

interest in methods for the clustering of multi-layer graphs in the area of mobile phone 

networks and document clustering (Tang, Lu et al. 2009, Dong, Frossard et al. 2012, Dong, 

Frossard et al. 2014). Such approaches primarily deal with multiple modalities of 

information, where each modality conveys one aspect of data relationship represented by a 

graph. These graphs then form a multi-layer graph, where each layer has the same set of 

nodes but with differing edge weights between nodes. However, such methods lack 

interpretability as they are primarily concerned with the approximation of a graph Laplacian 

that can be used in a spectral clustering algorithm.

While edgewise statistics of these networks can be used to determine connectivity variation 

in a population, their high dimensionality makes the correction of multiple comparisons as 

well as the interpretability of disjoint set of significantly different edges, challenging. These 

issues are reduced in our approach, where the brain network is split into a small number of 

interpretable hubs that jointly characterize the population, along with a set of weights 

describing their interaction, thereby making this high dimensional problem amenable to 

group-wise statistics.

In the proposed technique, the network matrix of each subject forms one layer of our multi-

layer network graph. A matrix factorization scheme decomposes the multi-layer connectivity 

network into a collection of network hubs capturing the underlying connectivity shared 

among all network layers, as well as a set of subject-level weights representing variation of 

the hubs at the individual level. The decomposition scheme is constrained by the non-

negativity of both the network hubs and their weights so that the hubs obtained are 

interpretable networks on their own, and the associated subject-level weights are 

representative of the magnitude of the contribution of the corresponding hub to the subject's 

brain network. These network hubs are extracted using a gradient descent approach, 

minimizing the reconstruction error of the connectivity matrix decomposition.

The applicability of the proposed method is demonstrated on TDCs and children with ASD, 

examining networks from resting-state MEG data as well as diffusion tensor imaging (DTI) 

data. For each modality, connectivity matrices of the patient and controls are stacked 

together to form the pooled ASD-TDC multi-layer connectivity graph. Then, using our 

framework, a common set of network hubs that characterizes the variability in the 

population, is extracted, as well as the subject-level weights that can be used for group-based 

statistics. Results establish the generalizability of the proposed method for the analysis of 

brain networks derived from any structural or functional modality.
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2. Material and Methods

2.1 Participants

We demonstrate the applicability of our method in two separate analyses with different 

subjects using functional resting-state magnetoencephalography (MEG) data and structural 

white matter (DTI) data.

2.1.1 MEG data—The dataset consisted of 77 male children, 37 ASD and 40 TDCs, aged 

6-14 years (mean=10.2 years, SD=1.8 in ASD, and mean=10.3 years, SD=1.7 in TDC, no 

significant group difference in age, p>0.6). Resting state MEG was acquired in a 

magnetically shielded room using a 306-channel Elekta scanner. Five minutes of data were 

recorded with sampling frequency of 1kHz, from which two minutes were retained after 

artifact removal and quality assurance. Data were low-pass filtered before downsampling to 

500 Hz to avoid aliasing.

2.1.2 DTI data—The DTI dataset used here includes data from 116 individuals with ASD 

and 82 age-matched TDCs, aged 6—19 years (mean=12.7 years, SD=3.1 in ASD, and 

mean=12.4 years, SD=3.2 in TDC, no significant group difference in age, p>0.5).

DTI data was acquired on a Siemens 3T Verio™ scanner using a 32-channel head coil and a 

single shot spin-echo, echo-planar sequence with the following parameters: TR/TE = 

11000/76 ms, b-value of 1000 s/mm2, 30 gradient directions. Eighty 2 mm contiguous axial 

slices of 128 × 128 matrix (FOV 256 mm) yielded 2 mm isotropic data. Quality assurance 

(QA) of the images was performed manually and the images with poor quality were 

removed, leaving 198 images with acceptable quality.

2.2. Creating brain network matrices

2.2.1 Brain networks based on functional connectivity—Resting-state eyes-closed 

data were band-pass filtered to focus on the alpha band (8–12 Hz). MEG data were divided 

into 2.5-second epochs with 50% overlap. For each epoch, MEG data were mapped into the 

frequency domain using a Fast Fourier Transform (FFT). A source grid (5mm isotropic 

resolution) was obtained by sampling cortical gray-matter areas from each subject's T1-

weighted MRI. The sensor-space frequency-domain data were used as input to the 

frequency-domain VESTAL (Huang, Nichols et al. 2012) to obtain source amplitude (root 

mean squared) at each source location. From this spatial distribution of source amplitudes an 

inverse operator was determined (Huang, Huang et al. 2014) and applied to the MEG data to 

yield source time courses at each location. 301 structurally meaningful ROIs were 

determined using Freesurfer tools to subdivide the cortical surface of a template subject and 

to map these ROIs into each of the 77 subjects.

Of the 301 ROIs, 202 ROIs were identified that had at least one MEG source assigned to 

them. Time-courses for these 202 ROIs were determined using singular value decomposition 

(SVD) to extract the dominant time-course from each ROI. Connectivity matrices were then 

computed for the 202 regions yielding 77 matrices of size 202×202. Synchronization 

likelihood (SL), a non-negative measure of synchronous activity between 0 (no connection) 

and 1 (completely synchronous) quantified functional connectivity between two regions. In 
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this scheme, two brain regions were considered highly synchronous if the temporal activity 

pattern of one region repeats itself at certain time instants within a time period while the 

other region's temporal activity repeats itself at those same time instants. Mathematical 

details for computation of SL connectivity matrices can be found in Appendix A. Figure 3 

shows the procedure of creating functional connectome from MEG signals.

