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Abstract. We present a novel algorithm for the simultaneous segmen-
tation and anatomical labeling of the cerebral vasculature. The method
first constructs an overcomplete graph capturing the vasculature. It then
selects and labels the subset of edges that most likely represents the true
vasculature. Unlike existing approaches that first attempt to obtain a
good segmentation and then perform labeling, we jointly optimize for
both by simultaneously taking into account the image evidence and the
prior knowledge about the geometry and connectivity of the vasculature.
This results in an Integer Program (IP), which we solve optimally us-
ing a branch-and-cut algorithm. We evaluate our approach on a public
dataset of 50 cerebral MRA images, and demonstrate that it compares
favorably against state-of-the-art methods.
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1 Introduction

Automated segmentation and anatomical labeling of blood vessels is an impor-
tant problem with many practical applications. In clinical settings, it can give
an interventional radiologist extra guidance when navigating through a patient’s
vasculature, or it can allow automatic quantification of specific vessel segments.
In a research context, it can be used to detect patterns in the vasculature that
may be correlated to the incidence of vascular pathologies.

In this work, we focus on the cerebral vasculature and more specifically on
the Circle of Willis (CoW) as well as its adjacent vessels. The CoW is a circle
of arteries in the skull base that connects the left and right side of the anterior
cerebral circulation with the posterior cerebral circulation (Fig. 1). It is supplied
with blood via three large arteries, namely the left and right ICA and VBA.
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Fig. 1: Configuration of the Circle of Willis for two different subjects as seg-
mented from MRA. The colors indicate the anatomical names of the vessel seg-
ments. The left CoW is complete, while the right misses several segments.

Although the CoW has a very characteristic morphology, it is highly variable:
less than half of the population has a complete circle, while in the majority of
cases, one or more arteries are missing.

Most existing approaches to anatomical labeling of the vasculature pose the
problem in a graph-based setting, in which the vertices represent furcations and
the edges the branches of the segmented vasculature. For example, Robben et
al. [6] label the CoW by matching bifurcations in this graph to a probabilistic
atlas, taking into account both unary potentials of the bifurcations and also
pairwise potentials between them. Bogunović et al. [1] also label the CoW by
matching bifurcations to an atlas. They use the bifurcation properties and have
several reference graphs to model the topology of the bifurcations. The method
is evaluated on ground truth segmentations as it requires topologically correct
segmentations. Mori et al. [5] label the bronchial branches, which are tree-like
with no loops, in an edge matching approach. A trained classifier gives a proba-
bility to each possible pair of branch and label. The solution is the global optimal
assignment of labels taking into account several topological constraints. All these
approaches rely on a pre-existing segmentation in terms of a graph of potential
blood vessels. They account for the fact that vasculature is not a random set
of tubular structures but an organ with specific connectivity patterns. However
they fail to exploit this knowledge to improve the segmentations. Finally, Lu et
al. [4] segment and label three non-branching coronary arteries by generating
many possible segmentations and selecting – based solely on geometry – for each
label the most likely.

By contrast, in this paper, we propose to perform the segmentation and
labeling jointly. To the best of our knowledge, we are the first to propose such a
simultaneous model-based approach for vascular structures. Not only does this
approach yield better results than state-of-the-art methods [7] but it is also very
generic and could equally well be applied to other curvilinear structures.
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(a) (b)

Fig. 2: (a) Maximum intensity projection of the overcomplete graph capturing
the cerebral vasculature overlaid on the MRA image. (b) Illustration of the edge
and edge pair labels.

2 Methodology

Following of Türetken et al. [7], we first compute a 4D scale-space tubularity
volume, in which the last dimension stands for the vessel radius, or scale. The
values represent the likelihood that there is a vessel of that radius centered at the
voxel in the image. We sample local maxima of this volume at regular intervals
(5 mm) and treat the samples as vertices VI in a directed graph GI = (VI , EI),
which contains the vasculature (Fig. 2a). The edges EI represent tubular paths
and are obtained by connecting pairs of samples that are within a certain distance
from each other, using the Fast Marching Algorithm [3] in the scale space. We
assume that GI is overcomplete such that its edges cover all the vessels in the
image, but it also contains spurious branches that are not part of the vasculature.

We then select a subgraph in GI and anatomically label its edges such that
it most likely represents the true vasculature. This is done jointly by optimizing
a global objective function that captures both the image evidence and the prior
knowledge about the geometry and connectivity of the labeled arteries.

In contrast to earlier approaches that attempt to sample their vertices from
the true furcations of the vasculature, which are very hard to obtain accurately,
the vertices in our graphs do not need to coincide with the furcations. As a
consequence, an edge can belong to multiple anatomical segments as illustrated
in Fig. 2b. However, we infer the position of the furcations once the optimal
solution is obtained by merging its overlapping edges that occupy the same 3D
space.

