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Abstract

We derive an algorithm to directly solve logistic regression based on cardinality constraint, group 

sparsity and use it to classify intra-subject MRI sequences (e.g. cine MRIs) of healthy from 

diseased subjects. Group cardinality constraint models are often applied to medical images in 

order to avoid overfitting of the classifier to the training data. Solutions within these models are 

generally determined by relaxing the cardinality constraint to a weighted feature selection scheme. 

However, these solutions relate to the original sparse problem only under specific assumptions, 

which generally do not hold for medical image applications. In addition, inferring clinical meaning 

from features weighted by a classifier is an ongoing topic of discussion. Avoiding weighing 

features, we propose to directly solve the group cardinality constraint logistic regression problem 

by generalizing the Penalty Decomposition method. To do so, we assume that an intra-subject 

series of images represents repeated samples of the same disease patterns. We model this 

assumption by combining series of measurements created by a feature across time into a single 

group. Our algorithm then derives a solution within that model by decoupling the minimization of 

the logistic regression function from enforcing the group sparsity constraint. The minimum to the 

smooth and convex logistic regression problem is determined via gradient descent while we derive 

a closed form solution for finding a sparse approximation of that minimum. We apply our method 

to cine MRI of 38 healthy controls and 44 adult patients that received reconstructive surgery of 

Tetralogy of Fallot (TOF) during infancy. Our method correctly identifies regions impacted by 

TOF and generally obtains statistically significant higher classification accuracy than alternative 

solutions to this model, i.e., ones relaxing group cardinality constraints.
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1. Introduction

An important topic in medical image analysis is to identify image phenotypes by 

automatically classifying time series of 3D Magnetic Resonance Images (MRIs). For 

example, intra-subject MRI sequences are used to analyze cardiac motion (Osman et al., 

1999; Sermesant et al., 2003; Chandrashekara et al., 2004; Huang et al., 2005; Besbes et al., 

2007; Sundar et al., 2009; Zhang et al., 2010a; Margeta et al., 2012; Wang et al., 2012; Yu et 

al., 2014), and brain development (Chetelat et al., 2005; Zhang et al., 2010b; Aljabar et al., 

2011; Serag et al., 2012; Toews et al., 2012; Bernal-Rusiel et al., 2013; Schellen et al., 

2015). However, the automatic classification of medical images is generally challenging. 

First, the number of features extracted from medical images is usually much larger than the 

number of samples. This generally results in overfitting of the method to the data, i.e., much 

higher classification accuracy during training than on test data (Ryali et al., 2010; Marques 

et al., 2012; Deshpande et al., 2014). In addition, the image phenotypes identified by 

automatic classifiers are often difficult to relate to the medical literature (Qu et al., 2003). In 

this article, we propose an algorithm that addresses both issues by directly solving the so 

called logistic regression problem with group sparsity constraints.

Classifiers based on sparse models reduce the dense image data to a small number of 

features by counting the number of selected features via the l0-“norm” and are configured so 

that the count is below a predefined threshold (Yamashita et al., 2008; Carroll et al., 2009; 

Rao et al., 2011; Liu et al., 2012; Lv et al., 2015). A generalization of that concept are group 

sparsity models, which first group image features based on predefined rules and then count 

the number of non-zero groupings (Ng et al., 2010; Wu et al., 2010; Ryali et al., 2010). To 

solve the underlying minimization problem, however, these methods relax the feature 

selection process from (group) cardinality constraints to weighting feature by, for example, 

replacing the l0-“norm” with the l2-norm (Meier et al., 2008; Friedman et al., 2010; Ryali et 

al., 2010; Li et al., 2012). The solution of those methods relates to the original sparse 

problem only under specific assumptions, e.g., the data entry matrix needs to satisfy the 

restricted isometry property in compressed sensing problem (Candes and Tao, 2005; Candès 

et al., 2006). However, matrices generally do not satisfy this property, such as those of the 

appendix of (Lu and Zhang, 2013), and most data matrices of medical image applications, 

e.g., matrices defined by the regional volume scores of subjects. Thus, with the exception of 

sparse models applied to compressed sensing, the solution obtained with respect to the 

relaxed norm generally does not recover the one of the original sparse model defined by the 

l0-“norm”. In addition, the number of measures selected by the classifier depends now on the 

training data due to the soft selection scheme. One can select a predefined number by 
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choosing measures whose weight is above a certain threshold. However, in the case of sparse 

logistic regression the corresponding classifier depends on the measures below the threshold 

and the relevance of those weights with respect to the disease under study is an ongoing 

topic of discussion (Haufe et al., 2014; Sabuncu, 2014). Alternatively, the upper bound 

associated with the sparse constraint is set so that the classifier returns the wanted number of 

measures for a given training data set (Vounou et al., 2012; Zhang and Shen, 2012; Ma and 

Huang, 2008; Zhang et al., 2012). The tuning is now data dependent, i.e., each training set is 

generally associated with a different upper bound so that selected number of scores is 

constant across training sets. Even comparing the patterns of different subsets of the same 

data set, i.e., folds, is none trivial as each pattern is the solution to a minimization problem, 

whose sparsity constraint is unique to a fold. Avoiding soft feature selection and thus these 

issues, our algorithm solves the original group sparsity constrained, logistic classification 

problem defined by the l0-“norm” by extending the Penalty Decomposition (PD) method 

(Lu and Zhang, 2013). By doing so, our method uses a single model to not only classify 

samples but also directly select patterns (without thresholding or changing upper bounds) 

that potentially are image phenotypes meaningful to medical community.