2.2.2 Brain networks based on Structural connectivity—DTI data were fitted with 

a tensor model from which the fractional anisotropy (FA) map was computed. The high 

resolution T1 structural images were parcellated into 95 regions (68 cortical and 27 sub-

cortical) using Desikan atlas (Desikan, Segonne et al. 2006) in Freesurfer. The 95 region 

labels were then transferred to the Gray matter – white matter (GM-WM) boundary (GM 

voxels neighboring a WM voxel) using in-house developed software and then subsequently 

to the diffusion space via an affine registration (T1 to FA). Probabilistic fiber tracking 

(Behrens, Johansen-Berg et al. 2003) was performed from each of these regions with 5000 

streamline fibers sampled per voxel, resulting in a 95×95 matrix of weighted connectivity 

values, where each element of the matrix represents the probability of a pathway between 

regions, normalized by the active surface area of the seed ROI. Figure 4 demonstrates the 

procedure of creating a structural connectome.

2.3. Modeling Network Hubs and their Inter-connectivity

Given a group of subjects, a network atlas is created using the connectivity matrices from all 

subjects. Connectivity is quantified by a non-negative similarity measure between n regions, 

leading to a non-negative connectivity matrix of subject m, i.e. S(m) ∈ ℜn×n represented by a 

graph with n vertices. A matrix factorization model S(m) ≈ UΛ(m)UT is then used, where the 

columns of U = [u1, u2, …, uk]∈ℜn×k correspond to a set of highly interconnected nodes 

common to the subjects and characterize the shared underlying hubs of the population. 

 is a symmetric matrix capturing the weights of each subject's 

network hubs, and thus providing low-dimensional representations that explain subject-level 

variations of the corresponding hub. k ≪n is the number of network hubs to be identified. 

Fig. 5 shows this decomposition procedure (although the networks may not be as clean and 

consistent across subjects due to inter-individual variations).

Due to the symmetry of Λ(m), this decomposition model can be re-written as

(1)

In this model, each network hub is identified by the first term in Eq. (1), i.e. , 

with subject-level intra-connectivity strength within the hub, represented by the diagonal 

coefficients . On the other hand, the subject-level inter-connectivity variation between 

hubs i and j is represented by off-diagonal coefficients , with the inter-
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connectivity pattern identified by , as seen in the second term of Eq. 

(1).

Elements of U are constrained to remain non-negative, thus retaining the interpretation of 

components (i.e. ) as a connectivity matrix (i.e. hubs and their inter-connectivity). Λ(m) 

is constrained to be symmetric due to the symmetry of connectivity matrices S(m), but it is 

worth noting that Λ(m) is not diagonal as this allows the model to capture the inter-

connectivity weights on off-diagonal elements, thereby incorporating the inter-connectivity 

between the network hubs.

2.3.1 Optimization model for hubs—As we want to obtain the underlying network 

hubs shared between all subjects in the population, connectivity graph of all subjects in the 

population are stacked to form a multi-layer graph{S(m)}. The network hubs shared by the 

population are then obtained by minimizing the reconstruction error of the decomposition 

across layers. This can be obtained by minimizing the following objective function

(2)

where M is the number of subjects, and ‖·‖F denotes the Frobenius norm. The regularization 

term, as the sum of the squared norm of U and Λ(m), is added to improve numerical stability, 

and β is a tunable parameter balancing the two terms of reconstruction error norm and 

regularization. The non-negativity constraints on U maintains the interpretation of network 

hubs as a connectivity matrix, and non-negativity of coefficients Λ(m) defines them as 

weights of those network hubs forming the subject's overall network.

2.3.2 Computing hubs and their subject-level weights—The objective function of 

Eq. (2) can be rewritten as

(3)

To minimize Eq. (3) with respect to the non-negativity constraints, an iterative procedure is 

proposed with the matrices U and Λ(m) alternately optimized by the given multi-layer graph 

of the population {S(m)}. The gradient decent approach is then used, i.e. alternately updating 

 and  with step sizes ηij ≥ 0 and , where
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(4)

and

(5)

Due to non-negativity of connectivity matrices S(m), our non-negativity constraints will be 

guaranteed by positive initialization of U and (symmetric) Λ(m), and applying the step sizes

(6)

This results in the following multiplicative updating solutions

(7)

and

(8)

Starting with initial random positive elements on U and (symmetric) Λ(m), the iterative 

procedures (7) and (8) are performed alternately until convergence. Such an initialization 

guarantees the non-negativity and symmetry constraints on the objective function, as can be 

verified from equations (7) and (8).

2.3.3 Ranking node membership in each hub—Each column of the matrix U (i.e. ui) 

represents a network hub whose intra-connectivity is determined by . It is important to 

note that each element of ui in this model indicates the membership degree of the 
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corresponding node (in comparison to the other nodes) in that hub. Hence, elements of ui 

determine the rank of the node membership in the ith hub.

2.3.4 Statistical analysis and interpretation—As explained at the beginning of 

section 2.3, elements of the subject-level weight matrix Λ(m) represent weights of intra- and 

inter-connectivity of network hubs in that subject. The intra-connectivity of network hubs is 

represented by the diagonal elements of Λ(m), i.e. , and the inter-connectivity of hubs is 

represented by upper triangular elements (due to symmetry), i.e. , j>i. Hence, a 

significant group difference at a diagonal element  is interpreted as alteration in the 

communication within ith network hub, i.e. , and a group difference at a non-diagonal 

element  indicates changes in the communication between the network hubs i and j, i.e. 

the inter-connectivity pattern  has perhaps been altered by disease.