Notation Given an image I, let G = (V,E) be the directed graph obtained
by adding a virtual vertex vv to GI such that V = {vi} = VI ∪ {vv} and
E = {eij = (vi, vj)} = EI ∪ {(vv, vi)|vi ∈ VI}. Let also S = {si} be the set of
the anatomical labels for distinct segments of the vasculature extended with a
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void label (na) for unnamed vessel segments (as illustrated in Fig. 1). This is
necessary since we are interested in segmenting the whole cerebral vasculature
rather than only the labeled segments of the CoW.

We formulate our problem in terms of consecutive edge pairs in G, since
it allows us to capture more global appearance and geometry information, and
it gives rise to a linear objective function and constraints [7]. Let F = {eijk =

(eij , ejk)} be the set of consecutive directed edge pairs and and L̂ = {(s1, .., sn)|1 ≤
n ≤ 4,∀i : si ∈ S}, the set of the edge pair labels, where an edge pair label is a
tuple of segment labels. We define X = {X l

ijk} to be the vector of binary ran-
dom variables, each representing the (non-)existence of a vessel segment along
the directed edge pair eijk with label l. Their realizations are denoted by the
vector of binary variables x = {xl

ijk}. In the following, we pose the joint segmen-
tation and labeling problem as an integer program (IP) over x subject to a set
of constraints. We solve the resulting IPs to provable optimality (with a solution
gap of 1e−4) using the branch-and-cut procedure of the Gurobi Optimizer 1. The
optimization took on average 20 mins. per image on a single core.

Objective Function We formulate the problem as a maximum likelihood (ML)
inference over the binary variables x:

x∗ = arg max
x∈X

P (I,G|X = x) (1)

where X denotes the set of feasible solutions that satisfy the constraints described
later in this section. We decompose X = {X l

ijk} into two sets of random variables
T = {Tijk} and L = {Lijk}, with the binary variable Tijk representing whether
the edge pair eijk belongs to the underlying vasculature and Lijk representing

the label l ∈ L̂ of the edge pair. We write:

P (I,G|X = x) ∝ P (T = t|I,G)
P (L = l|T = t, I, G)

P (T = t,L = l)
. (2)

We omit here the derivation of the first term P (T = t|I,G) as it is given in [7].
To derive the second term, we assume conditional independence of the image
evidence given X l

ijk, a uniform distribution P (Lijk|Tijk = 0) – if the edge is
not part of the solution, the choice of label is arbitrary – and a uniform prior
distribution over T . As we show in the supplementary material 2 , this yields:

P (L = l|T = t, I, G)

P (T = t,L = l)
∝

∏
ejk∈E

∏
eij∈E

∏
l∈L̂

[P (Lijk = l|I,G, Tijk = 1)

P (Lijk = l|Tijk = 1)

]xl
ijk

. (3)

Taking the logarithm of Eq. 2 results in an objective function that is linear in
the xl

ijk variables:∑
eijk∈F

∑
l∈L̂

[
log

P (Tijk = 1|I,G)

1− P (Tijk = 1|I,G)
+ log

P (Lijk = l|I,G, Tijk = 1)

P (Lijk = l|Tijk = 1)

]
xl
ijk. (4)

1 http://www.gurobi.com
2 http://www.medicalimagingcenter.be/public/MIC/publications/DR201405/
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Proposed Bogunović et al.[1]
Bifurcation accuracy precision recall accuracy precision recall

ICA-OA 99 100 99 - - -
ICA-M1 99 99 100 99 100 99
ICA-PComA 93 94 96 97 98 98
ACA1-AComA 92 93 97 98 97 100
M1-M2 89 89 100 82 82 100
VBA-SCA 95 98 97 - - -
VBA-PCA1 94 100 93 96 96 100
PCA1-PComA 96 100 94 98 97 100
PCA2-PCA3 89 92 93 - - -

Table 1: Comparison of the labeling performance on the ground truth centerlines.

The probabilities P (Tijk = 1|I,G) are obtained using the path classifier intro-
duced in [7], and P (Lijk = l|I,G, Tijk = 1) is obtained from a random forest
classifier using geometrical features such as the mean position, direction and
radius of the edge pair eijk.

Constraints Not every x gives rise to a biologically plausible and feasible
solution. For example, we force the active edge pairs in the final solution to
be connected to the virtual vertex vv as in [7], and every edge ejk to have at
most one incoming edge pair eijk as illustrated in Fig. 2b. Furthermore, our
algorithm learns from the annotated training data which edge pair labels – and
more importantly – configurations of labels are possible in the final solution:
labels of overlapping edge pairs should be compatible, some labels can occur only
in a furcation, etc. All these constraints are expressed by the linear inequality
Wx <= b, where Wij ∈ {−1, 0, 1} and b is a binary vector. A more detailed
description is given in the supplementary material.