To further investigate its potential, we now generalize PD from solving sparse logistic 

regression problems with group size one to more than one. Specifically, we assume that an 

intra-subject series of images represents repeated samples of the same disease patterns. In 

other words, selecting an image feature for disease identification needs to account for the 

entire series of measurements created by that feature across time. We model this assumption 

by combining each “feature series” into a single group. The proposed PD algorithm then 

derives a solution within that model by decoupling the minimization of the logistic 

regression function from enforcing the group sparsity constraint. Applying Block Coordinate 

Descent (BCD), the minimum to the smooth and convex logistic regression problem is 

determined via gradient descent while we derive a closed form solution for finding a sparse 

approximation of that minimum.

We apply our method to cine MRI of 38 healthy adults and 44 adult patients, that received 

reconstructive surgery of Tetralogy of Fallot (TOF) during infancy. The data sets fulfill the 

assumption of the group sparsity model as the residual effects of TOF mostly impact the 

shape of the right ventricle (Atrey et al., 2010; Bailliard and Anderson, 2009) so that the 

regions impacted by TOF should not change across the time series captured by a cine MRI. 

During training, we automatically set all important parameters of our approach by first 

training a separate regressor for each setting of the parameter space. We then reduce the risk 

of over-fitting by combining those classifiers into a single ensemble of classifiers (Rokach, 

2010). This ensemble of classifiers correctly favors subregions of the ventricles most likely 

impacted by TOF. For most experiments, it also produces statistically significant higher 

accuracy scores than ensemble of classifiers that relax the group cardinality constraint.

We first proposed to generalize PD to group sparsity constraints at MICCAI 2015 (Zhang 

and Pohl, 2015). This article provides a more in-depth view of this idea. Specifically, we 

expand PD to guarantee convergence of the sparse approximation to a local minimum of the 

group-sparsity confined, logistic regression problem, which is the primary contribution of 

this manuscript. We also modify the experiments by replacing the morphometric encodings 
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of heart regions based on the average of the Jacobian determinants with simple volumetric 

scores. This simplifies preprocessing as alignment of each cine MRI to a template is 

unnecessary. It also reduces the size of the parameter search space, which now omits the 

smoothing parameters associated with the alignment process. Moreover, we not only record 

a single accuracy score for each implementation but instead generate distributions of scores 

by modifying the number of training samples. For each training size, we apply the method to 

10 different training and testing sets. Finally, we distinguish the ventricular septum from the 

left ventricle to refine our findings from the previous publication (Zhang and Pohl, 2015) 

and support those findings with new plots that visualize the selection of regions across the 

entire heart.

Beyond our MICCAI publication, a possible alternative regression approach for 

simultaneous classification and pattern extraction is the random forest method (Lempitsky et 

al., 2009). However, it is unclear how to expand this technology to group-wise selection 

schemes that enforce temporal consistency in selecting regions, i.e., the same regions are 

picked across all time points. Due to these difficulties most machine learning approaches 

applied to cine MRI just focus on disease classification, such as (McLeod et al., 2013; 

Afshin et al., 2014; Bai et al., 2015). They often improve results by manually selecting 

regions thought to be impacted by the disease before performing classification (Wald et al., 

2009). An exception are (Qian et al., 2011; Ye et al., 2014; Bhatia et al., 2014), which 

seperately perform disease classification and weigh individual regions possibly impacted by 

disease. The disconnect between the two steps and the weighing of individual regions makes 

clinical interpretation of the findings more difficult as, in addition to the earlier mentioned 

issues associated with the interpretation of weights, it increases the risk of false positive 

findings compared to directly identifying patterns of regions. Our experimental results echo 

these issues, where logistic regression with relaxed sparsity constraints was generally 

significantly less accurate than our proposed solution to the original sparsity constraint. We 

conclude that our proposed approach is the first to solve a single optimization problem for 

simultaneous disease classification and group-based pattern identification based on 

segmentation of cine MRIs.

The rest of this paper is organized as follows. Section 2 provides an in-depth description of 

PD algorithm and its convergence properties. Section 3 summarizes the experiments on the 

TOF dataset and Section 4 concludes the paper with final remarks.

2. Solving Sparse Group Logistic Regression

We first describe the logistic regression model with group cardinality constraint, which 

accurately assigns subjects to cohorts based on features extracted from intra-subject image 

sequences. We then generalize the PD approach to find a solution within that model. We end 

the section deriving convergence properties of the resulting algorithm.