3. Results

The proposed method was applied to simulated data and functional connectivity matrices 

computed using synchronization likelihood in MEG recordings as well as structural 

connectivity matrices obtained from DTI probabilistic tractography.

3.1 Extraction of Hubs in Simulated Networks

In order to investigate the performance of the proposed method, we first create a network 

consisting of 50 nodes forming two hubs, one comprising the first 20 nodes and the second 

the rest of the 30 nodes. The connectivity matrix of this network is shown in Fig. 6 (a) where 

red and blue colors represent one and zero, respectively. This network forms our base 

underlying network, and its variations are simulated by adding random non-negative noise to 

all zero and non-zero weighted edges. The noise was sampled from a normal distribution 

(0, 1.5)2 and the noisy images were capped between zero and one. Four variations were 

created whose connectivity matrices are shown in Fig. 6 (b)-(e). These four matrices 

represent four subject-level variations of the underlying network architecture. The hubs are 

then extracted by applying the proposed method to these four matrices with k=2. The 

resulting hubs are shown in Fig. 6 (f)-(g). It is seen that the proposed method is capable of 

retrieving the underlying hubs in the presence of variations.

In order to show the subject level weights in the simulated networks, we used a similar base 

networks as in Fig. 6(a), and correspondingly, simulated two common factors U of size 

50×2. Then, two sets of connectivity matrices, each consisting of 40 networks representing 

one group, were created. These networks were created by using the same common factor U, 

but their subject level intra-connectivity weights (λ11) in the first hub (top left network in 

Fig. 6(a)) were sampled from the normal distributions (5, 12) and (6, 12), respectively, 

for the simulated groups 1 and 2. The different normal distributions simulate statistical 

group difference between weights, with group 1 having statistically lower weights. Also, 

intra-connectivity weights (λ22) of the second hub (bottom right network in Fig. 6(b)) were 

randomly sampled from the normal distributions (6, 12) and (5, 12) or the groups 1 and 
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2, respectively (group 1 having statistically higher weights). The inter-connectivity weights 

(λ12) were sampled from the same normal distribution (0.5, 12) or both groups (no group 

difference), with negative numbers truncated to zero to maintain non-negativity. The subject 

level matrices were then constructed by S(m) = UΛ(m)UT + ε(m) where ε represents the 

background noise that was sampled from (1, 0.12), and the intra- and inter-connectivity 

weights (Λ(m)) were randomly generated from the normal distributions described. The hubs 

and their weights were then obtained by applying the proposed model. The original and 

computed intra- and inter-connectivity weights of the two hubs are plotted in Fig. 7. It 

should be noted that the computed values were rescaled by their magnitude for comparison 

with the original values, as the model given by Eq. (1) is not scale-invariant between hubs 

and their weights. It is observed that the computed values follow the original ones with a 

good proximity, and the group differences are preserved as well.

The same experiment was performed with different values of the parameter beta to 

investigate the influence on statistical group difference of the computed weights. The t-

values of group 1 vs. group 2 were obtained for three choices of parameter beta=0.01, 0.1, 

and 1, and the results are shown in Table 1. It is seen that statistical group differences are 

maintained.

In order to investigate the effect of the density of the underlying connectivity hubs as well as 

the magnitude of the noise, we used the same experiment, but varied the size of the 

underlying hubs as well as the noise variance. The density of underlying connections was 

changed to be 2, 8, 18, 32, and 50 percent of the overall connectivity matrix, corresponding 

to two blocks of size 5×5, 10×10, 15×15, 20×20, and 25×25, respectively. To control the 

noise variance, a coefficient c was used to scale the normal distribution standard deviations 

in intra-and inter-connectivity values as well as the background noise, i.e. (μ, (cσ)2). This 

coefficient basically scales the standard deviation of the normal distributions by 10 values of 

c=0.5, 1, 1.5, …, 5. For each connectivity density and noise variance, 80 connectivity 

matrices were simulated, for which the subject-level intra- and inter-connectivity weights 

were computed by the proposed procedure. The mean squared error (MSE) of the rescaled 

computed weights were measured and plotted in Fig. 8. It is observed that sparsity of the 

underlying connectivity (smaller values on the vertical axes) increases the accuracy (blue 

colors) of the computed weights. Also higher noise variance (larger values on the horizontal 

axes) results in less accurate (red color) computation of weights. Also, it is observed that the 

accuracy of inter-connectivity weights is more sensitive to both sparsity and noise variance 

when compared to the computed intra-connectivity weights.

3.2 Extracting Hubs from Resting-state MEG Functional Connectivity

Connectivity matrices were derived from the MEG data of the 77 subjects described in 

section 2.2.1. Patients and control connectivity matrices were used to extract network hubs 

as well as the weight matrices corresponding to each subject (see Section 2.3.2). We set 

β=0.1 and used k=10 to obtain 10 network hubs and to compute the subject-level weights 

(Λ(m)). On convergence, the iterative procedure of (7) and (8) produced a common factor U 
of size 202×10 as well as 77 subject-level weight matrices Λ(m) each of size 10×10. The ten 

resulting network hubs (i.e. the first term in equation (1),  for 1≤i≤10) are shown in Fig. 
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9, thresholded using a binary threshold to visualize the dominant edges (with a threshold of 

0.1).

Table 2 lists the brain regions that contribute most to the 10 network hubs. As explained in 

section 2.3.3, the n elements of ui determine the membership degree of n nodes (ROIs) in 

that hub. The top ranked regions are listed in Table 2.