3 Evaluation

In this section, we first evaluate the labeling and segmentation performance
of our algorithm separately, each against the state-of-the-art approach for the
respective task and then report our combined performance. All experiments are
done with a leave-one-image-out cross-validation, using 50 MRA images of the
cerebral vasculature from a public dataset [2] together with their ground truth
segmentations (as used in and provided by [1]) and anatomical labels manually
annotated by an expert. The images are rigidly aligned and cropped to the region
that covers the segmentations [1].

Anatomical Labeling on the Ground Truth Centerlines Instead of using
an overcomplete graph constructed from the image, we create a graph from
the ground truth centerlines. This graph is unlabeled, but contains only valid
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Metric Proposed Türetken [7]

Prec. overlap 83(5) 84(6)
Recall overlap 76(5) 77(5)

Prec. topology 61(39) 44(44)
Recall topology 70(43) 65(42)

(a)

Bifurcation acc. prec. recall

ICA-OA 60 79 69
ICA-M1 91 95 95
ICA-PComA 68 73 79
ACA1-AComA 55 52 98
M1-M2 59 59 98
VBA-SCA 82 95 85
VBA-PCA1 83 90 90
PCA1-PComA 42 28 52
PCA2-PCA3 71 73 88

(b)

Table 2: Results of the simultaneous segmentation and labeling. (a) Comparison
of the segmentation performance. Reported numbers are the mean and standard
deviation (in parenthesis) over the images. (b) Labeling performance.

edges. By setting P (Tijk = 1|I,G) = 1, we can use our algorithm to only perform
labeling. The result is an edge labeled graph, from which we can infer the positon
of several named bifurcations. The positions are compared with those in the
ground truth annotation. If the Euclidean distance is smaller than 2mm, it is
considered a true positive. Since we use the same dataset as [1], we can directly
compare the performance. Results are given in table 1.

On average, the accuracy is about the same, but on individual PoI, there is
quite some difference, especially on the furcation formed by M1-M2. This furca-
tion has many variations and to infer its position, medical experts look at the
end positions of its daughter branches. This is done implicitly by our edge label-
ing algorithm. Finally, it should be noted that the method of Bogunović et al. [1]
requires topologically correct segmentations, and uses reference graphs explicitly
stating PoI connectivity and order for the entire vasculature. Extending it to a
larger number of bifurcations requires a steep increase in the number of reference
graphs. For example, inclusion of the left and right VBA-SCA, which can lie ei-
ther before or after VBA-PCA1 and not necessarily next to each other, would
already triple the number of reference graphs from 8 to 24 in their approach.

Simultaneous Segmentation and Labeling We compare the segmentation
quality of our method with the method of Türetken et al. [7], which can be
thought of as our algorithm without the labeling step. The comparison is per-
formed based on two criteria: overlap and topology of the solutions. The former is
computed by measuring the distance between the centerline points of the ground
truth and the solution. We consider a point in the solution to be a true (false)
positive if its distance to the closest ground truth point is less (more) than half
the ground truth’s radius at that point.

The topology criterion, on the other hand, is a more global measure since
it captures connectivity of the vasculature. We compute it by first finding all
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the paths that extend between the start points of the VBA or ICAs segments
in the ground truth. Note that such a path visits multiple anatomical segments
in the CoW. We only compute the paths between the VBA and ICAs segments
because they are the brain supplying arteries, and therefore, the origin of the
blood supply to the entire vasculature. We then enumerate all the paths between
these three segments in the obtained solution and find their corresponding paths
in the ground truth if they exist. We consider a path in the solution to be a true
positive if the overlap precision and recall of its centerline points (as described
earlier in this section) are both above 0.7.

Table 2a gives the precision and recall values over the evaluated images for the
two measures. The overlap values of the two methods are relatively similar but
still significantly better than thresholding and thinning, as used in [6] (precision:
73(7), recall 64(6)). In terms of the topology criterion, our approach clearly
outperforms that of [7], which is also illustrated in the close-ups of Fig. 3.

The labeling results are given in Table 2b, which are calculated as described
in Section 3. The results show that the additional difficulty of segmenting the
image causes the labeling accuracy to drop. Finally, Fig. 4 shows automated
segmentation and labeling results of our algorithm for two complete vasculatures.

4 Conclusion

To the best our knowledge, we presented the first algorithm for simultaneous seg-
mentation and anatomical labeling of the vasculature. Our probabilistic formu-
lation results in an integer program, which we solved optimally on the evaluated
dataset of 50 images. We demonstrated that our approach compares favorably
against specialized state-of-the-art algorithms that address the segmentation and
labeling problems separately. In future work, we will evaluate the segmentation
quality more extensively on different structure types and imaging modalities.

Fig. 3: The centerlines of the ACA1 and AComA according to the ground truth
(left), the method of Türetken et al. (middle), which contains spurious branches,
and the proposed method (right).
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Fig. 4: Two automatically segmented and labeled vasculatures. As in Fig. 1, the
colors indicate the anatomical labels of the vessel segments.
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