2.1. The Model

The input to our model are N subjects, their diagnosis {b1,...,bN} and features {Z1,..., ZN} 

extracted from 3D+t medical images with T time points. The diagnosis bs ∈ {−1, +1} is +1 
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if subject ‘s’ is healthy and −1 otherwise. The feature matrix 

of subject s is composed of vectors  encoding the tth time point through M features. 

Our goal is now to accurately model the relationship between the labels {b1,...,bN} and the 

features {Z1,...,ZN}.

Given the large number of features and the relatively small number of samples, we make the 

model tractable by assuming that the disease is best characterized by the same ‘r’ features 

(subject to (s.t.) r ≤ M) at each time point, which means the same ‘r’ rows of each feature 

matrix Zs. One way of modeling this relationship is via group-sparsity constraint solutions to 

a logistic regression problem. Weighing features according to their importance in separating 

the healthy from the disease group, the problem of logistic regression is to find the 

configuration that most accurately infers the diagnosis of each sample. Sparsity constraints 

simply confine the search space to those configurations that only select a subset of features, 

i.e, the weight of non-selected features is zero. Our model aims to identify ‘r’ rows of a 

feature matrix, which group-sparsity constraint does by first defining the features of a row as 

a group before enforcing the sparsity constraint on those groupings. In other words, if the 

model chooses a feature in one time point, the corresponding features in other time points 

should also be chosen since the importance of a feature should be similar across time.

To formally define this model, we now introduce

• the diagnosis-weighted feature matrix As := bs · Zs for s = 1,...,N,

• the weight matrix  defining the importance of each feature in 

correctly classifying subjects,

•
 being the ith row of matrix W,

• the trace of a matrix Tr(·),

• the logistic function θ(y) := log(1 + exp(–y)), and

• the average logistic loss function with respect to the label weight 

(1)

The logistic regression problem with group sparsity constraint is then defined as

(2)

where  groups the weight vectors over time by computing the 

l2-norm of the rows. Thus,  equals the number of nonzero components of , i.e., the 

non-zero rows of W. The sparsity constraint search space is then formally defined as
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so that Eq. (2) shortens to

(3)

Note, that in the case of T = 1 or replacing  with  then Eq. (3) changes to the 

more common sparse logistic regression problem, which, in contrast, chooses individual 

features of W ignoring any temporal dependency. While the accuracy of this model might be 

similar to the proposed group-sparsity model, the selected features have limited meaning for 

diseases such as the residual effects of TOF. TOF impacts the morphometry and thus leads to 

changes in local shape patterns that are consistent across the cardiac cycle.

2.2. Approximating the Solution to the Group Sparsity Constraint, Minimization Problem

PD of (Lu and Zhang, 2013) estimates the sparse solution (T = 1) to logistic regression 

problems by decoupling the minimization of the logistic regression lavg(·,·) from finding a 

solution within sparsity constraint space χ. It does so by defining a penalty function 

consisting of two components: (1) the logistic regression lavg(·,·) dependent on v and an 

auxiliary variable , and (2) a similarity measure S(Y,W) between the non-sparse 

solution Y and the approximated sparse solution W. In other words, the penalty function is 

defined as

where the penalty parameter ϱ < 0 weighs the importance of S (·,·). At each iteration, PD 

increase ϱ and then determines the  minimizing qϱ(·,·,·). Thus, as ϱ increases, the 

difference reduces between , the solution of the regularized logistic problem, and its sparse 

approximation . Once the algorithm converges,  is the approximated solution of the 

original sparse problem. In the remainder of this subsection, we generalized PD to 

approximate the group sparsity constraint solution (T ≥ 1) of the logistic regression problem 

defined by Eq. (3).

To adapt PD to our model, we first assume that our algorithm is initialized qith ϱi and (vi, 

Wi), where . Each iteration ‘p’ of our algorithm is then composed of three steps: 

define penalty function, minimize penalty function, and update and check convergences of 

results.

Step 1 - Define penalty function—Finding (v*, W*) of Eq. (3) is equivalent to solving
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(4)

Introducing the matrix Frobenius norm ∥ · ∥F, the above equation is equivalent to

(5)

so that  is a natural metric to measure the similarity between W 
and Y for our PD algorithm. For the current penalty parameter ϱp, we define the PD 

characteristic penalty function as

(6)

Thus, the solution to the following non-convex and non-continuous minimization problem 

approximates the original sparse solution of Eq. (3):

(7)

Step 2 - Determine local minimum point of Eq. (7) via BCD—To find a local 

minimum point of Eq. (7), BCD alternates between minimizing the penalty function (Eq. 

(6)) with respect to the non-sparse terms (v, Y) and updating the sparse term W. Specifically, 

let (vb–1, Yb–1, Wb–1) be the current estimate of BCD. The bth iteration of BCD then 

determines (vb, Yb) by solving the smooth and convex problem

(8)

which can be done via a gradient descent. To update Wb, minimizing the penality function 

with respect to W, i.e.,

(9)

can now be solved in closed form. We derive the closed form solution by assuming (without 

loss of generality) that the rows of Yb are nonzero and listed in descending order according 

to their l2-norm, i.e., let  be the jth row of Yb for j = 1,..., M then 

. Lemma A.1 (see Appendix for this and any proceeding 
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lemmas and theorems) then shows that the closed form solution Wb is defined by the first ‘r’ 
rows of Yb,

(10)

In theory, multiple global solutions Wb exist in case . In practice, we have 

not come across that scenario.