The subject-level weights, Λ(m) 1≤m≤M, were then used for group comparison. T-tests were 

performed on the 10 diagonal and 45 off-diagonal upper-triangular elements of Λ(m). The 

diagonal and off-diagonal elements represent intra- and inter-connectivity within and 

between the network hubs, respectively. Analysis showed group differences in one of the 

diagonal elements, corresponding to network hub #9 (p<0.05). Statistical test of the off-

diagonal upper-triangular elements showed group differences in five inter-hub connections. 

Fig. 10 shows the intra- and inter-connectivity patterns for those weights that show group 

difference, by displaying the intra- and inter-connectivity map generated by the first 

and second term  of equation (1). Patterns whose corresponding weights (λij) 

are significantly lower in ASD are shown in blue (Fig. 10, a and b); while significantly 

higher weights in ASD are shown in orange (Fig. 10, c to f).

As mentioned above, group comparisons based on the diagonal elements revealed group 

differences in hub #9, displayed in Fig. 10 (c). This network hub is comprised primarily of 

superior frontal regions. Higher weights in ASD indicate frontal lobe hyperconnectivity, or 

enhanced short-range connections, an observation consistent with frontal lobe 

overconnectivity in ASD (Kana, Libero et al. 2011). In ASD, hyperconnectivity in hub #9 in 

the frontal regions coincided with hypoconnectivity between hub #9 and two distant hubs 

bilaterally (left hemisphere cyan hub #2 and right hemisphere turquoise hub #3), as seen in 

Fig. 10(a)-(b). Such decrease in fronto-parietal connections in ASD, between hub #9 and 

hub #2 as well as hub #9 and hub #3, are indicative of long-range underconnectivity in ASD. 

Additionally, ASD subjects showed increased connectivity in short-range connections 

between mid-central (mainly posterior cingulate) and central-right (right pre/postcentral) 

brain areas (i.e. hub #3 and hub #8 shown in Fig. 10(d)). Our analysis showed that, in ASD, 

this connection is correlated with scores on the social communication questionnaire (SCQ; 

r=+0.30, p<0.05). Fig. 10(e) shows that inter-connectivity between the frontal (medial-orbito 

frontal) and temporal/subcortical (fusiform and cerebellum) regions (i.e. hub #5 and hub #6). 

It is interesting that the two most significant connections (p < 0.01) have the right parietal 

hub (hub #3) in common, as shown in Fig. 10 (b) and (d). Fig. 10 (f) shows increased inter-

connectivity between hubs #7 and #10. This pathway consists primarily of connections 

between precuneus and medial orbito-frontal regions.

Developmental differences between ASD and TDC with respect to intra- and inter-hub 

connectivity were examined. We used a generalized linear model (GLM) to study 

developmental differences, with group, age and their interaction as predictors, to regress 

each intra- and inter-connectivity weight across subjects. The interaction of age and group in 

the GLM captures differences between the trajectories of the two groups with respect to age 

(i.e. development). Developmental differences were observed in the inter-connectivity 
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between hub #5 and hub #8 (p<0.05), as well as in the intra-connectivity of hub #10 

(p<0.01). The age correlation of the inter-connectivity between hubs #5 and #8 was r=-0.26 

in ASD and r=+0.28 in TDC. Analysis showed that inter-connectivity between hub #5 and 

hub #8 primarily consists of connections of left fusiform and cerebellum with left posterior 

cingulate and paracenral regions. The intra-connectivity of hub #10 showed an age 

correlation of r=-0.29 in ASD and r=+0.35 in TDC. Hub #10 primarily consists of 

connections between caudal anterior cingulate and superior frontal regions. Table 3 

summarizes the developmental differences observed.

3.3 Extracting Hubs from Structural Connectivity Data

The 95×95 connectivity matrices were computed from the 198 subjects using the method 

described in 2.2.2. These matrices were stacked and network hubs and their subject-level 

intra-and inter-connectivity weights were extracted using the method described in Section 

2.3.2 using the same settings as used for MEG connectivity analysis(β=0.1 and k=10) to 

obtain 10 network hubs. On convergence, the iterative procedure of (7) and (8) produced a 

common non-negative factor U of size 95×10, as well as 198 subject-level weights Λ(m) 

each of size 10×10. The resulting ten network hubs (i.e. the first term in equation (1), 

for 1≤i≤10) are shown in Fig. 11.

As explained in section 2.3.3, nodes that contribute most to each hub were determined by 

their magnitude in the hub vector, and listed in Table 4.

Subject-level weights were used for group comparisons. Of the 10 diagonal and 45 upper-

triangular elements, one intra- and two inter-connectivity elements were found to be 

significantly different (see Fig. 12).

The intra-connectivity in hub #5, shown in Fig. 12 (a), primarily consists of inter-regional 

connections between left insula, putamen, and caudate. The regions of dorsal striatum 

(putamen and caudate) are among the components of basal ganglia that are major subcortical 

targets within the fronto-striatal behavior control loops, as well as are parts of the reward 

circuitry (Kohls, Yerys et al. 2014, Ikemoto 2010). Decreased connectivity between regions 

related to reward processing is consistent with the recent theories of ASD that posit the idea 

that social motivation deficits play a central role in ASD (Chevallier, Kohls et al. 2012, 

Kohls, Schulte-Ruther et al. 2013). The inter-connectivity between hub #2 and hub #7 shown 

in Fig. 12 (b) is primarily between left middle temporal, superior parietal, and inferior 

temporal regions. Inter-connectivity between hub #6 and hub #9 (Fig. 12 (c)) is primarily 

made up of precuneus (both left and right), and inferior parietal (both left and right), left 

cuneus, and right post-central regions. Increased connectivity between these hubs is 

consistent with previous findings of increased gray matter volume (Brieber, Neufang et al. 