Denoting with ∥·∥max the max norm of a matrix, i.e.,, , BCD stops 

updating the results when the relative change of each variable is smaller than a benchmark 

value ϵBCD, i.e.,

(11)

We choose this criteria over the absolute change of the sequence (vb, Yb, Wb), i.e.,

as it is more robust when variables have large values, i.e.,

is large.

Step 3 - Update results, penalty parameter, and check the stopping criterion—

Let BCD stop at the b′th iteration,  is then set to Yb′ and  to vb′. To update , we first 

define an upper bound Γ = lavg(vi, Wi) with respect to the initialization, and then check 

whether

(12)

In case the condition Eq. (12) holds,  is set to Wb′ and otherwise to Wi. According to 

Lemma A.5, this check guarantees that in case PD converges  also converges to , i.e., 

. Finally, PD stops updating the results when  and  are similar 

enough according to the similarity parameter ϵPD, i.e.,
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(13)

Note, Algorithm 1 is the pseudocode of our PD approach (Step 1-3), whose corresponding 

software implementation used for this publication can be dowloaded via https://dx.doi.org/

10.6084/m9.figshare.3398332 or the current version via https://github.com/sibis-platform/

PDLG.

2.3. Convergence Properties of Penalty Decomposition

For the interested reader, we now briefly derive the properties guaranteeing that the 

converged solution of our PD approach is a local minimum point of Eq. (3). Focusing just on 

one iteration of PD, we first show that if the BCD approach of Step 2 converges then the 

corresponding accumulation point is also a local minimum point of Eq. (7). Across iterations 

of PD, these local minima define another sequence, which is defined by Step 3. We then 

show if the sequence converges to an accumulation point with exact r nonzero rows then this 

point is a local minimum point of the original sparse problem defined by Eq. (3). Note, 

deriving these properties of our algorithm is non-trivial as the PD penalty function Eq. (6) is 

non-convex and the sparse space  is non-continuous. The Appendix contains the complete 

proofs of the properties of our method described below.

Convergence property of Step 2—In the pth iteration of PD, let  be an 

accumulation point of the converged sequence (v1, Y1, W1), (v2, Y2, W2),... produced by 

BCD. To show that  is a local minimum point of Eq. (7), the triple needs to be 

the minimum point of (·,·,·) with respect to a neighborhood of this triple. We confine the 

neighborhood to those triples (v, Y, W), where the sign of non-zero components of 

equals those of W. We formally express this constraint by introducing the set of indices 

corresponding to non-zero components of 

so that the neighborhood is defined as

(14)

An interesting characteristic of that neighborhood is that for any triple 

the following relation holds among H,  and  (see also Lemma A.3)
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(15)

where 0 is a matrix whose entries are all zero. We make use of this property in Theorem A.4, 

where we derive the following lower bound for (·,·,·) with respect to 

so that applying Eq. (15) results in

In other words,  is a local minimum point of Eq. (7).

Convergence property of Step 3—Let (v*, Y*, W*) be the accumulation point of the 

converging sequence , ,... produced by Step 3. Furthermore, 

assume that W* has exact ‘r’ nonzero rows, i.e., , which has always been the case 

in our experiments. Lemma A.7 then states that (v*, W*) is a local minimum point of Eq. (3) 

if there exists a matrix  so that the following holds:

(16)

where  is a set of ‘r’ indices for which (W*)i ≠ 0 and f(x) |x=x′ is the value of f(·) at x′. 

To determine, , we note that Y* = W* (see also Lemma A.5). Theorem A.8 then states 

that the sequence

(17)

is a bounded and converges to Z*. The theorem furthermore notes that (v*, W*) fulfills the 

condition of Eq. (16) when . In summary, if PD converges then it converges to a 

local minimum point of the original sparse problem is defined by Eq. (3).

3. Testing Algorithms on Correctly Classifying TOF

To better understand the strength and weakness of our proposed Algorithm 1, we compare 

the accuracy of our approach to alternative solver of sparsity constraint logistic regression 
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problems on a data set consisting of regional volume scores extracted from cine MRIs of 44 

TOF cases and 38 healthy controls. The dataset provides an ideal test bed for such a 

comparison as it contains ground-truth diagnosis, i.e., each subject received reconstructive 

surgery for TOF during infancy or not. Furthermore, refining the quantitative analysis of 

these scans could lead to improved monitoring of TOF patients, i.e., timing for follow-up 

surgeries. Finally, the residual effects of TOF reconstructive surgery mostly impact the 

morphometry, i.e., the shape of the right ventricle (Bailliard and Anderson, 2009; Atrey et 

al., 2010), so that the regional volume scores extracted from each time point of the image 

series are sample descriptions of the same phenomena, a core assumption of the group 

sparsity model. We not only show that our PD approach (Algorithm 1) reflects this 

manifestation of the disease by mostly weighing its decision based on regions within the 

right ventricle but also achieves significantly higher accuracy than alternative solutions to 

this model, such as solving logistic regression with relaxed sparsity constraints (Ryali et al., 

2010) 1.