2007) and increased functional activation (Gomot, Belmonte et al. 2008) in inferior parietal 

lobule. Cuneus and post-central regions are traditionally associated with visual and motor 

functions. The structural abnormalities in all these regions may correspond to attentional 

deficits and narrow interests observed in ASD.
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5. Discussion

We have proposed a framework to extract brain connectivity sub-networks that are highly 

inter-connected and represent the hubs of brain networks that describe the population. This 

technique yields a set of inter-connected nodes as hubs of the network, as well as their 

contribution towards reconstructing subject-level networks. In addition, our model quantifies 

the inter-connectivity between these hubs producing subject-level connectivity weights 

between the hubs.

An important advantage of the proposed method is that, in contrast to other matrix 

factorization techniques such as PCA and ICA, the hub sub-networks are constrained to be 

non-negative and hence can be directly interpreted as connectivity sub-networks, and their 

intra- and inter-connectivity coefficients, as sub-network weights for each subject. For 

example, DTI structural connectomes are non-negative by definition, as they are meant to 

represent the amount of structural connections between two regions. If PCA or ICA is used 

to extract components, these components would not be interpretable as DTI structural 

connectomes due to the possibility of obtaining negative components and coefficients, as a 

negative connectivity would indicate a negative contribution to the anatomical substrate.

We applied our method to a set of functional connectivity networks obtained using 

synchronization likelihood. Fig. 9 shows that the method described here extracted hubs 

composed of spatially co-localized cortical regions while also being sparsely distributed over 

the brain. Some of these network hubs may have captured the fMRI default mode network 

(DMN). Specifically, the precuneus, an integral region of DMN (Cavanna 2007), was 

captured in both hemispheres in hub #7 as well as hub #4 (as reported in Table 2). This 

region is involved in self consciousness (Kjaer, Nowak et al. 2002, Lou, Luber et al. 2004) 

and proposed as part of a small-word network hub between parietal and prefrontal regions 

(Bullmore 2009). Moreover, the posterior cingulate, a central DMN node (Leech and Sharp 

2014), was captured by hub #8. This region is involved in awareness and memory retrieval 

(Maddock, Garrett et al. 2001, Nielsen, Balslev et al. 2005), as well as visual attention 

(Leech and Sharp 2014). The hub #2 superior parietal region has also been shown to be a 

part of the DMN (Damoiseaux, Rombouts et al. 2006).

It has recently been hypothesized that autism is characterized by local over-connectivity and 

long-range under-connectivity (Kana, Libero et al. 2011, Wass 2011, Vissers, Cohen et al. 

2012). Present observations are consistent with this hypotheses that whereas the ASD brain 

shows frontal to posterior long-distance under-connectivity, it shows superior frontal region 

connectivity, perhaps to compensate for the long-distance under-connectivity (Kana, Libero 

et al. 2011).

The short-range over-connectivity in superior frontal regions in ASD was observed in hub 

#9. Frontal over-connectivty has been hypothesized to be due to an excess of frontal 

neurons, diluting the impact of signals from distant brain regions and hence impeding long-

range communications (Courchesne, Pierce et al. 2007).

Analyses showed fronto-parietal under-connectivity in ASD, primarily between superior 

frontal and bilateral parietal areas, as shown between the frontal hub #9 and parietal hubs #2 
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and #3 (Fig. 10 (a) and (b)). Abnormal fronto-parietal connectivity has been reported in 

studies investigating resting brain connectivity using fMRI (Cherkassky, Kana et al. 2006, 

Assaf, Jagannathan et al. 2010, Weng, Wiggins et al. 2010, Just, Keller et al. 2012), and also 

in EEG alpha synchronization (Murias, Webb et al. 2007, Coben, Clarke et al. 2008). 

Reduced fronto-posterior connectivity has also been shown in ASD studies of language 

(Just, Cherkassky et al. 2004), visuo-spatial processing (Damarla, Keller et al. 2010), 

executive function (Just, Cherkassky et al. 2007), and social processing (Schipul, Williams 

et al. 2012).

Present analyses showed a correlation between age and inter-connectivity between hub #3 

and hub #9 (Fig. 10(b)) in TDCs. Inter-connectivity between frontal and right parietal 

increased with age in TDC (r=+0.32, p<0.05) and decreased with age in ASD (r=+0.13, 

p>0.05). This indicates that this sub-network underconnectivity becomes more pronounced 

in ASD, as a function of age.

In this analysis, we pooled both patient and control groups because performing analysis on 

the pooled ASD and TDC populations yields a common set of network hubs and their 

associated subject-level weights, facilitating statistical group comparison. Obtaining 

components separately from the two populations yields coefficients that are statistically 

incomparable as they do not share the same mapping space, causing spurious group 

differences. Moreover, pooling the patient and control groups will provide the between-

group variability in the data that will be captured by the hubs.

A major concern with statistical analysis of brain networks is the problem of multiple 

comparisons. Although more nodes are preferred to better capture details in the connectivity 

analysis, more nodes significantly add to the number of network edges, and consequently the 

number of comparisons in statistical analyses. Although techniques are available for 

multiple comparison correction including Bonferroni correction (Dunn 1961), FDR 

(Benjamini and Hochberg 1995, Genovese, Lazar et al. 2002), and extreme statistics (Blair 

and Karniski 1993), analysis of brain connectivity with multiple comparison correction 

remains challenging (Cheol, Sang et al. 2013). The proposed method significantly reduces 

the number of multiple comparisons owing to the dimensionality reduction obtained by 

finding hubs and quantifying their intra-and inter-connectivity weights. For instance, our 

functional connectivity matrices of size 202×202 would typically require 20301 

comparisons. Our method can reduce the number of comparisons to 55 when k=10.

The parameter beta β is a regularization term balancing the two terms of equation (2), the 

first being the reconstruction error term and the second is the magnitude of the hubs U and 

their weights Λ(m). This parameter setting is data dependent. When β is set to a large 

number, the minimization of the objective function will emphasize more on minimizing the 

second term hence the reconstruction error (first term) will become large, and consequently 

the obtained hubs and their coefficients will not be a good representative of the population. 

On the other hand, if β is set to a very small number, the objective function will be 

dominated by the reconstruction error, causing instability in the resulting hubs and their 

coefficients during the iterative process because the regularization term that controls the 

magnitude change between U and Λ(m) will not be influential. Our analyses on the MEG 

Ghanbari et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dataset show that similar hubs are obtained with β =0.01, 0.1, 0.2. However, a value of β =1 

is too large for the iterative procedure to converge in this dataset. On the other hand, very 

small β such as 1e-5 will change the objective to focus more on the minimization of the 

reconstruction error needing the hence the procedure to perform more iterations to satisfy 

the objective. Fig. 13 demonstrates the resulting hubs from the matrices of TDCs in the 

MEG dataset with three values of beta that have been experimented.

Similar experiment was performed on the DTI dataset for the 82 TDC subjects, and the hubs 

obtained with β=0.01, 0.1, 1 are shown in Fig. 14.

The number of hubs, K, is also dataset dependent that could be set by trying several values 

and optimizing a particular objective that is the interest of the application. Also, prior 

knowledge of neuroanatomy may be helpful in defining the number of hubs for certain 

cases.

To show how the hubs may change when a subset of the data is used, we applied our method 

to several subsets of the TDCs matrices in the MEG dataset. In this scheme, we started by 

extracting hubs from all the 40 subjects and then reducing them to 37, 34, 25, 15, and 5 

subjects. The resulting hubs are shown in Fig. 15 below. It ican be seen that the hubs 

location remains mostly consistent when more than half of the subjects are used. With the 

number of subjects reducing to below half, changes in hubs are observed.

Similarly, the 10 hubs extracted from the structural networks of the TDC subjects are shown 

in Fig. 16, below. The number of subjects used in this experiment was 82 that was reduced 

to 60, 40, 20, 10, and 5, for which the resulting hubs are shown in Fig. 16 (a)-(f). It is 

observed that the consistency of the hubs is less than the MEG dataset used in this paper 

when number of subjects diminishes.

An additional advantage of our method is that it facilitates the modeling of brain networks 

into locally highly connected hubs. Such a network representation helps disambiguate the 

definition of short-range and long-range connections in terms of the intra- and inter-

connectivity of network hubs, a strategy useful for clinical studies (Khan, Gramfort et al. 

2013) but currently not well-defined. The small number of hubs in the model also helps 

interpret differences observed in the patient population.

Community detection methods that use betweenness centrality provide the modules in the 

network, which can be considered to be similar to what we find. However, these community 

detection methods do not provide a characterization and quantification of the modules at the 

subject level. Our method finds sub-networks that are common across the networks of a 

population and characterizes and quantifies intra- and inter-connectivity between these 

subnetworks at the subject level, that is lacking in community detection techniques.

The procedure introduced in this paper is also capable of assigning intra- and inter-

connectivity weights to any new incoming subject after an atlas of hubs is created. This is 

useful if the proposed framework is to be used in a train-test scheme. After the network hubs 

(represented by the matrix U) are obtained from a set of given connectivity networks, 

equation (2) can be optimized, given the atlas (i.e. U), to obtain the weight matrix Λ(m) for 
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the new subject. This is achieved by performing the iterative procedure (described in Eq.(8)) 

with non-negative random symmetric initialization of Λ(m) for the new subject, yielding the 

intra- and inter-connectivity weights.

The computational cost of the proposed method depends on the number of matrices in the 

dataset, number of nodes in each network, number of hubs (k), and the regularization 

parameter beta. The number of iterations depends not only on the above parameters, but also 

the stopping criteria of the iterative procedure. For the experiments in this paper, we used a 

maximum iteration of 10000, and the rate of change in the objective function to be less than 

1e-5 to stop the iterations.

The proposed method is generalizable to any non-negative connectivity matrix set, as long as 

connectivity is interpretable when it is measured with a non-negative number. We have 

shown its application in the analysis of MEG-based functional as well as DTI-based 

structural networks. This was shown in the study of autism via an interpretable 

dimensionality reduction of brain networks amenable to statistical analysis. In fMRI 

applications, this method is applicable if connectivity is modeled by non-negative measures, 

e.g. when connectivity is obtained by synchronization likelihood (Sanz-Arigita, Schoonheim 

et al. 2010), as opposed to correlation that could be negative. Even if correlation or 

covariance measures are used to quantify the connectivity in fMRI, a positive contribution of 

the networks is needed (i.e. positivity constraints are needed for the coefficients). Then the 

same model / objective could be used with a different solution that requires non-negativity 

only on the coefficients but allows negativity on the hubs.

Our current model is generative and thus can be extended to a reconstructive-discriminative 

or reconstructive-regressive model of network hubs that could be used in classification or 

regression analyses.