3.1. Experimental Setup

Extracting Regional Volume Scores—Each sample of the data set consists of a 

segmentation of each time point of a motion-corrected cine MRI, i.e., we corrected for slice 

misalignment due to breathing motion by detecting the center of the left ventricle via Hough 

transform (Duda and Hart, 1972) and then stacking the slices so that the center of the left 

ventricle aligns across the slices. Covering the basal, mid-cavity, and apical part with 8 

slices, the segmentation outlines the right ventricular blood pool, the wall of the Left 

Ventricle (LV), and the Ventricular Septum (VS), which was done at end-diastole according 

to the semi-automatic procedure described in (Ye et al., 2014) and then propagated from 

end-diastole to the other time points via non-rigid registration (Avants et al., 2008). For the 

right ventricular blood pool, we reduce the maps to a 7mm band along its boundary, which is 

similar to the width of the wall of the other two structures, and name it RV (see Fig. (1)). For 

each time point and image slice, we then parcellate the three structures into smaller sections 

based on a predefined subtended angles from the center of mass (of the RV or LV&VS). 

More specifically, RV and LV are divided into the same number of sections, while the VS is 

divided into  of that number reflecting its relative size to RV and LV. For example in Fig. 

(2), the VS is divided into six sections with respect to each slice and time point of the scan 

while the RV and LV are divided into 18 sections each. Finally, the input to our proposed 

solver is the volume of each section.

Measure Classification Accuracy—We measure the accuracy of our approach with 

respect to correctly classifying samples just based on the sectional volumes scores of the RV 

alone, the LV alone, and the VS alone as well as using the scores of the whole heart (RV, 

LV&VS). We train our algorithm with different numbers of training samples, which are 

defined by the percentage {5%, 10%, . . . , 75%} of cases captured by the entire data set, i.e., 
82 cases. For each training sample size, we run ten experiments to estimate a distribution of 

accuracy scores.

1We use the SLEP package to solve the relaxed sparsity constraint model, see (Liu et al., 2009) for details.
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For each experiment, we randomly select the training samples from both groups and label 

the remaining cases as test subjects. For a fair comparison with other sparse logistic 

regression solvers, we initialize our algorithm according to (Lu and Zhang, 2013), i.e., ϱ = 

0.1, σ = √10, ϵBCD = 10−4, ϵPD = 10−3, Wi = 0 and vi = 1. For each training set, we then 

determine the optimal setting of our algorithm with respect to the broad parameter space of 

the remaining two parameters:

• the number of sections s ∈ {2, 3, . . . , 9} that each slice of the VS is 

divided into (so that each subject is represented by 3360 to 15120 volume 

scores)

• and the maximum percentage of regional values chosen by our approach ω 
∈ {5%, 10%,... , 50%}. In other words, the sparsity constraint is defined as 

r := ceil(M · s · ω) where M · s is the total number of section that the heart 

cycle is divided into.

We determine the optimal setting by first experimenting with parameter exploration. 

Specifically, for each of the 80 unique parameter settings we define a regressor by 

computing the optimal weights W* of Algorithm 1 with respect to training data. In all 

experiments, PD then converged within 5 iterations and BCD converged within 500 

iterations for each penalty parameter ϱp. After convergence, we compute the accuracy of the 

regressor with respect to the training set via the normalized accuracy (nAcc), i.e., we 

separately compute the accuracy for each cohort and then average their values to account for 

the imbalance in cohort size. The entire process of training and measuring the accuracy of 

the 80 regressors took less than 10 seconds on a single PC (Intel(R) Xeon(R) CPU E5-2603 

v2 @1.80GHz and 32G memory). It also resulted in multiple settings, i.e., regressors, with 

100% classification accuracy. In case of parameter exploration failing, a common solution 

(and the one we chose) is to train an ensemble of classifiers (Rokach, 2010). The final label 

of the ensemble is then defined by the weighted average across the set of regressors, where 

the weight of the regressor in the decision of the ensemble of classifiers is simply its training 

accuracy. Once trained, we then measure the accuracy of the resulting ensemble on correctly 

assigning test samples to the patient groups using the nAcc score. In the remainder of this 

section, we refer to this ensemble of classifier as L0-Grp.

Alternative Models—We compare our solver to alternative algorithm using the same 

mechanism as above, i.e., we create ensemble of classifiers with respect to the same 

parameter space and training data sets, and measure their accuracy on the same test data sets. 