6. Conclusions

We have presented a new technique for the analysis of brain networks using a low-rank 

matrix factorization model that extracts a set of population-specific network hubs, as well as 

a subject-level weight matrix capturing individualized variability, facilitating subsequent 

statistics. Our approach enables us to identify neurophysiological/neuroanatomical network 

hubs and characterize their inter-connections, thereby providing a global view of brain 

functional processes and structural pathways, as well as an insight into how the network is 

affected by disease. Application to MEG as well as DTI datasets provided a set of network 

hubs and their subject-level intra- and inter-connectivity weights for each dataset. Group-

wise analysis of intra-and inter-connectivity weights revealed significant long-range 

connectivity deficiencies, as well as short-range overconnectivity in ASD. The proposed 

framework can be extended to any non-negative connectivity matrix, and the weights 

obtained in the process can be exploited for classification or regression analysis.
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Appendix A

Synchronization Likelihood

The time-frequency synchronization likelihood technique assumes that two signals are 

synchronized if a pattern of one signal repeats itself at certain time instants for a number of 

times within a certain period and another pattern in the other signal repeats itself at those 

same time instants (Montez, Linkenkaer-Hansen et al. 2006).

For a given signal at channel k, i.e. xk(t), the signal pattern at any given time instant ti can be 

represented by an embedding vector xk,ti =⌊xk(ti), xk(ti+l +T), …, xk(ti+(m−1)l)⌋ where l is the 

lag and m is the length of the embedding vector. l and m are typically set to  and 

 where fs is the sampling frequency, and hf and lf are the high and low frequency 

contents of the signal, respectively. At each time instant ti, the Euclidean distance is then 

measured between the reference embedding vector xk, ti and the set of all other embedding 

vectors at times tj, i.e. xk where tj lies in the range  or 

 where  and tw1 <tw2. Then, nref nearest embedding 

vectors xk,tj are retained. This procedure is conducted for each channel k and each time 

instant ti. The SL between channel k1 and channel k2 at time instant ti is the number of 

simultaneous embedding vector recurrences in the two channels divided by the total number 

of recurrences, i.e. . Fig. 17 illustrates how SL is calculated.
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Highlights

• We propose a new method for analysis of brain functional and structural 

connectivity networks in a population

• We identify an atlas of network hubs that describe the population and are 

obtained from network commonalities across the subjects

• Subject-level weights are also obtained by quantifying the intra- and inter-

connectivity of network hubs that best reconstruct a subject's network

• An NMF approach combined with multi-layer graph clustering is developed 

to find desired network hubs

• The proposed method was applied to MEG and DTI datasets in the study of 

autism using modeled within- and between-hub connectivity.
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Figure 1. 
The brain network is hypothesized to be made up of several hubs that are inter-connected 

(dashed lines), with each hub composed of a set of highly connected nodes (solid lines). The 

collection of hubs is considered as an atlas of connectivity. On the right, the subject-wise 

realizations of this network atlas show subject level variation.
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Figure 2. 
Atlas of network hubs and their subject-level variation: (a) illustrates the primary objective - 

creating a hub atlas for a population by mapping a collection of multi-node brain networks 

into a system of network hubs, and (b) the second objective - given a subject's network, 

quantify the contribution of each network hub at the subject level (illustrated by the size of 

the hub) as well as the strength of the inter-connectivity between pairs of hubs in the 

subject's network (illustrated by the thickness of hub inter-connections)
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Figure 3. 
Creation of functional connectome. 1) Brain activity time-series are measured on the MEG 

sensors and localized onto the brain regions using VESTAL in a certain frequency range. 2) 

Principal time courses are computed using SVD in each region. 3) Synchronization 

likelihood is used to quantify the functional connectivity between regions.
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Figure 4. The pipeline in creating the structural connectome
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Figure 5. 
The matrix decomposition of a set of connectivity matrices {S(m)} forming a multi-layer 

graph, into a set of four network hubs as well as a set of subject-level 4×4 weight matrices. 

Each column of U characterizes the set of original nodes (ROIs) that contribute to the 

network hub, represented by the same-color ellipse on the brain map. The elements of Λ(m) 

also describe the strength of intra- and inter-connectivity of network hubs.

Ghanbari et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The simulation of four networks as variations of an underlying network with two hubs, and 

the hubs obtained from the proposed method. (a) the connectivity matrix of a network 

consisting of two hubs. (b)-(d) the simulated subject-level variations of the original network. 

(f)-(g) show the resulting two hubs obtained from the proposed algorithm. Blue is smallest 

and red is highest values in the images.
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Figure 7. 
The original and rescaled computed weights of 80 networks constructed from randomized 

weights over two fixed hubs of Fig 6(a). (a) Intra-connectivity weights of hub 1. (b) Inter-

connectivity weights between hub 1 and hub 2. (c) Intra-connectivity weights of hub 2.
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Figure 8. 
The mean squared error (MSE) of the computed weights when connectivity density and 

noise variance change. Horizontal axis includes the coefficients that scale the standard 

deviation of the background noise as well as the group-wise noise in weights. Vertical axis is 

the density of the underlying connectivity in percent. MSEs are color-coded for the 

computed (a) intra-connectivity of hub1, (b) inter-connectivity weights between hub 1 and 

hub 2, (c) intra-connectivity weights of hub 2.
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Figure 9. 
The k=10 functional connectivity network hubs of alpha activity obtained from the ASD + 

TDC subjects. Hubs are displayed (in no specific order) on a brain map with 202 ROIs. Each 

hub is given a color shown by the connections between regions. Each ROI is also color-

coded by the brain lobe (frontal, temporal, parietal, occipital, Cerebellum and Brain Stem).
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Figure 10. 
The intra- and inter-connectivity group difference patterns (axial view in top panels and 

sagittal view in bottom panels). Blue and orange networks have higher weights in TDC and 