Specifically, we use the algorithm by (Liu et al., 2009) to solve the logistic regression with 

the sparsity constraints relaxed via the l2-norm, i.e.,

(18)

with λ being the sparse regularizing parameter. We refer to the corresponding ensemble as 

Rlx-Grp. Note, relaxing the sparsity constraint via the l1-norm results in a optimization 

problem ignoring temporal consistency, which violates our initial assumption of the model.
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In addition, we investigate the accuracy of PD and (Liu et al., 2009) when only applied to a 

single time point (T = 1). When T = 1, then Eq. (3) simplifies to

(19)

i.e., the sparsity constrained problem solved by PD in (Lu and Zhang, 2013). We refer to the 

corresponding ensemble as L0-nGrp. Furthermore, for T = 1, Eq. (18) is equivalent to

(20)

whose corresponding ensemble of classifier we refer to Rlx-nGrp. Finally, we note that the 

sparsity parameter λ of Rlx-Grp and Rlx-nGrp is not directly related to the number of 

selected sections. For a fair comparison to the sparsity constrained methods, we therefore 

automatically tune the sparsity parameter λ of Eq. (18) and Eq. (20) so that the number of 

chosen sections r̄ were similar to those defined in Eq. (3), i.e., |r – r̄| ≤ 1.

3.2. Experimental results

The box plots of Fig. (3) summarize the distribution of the accuracy scores associated with 

each implementation and structure by the average, the first quin-tile, and the fourth quintile 

of the nAcc scores across the 10 test data sets run for each training sample size. For all four 

implementations, the average nAcc scores generally increase with the number of training 

samples. For the RV and the whole heart (RV,LV&VS), the proposed L0-Grp 

implementation (red boxplots) generally achieves a higher average accuracy, first quintile, 

and fourth quintile scores than then other three approaches. The difference is especially large 

for smaller number of training samples, i.e., 5% to 35%. For large training samples, i.e., 
70% and 75%, L0-Grp is the only method with a fourth quintile score of 100%. To follow up 

these observations, we computed the p-value of the paired-sample t-test (McDonald, 2009) 

between L0-Grp and other three implementations. Table 1 summarizes those computations. 

For the whole heart, L0-Grp is significantly better (p < 0.05) than Rlx-nGrp and L0-nGrp 

with respect to 13 out of the 15 training sample sizes, and 10 out of the 15 training sets with 

respect to the Rlx-Grp. For the RV, the counts for statically significant differences increase 

with respect to the implementations with relaxed constraints. However, this is not true for 

L0-nGrp implementation, in which case L0-Grp is significantly better in 8 experiments. In 

this experiment, we conclude that the impact of reducing the number of time points on the 

accuracy scores is less than relaxing the sparsity constraint. An explanation for this 

observation might lie in the fact that solution generated by solvers relaxing the sparsity 

constraint, i.e., Rlx-nGrp and Rlx-Grp, is only accurate with respect to the original problem 

Eq. (3) under certain conditions (Candès et al., 2006), which are not satisfied here and in 

medical image analysis in general.

With respect to the LV and VS, Fig. (3) reports insignificant differences between the 

accuracy of all four methods. The average nAcc scores start at around 55% and generally 

increase with the number of training samples. While the average scores of Rlx-Grp almost 
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match those of L0-Grp, L0-Grp achieves the highest average sore with 69% for the LV and 

74% for the VS indicating that the VS is slightly more impacted by TOF than the LV. This 

observation is also in alignment with the literature (Bailliard and Anderson, 2009; Atrey et 

al., 2010) reporting the residual effects of TOF impacting the RV, which the VS is attached 

to. Increasing the number of training samples also impacts the spread between the first and 

fourth quintile. This issue is partly due to the fact that the larger the training data set, the 

smaller the test set. From a statistical perspective, e.g. recording the outcome of flipping a 

biased coin several times, one expects this outcome as the first and fourth quintile scores 

deviate further from the average score compared to experiments with larger test sets. 

Interestingly enough, only the average scores of the L0-nGrp are not improving with large 

training sets as it peaks at a training size of 50% for the LV and gets unstable starting at 50% 

for the VS. In other words, adding more samples to the training is not more informative than 

adding more information of each individual sample by, for example, increasing the number 

of time points or including measurements from the RV, the structure most impacted by TOF.

To gain a deeper understanding of the experimental results, Fig. (4) plots the importance of 

heart sections in distinguishing TOF from healthy controls based on the regional volume 

scores and with respect to the type of solver and percentage associated with the training 

sample size. The incomplete circle on the left represents the importance of sections of the 

RV and on the right the importance of sections of the LV and VS. Each ring of those 

(incomplete) circles represents a slice of the cine MRI with the outer circle representing the 

base of the heart. As it is common in the cardiac literature, we overlay the bullseye plot over 

the LV & VS maps. For each type and percentage, we infer the importance of a section from 

their average importance across the corresponding ensembles of classifiers, i.e., the number 

of times a section was selected by a sparse solver multiplied by the solvers’ training 

accuracy. Sections in white were never selected, those in blue had very low and those in red 

very high impact on the final classification. The ensembles were indifferent to sections 

labeled turquoise, green, yellow, and orange. We first note that across solvers the number of 

indifferent section reduces and the number of ignored section increases with larger number 

of training samples. This indicates a higher confidence of the ensembles in the importance of 

sections. Furthermore, the number of selected RV sections (left) increases, which is inline 

with the increase in testing accuracy. Of all methods, L0-Grp relies least on LV sections 

(right). This could explain its significantly higher accuracy scores compared to those other 

method in the majority of whole heart experiments. As noted in Section 1, one has to be 

careful when relating the weights of classifiers to biomedical landmarks. We are in this 

experiment as the importance maps of Fig. (4) are based on the number of times regions 

were selected by solvers (not their soft weights) and those of the L0-Grp are in accordance 

with the medical literature stating that residual effects of TOF mostly impact the RV.

4. Conclusion

We generalized the PD approach to directly solve group cardinality constraint logistic 

regression, i.e., simultaneously performing disease classification and temporal-consistent 

pattern identification. To do so, we assumed that an intra-subject series of images represents 

repeated samples of the same disease patterns. We modeled this assumption by combining 

series of measurements created by a feature across time into a single group. Unlike existing 
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approaches, our algorithm then derived a solution within that model by decoupling the 

minimization of the logistic regression function from enforcing the group sparsity constraint. 

The minimum to the smooth and convex logistic regression problem was determined via 

gradient descent while we derived a closed form solution for finding a sparse approximation 

of that minimum. We applied our method to cine MRI of 38 healthy controls and 44 adult 

patients that received reconstructive surgery of Tetralogy of Fallot (TOF) during infancy. 

Our method correctly identified the RV to be most impacted by TOF and generally obtained 

statistically significant higher classification accuracy than alternative solutions to this model, 

i.e., ones relaxing group cardinality constraints or ones only applied to a single time point.

While the experiments were confined to regional volumes scores extracted from cine MRIs, 

the method could be applied to any features computed from intra-subject sequence of 

images. One only has to ensure that the assumption holds that series of images represent 

repeated samples of the same disease patterns. Furthermore, one has to be careful when 

relating the selected features to disease patterns. We did so on our experiments as the selcted 

features agreed with the medical literature.
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Appendix A

Lemma A. 1

Given a matrix , let Aj be the jth row of A for j = 1,..., M. Without loss of the 
generality, we assume that

Then the solution for the minimization problem

(A.1)

within  are the first r 
rows of A, i.e.,

(A.2)
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Proof

Suppose there is a solution  to Eq. (A.1) which is different from W* defined in Eq. (A.2). 

We now show that the .

We know that for all , the following is true  as otherwise  can not be an 

optimal solution for Eq. (A.1). To see that, simply replace  with Aj for any j such that 

, which results in returns a smaller value for . Since  is different from 

W′, there must exists i1 > r such that . Given that , then there must exists a 

row  such that  for j2 ≤ r. By using the definition of W*, we also have 

 and (W*)j1 = 0. In addition,  according to the 

assumption that . Then we have

which implies that if we define

then . Continuing this procedure of replacing values results at 

some point W′ = W* and thus . Thus W* is an optimal solution 

of problem Eq. (A.1).

Lemma A. 2

Suppose that  is an accumulation point of the sequence {(vb, Yb, Wb)} 

generated by BCD described in Section 2. Then it is also the block coordinate minimum 

point of Eq. (7), i.e.,

(A.3)

Proof

First, note that
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(A.4)

It then follows that

(A.5)

Hence, the sequence {qϱp(vb, Yb, Wb)} is non-increasing. Since  is an 

accumulation point of {(vb, Yb, Wb)}, there exists a subsequence L such that

We then observe that {qϱp(vb, Yb, Wb)}b∈L is bounded, which together with the 

monotonicity of {qϱp(vb, Yb, Wb)} implies that {qϱp(vb, Yb, Wb)} is bounded below and 

hence limb→∞ qϱp(vb, Yb, Wb) exists. This observation, Eq. (A.5), and the continuity of 

qϱp(·,·,·) yield

Given that qϱp(·,·,·) is continuous, then taking limits on both sides of Eq. (A.4) with respect 

to b ∈ L → ∞ results in

(A.6)

Note that  is the accumulation point of {(vb, Yb, Wb)}b∈L→∞. Then according 

to the definition of , we have  which immediately implies . Thus, 

 is a block coordinate minimum point of Eq. (7).

Lemma A. 3

Let  be a block coordinate minimum of Eq. (7) and  define a small 

feasible step of , i.e., . Then
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(A.7)

Proof

We note that if  where , then according to Eq. (A.2), 

. Thus, Eq. (A.7) is true. For , we observe from Eq. (A.2) that 

 for all  where . Thus 

 for . On the other hand,  for all , 

so that  for all . From , it follows that (H)i = 0 for all 

 and hence  for .

Theorem A. 4

Suppose that  is an accumulation point of the sequence {(vb, Yb, Wb)} 

generated by BCD described in Section 2. Then,  is a local minimum point of 
Eq. (7).

Proof

According to Lemma A.2, we have  is a block coordinate minimum point of 

Eq. (7). Next we show that  is also a local minimum point of Eq. (7).