ASD, respectively. Components with group weight difference of p<0.05 are labeled with one 

star (on the top right of each panel), and weight differences of p<0.01 with two stars. Each 

sub-network is also labeled with the corresponding hubs (shown at the bottom of each panel 

with their color-coded names as in Fig. 9) whose intra- or inter-connectivity forms that 

pattern.
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Figure 11. 
The 10 network hubs obtained from the pool of connectivity matrices of the 198 subjects, 

displayed in no specific order on the brain map with 95 ROIs. Each ROI is color coded with 

its brain lobe, and each hub is color-coded with a given numbered name.
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Figure 12. 
The intra- and inter-connectivity patterns that show significant differences between ASD and 

TDCs. Red and green connection lines, respectively, indicates decreased and increased 

weights in ASD versus TDC. Specifically, (a) the intra-connectivity pattern of network hub 

#5 (blue in Fig. 11) with weights decreased in ASD with p<0.01, (b) the inter-connectivity 

pattern between hub #2 (green in Fig. 11) and hub #7 (cyan in Fig. 11) with weights 

decreased in ASD with p<0.05, (c) the inter-connectivity between hub #6 (orange in Fig. 11) 

and hub #9 (lemon in Fig. 11) with increased weights in ASD with p<0.005. The color of 

nodes indicates their lobe as coded in in Fig. 11.
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Figure 13. 
The k=10 functional connectivity network hubs of alpha activity obtained from the TDC 

subjects when regularization parameter varies. (a)-(c) demonstrate the hubs obtained from 

40 TDC subjects when the regularization parameter was set to β=0.01, 0.1, and 0.2, 

respectively. The colors are randomly assigned to hubs in each panel.
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Figure 14. 
The k=10 structural connectivity network hubs obtained from the TDC subjects when 

regularization parameter varies. (a)-(c) demonstrate the hubs obtained from 82 TDC subjects 

when the regularization parameter was set to β=0.01, 0.1, and 1, respectively. The colors are 

randomly assigned to hubs in each panel.
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Figure 15. 
The k=10 functional connectivity network hubs of alpha activity obtained from the TDC 

subjects. (a)-(f) show the hubs obtained from 40, 37, 34, 25, 15, and 5 TDC subjects, 

respectively. The colors are randomly assigned to hubs in each panel.
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Figure 16. 
The k=10 structural connectivity network hubs obtained from the TDC subjects. (a)-(f) show 

the hubs obtained from 82, 60, 40, 20, 10, and 5 TDC subjects, respectively. The colors are 

randomly assigned to hubs in each panel.
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Figure 17. 
The intra An illustration of synchronization likelihood between two signals from two 

channels plotted by different colors. A reference pattern was selected at the time 0.074 sec 

(thick rectangle). The recurrences in both signals are shown by thin rectangles for nref = 10. 

Vertical arrows show simultaneous recurrences in both channels. SL at time 0.074 is 

therefore equal to the ratio between number of simultaneous recurrences and the number of 

nref, i.e. SL = 5/10 = 0.5.
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Table 2

The top ranked anatomical regions according to their membership in the network hubs (Fig. 9).

Hub #1 Superior frontal (left and right), Rostral middle frontal (left and right), Lateral orbito frontal (right and left)

Hub #2 Superior parietal (left), Supermarginal (left), Pre and post central (left)

Hub #3 Pre and postcentral (right), Supramarginal (right), Caudal middle frontal (right)

Hub #4 Pericalcarine (right and left), Lingual (right and left), Precuneus (right and left)

Hub #5 Fusiform (left and right), Cerebellum (left and right) and brain stem, Parahippocampal (left)

Hub #6 Medial orbito frontal (left and right), Rostal anterior cingulate (left and right), Lateral orbito frontal (left and right)

Hub #7 Precuneus (left and right), Superior Parietal (left and right)

Hub #8 Posterior cingulate (left and right), Paracentral (left and right), Isthmus cingulate (left and right)

Hub #9 Superior frontal (right and left), Rostral middle frontal (right and left), superior frontal (right and left)

Hub #10 Caudal anterior cingulate (right and left), Superior frontal (right and left)
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Table 3

The significant developmental differences between ASD and TDC obtained by a GLM model with group, age 

and their interaction as predictors (p<0.05).

Hubs Group-wise correlation between age and the 
hub weights

The primary ROIs

ASD TDC

Hub 5 and hub 8 inter-connectivity -0.26 +0.28 connections of left fusiform and cerebellum with left 
posterior cingulate and paracenral regions

Hub 10 intra-connectivity -0.29 +035 connections between caudal anterior cingulate and 
superior frontal regions
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Table 4

The top ranked anatomical regions according to their membership to the network structural Fig. 11.

Hub #1 Precentral (right), Putamen (right), Superior frontal (right)

Hub #2 Middle Temporal (left), Inferior temporal (left), Fusiform (left)

Hub #3 Superior parietal (right), Supramarginal (right), Precentral (right)

Hub #4 Postcentral (left), Caudal middle frontal (left), Paracentral (left)

Hub #5 Putamen (left), Insula (left), Caudate (left)

Hub #6 Precuneus (right), Inferior parietal (right), postcentral (right)

Hub #7 Superior parietal (left), Cuneus (left), Lingual (left)

Hub #8 Precentral (left), Supramarginal (left), Superior Parietal (left)

Hub #9 Precuneus (left), Inferior Parietal (left), Cuneus (left)

Hub #10 Inferior temporal (right), Middle temporal (right), Fusiform (right)
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