Since lavg(·,·) is a convex function, we know that qϱp(·,·,·) is also convex. It then follows 

from the first relation of Eq. (A.3), the partial derivative of qϱp(·,··) 1.1.1 in Bertsekas 

(1999)), that

(A.8)

Let H be a “small” feasible step of  and . Then using Lemma 3, Eq. (A.8) 

and the convexity of qϱp, we have
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which together with the above choice of h, G and H implies that  is local 

minimum point of Eq. (7).

Lemma A.5

Let  be the sequence generated by PD,  and . 

Suppose (v*, Y*, W*) is an accumulation point of . Then

Proof

Since (vi, Wi) defined in Algorithm 1 is a feasible point of Eq. (3), we have

By the specification of W0 according to line 17-20 of Algorithm 1, we have

From Eq. (A.4), we know that the sequence of qϱp(vb, Yb, Wb) is non-increasing. Thus in 

view of Eq. (7) and the choice of  that is specified in line 21 of Algorithm 1, we 

observe that 

By the definition of , we have . Then we obtain that

(A.9)
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Since (v*, Y*, W*) is an accumulation point of , there exists a subsequence 

. Then taking limits on both sides of Eq. (A.9) as 

, and using ϱp → ∞ as p → ∞, we see that . Thus, the 

conclusion holds immediately.

Lemma A. 6

Let  be the sequence generated by PD,  be a set of r 

district indices in  such that  for any . Suppose (v*, Y*, 

W*) is an accumulation point of , then when k ∈ S is sufficiently large,

for some index set .

Proof

Since (v*, Y*, W*) is an accumulation point of , there exists a subsequence 

. Since  is an index set,  is 

bounded for all k. Thus, there exists a subsequence  such that 

 for some r distinct indices . Since  are r 

distinct integers, one can easily conclude that  for sufficiently large 

p ∈ S. Let . It then follows that  when k ∈ S is sifficiently 

large, and moreover, .

Lemma A. 7

Let (v*, W*) ∈  and the family of subsets of  with size ‘r’ and the sets’ complement 

only consisting of the zero rows of W* be defined as

where . (v*, W*) is then a local minimum point of Eq. (3) if for each 

 there exists a matrix  so that the following holds:
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(A.10)

with  being the value of f(·) at x′.

Proof

The proof first determines the necessary condition for minima of Eq. (3) and then shows that 

any (v*, W*) fulfilling the necessary condition also fulfils the sufficient condition. To derive 

the necessary condition, let us assume that (v*, W*) is a local minimum point of Eq. (3). 

Now, we know that  may contain more than one component due to the inequal 

cardinality constraints in Eq. (3), i.e., . Then for any , we observe that 

(v*, W*) also minimizes the following problem

(A.11)

Then according to Proposition 3.1.1 of (Bertsekas, 1999), for any (v*, W*) being the 

solution of Eq. (A.11), it is necessary that there exists a matrix  so that the 

following holds:

(A.12)

Now any (v*, W*) that is a local minimum point of Eq. (3) also has to be a local minimum 

point of Eq. (A.11) for all . Thus it has to fulfill Eq. (A.12) for all  so 

that Eq. (A.12) is a first-order necessary condition of Eq. (3).

From now on, we call any (v*, W*) fulfilling Eq. (A.12) for all  a stationary point. 

We now show that a first-order sufficient condition of Eq. (3) is the existence of a stationary 

point, i.e., any point fulfilling the necessary condition is also a local minimum point of Eq. 

(3). From Proposition 3.4.1 of (Bertsekas, 1999), we know that (v*, W*) is the global 

minimum point of Eq. (A.11) for all

Hence, there exists ϵ > 0 and neighborhoods of (v*, W*) for different , i.e.,
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with ϵ > 0, such that for all members of the union of neighborhoods, i.e.,

the following is true

Now we define the neighborhood of (v*, W*) with respect to the sparse space as  as

Since , then for any  there 

exists  so that according to Eq. (A.11) . Hence

Thus, any stationary point (v*, W*) is a local minimum point of Eq. (3).

Theorem A. 8

Let (v*, Y*, W*) be an accumulation point of the sequence  generated by 

PD. Assume that the solution  obtained by BCD satisfies

(A.13)

for ϵp → 0. If , then (v*, W*) is a local minimum point of problem Eq. (3).

Proof

We now prove the statement by first showing  is bounded, then that 

converges to  for some  (the matrix defined in Eq. (A.12)), and finally the (v*, 

W*) have to be a minimum point of Eq. (3) when . Now let us assume that Zp is 

not bounded. To contradict this results, let
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It then follows from Eq. (A.13) that  for all p. Thus for  follows 

. Applying Eq. (17) and the definition of qϱp in Eq. (7), we have

(A.14)

Now . Let . Obviously, the sequence  is bounded. 

Then by using Bolzano-Weierstrass Theorem, there must exists an accumulation point 

such that . Clearly . Dividing both sides Eq. (A.14) by ∥Zp∥F, 

taking the limits with respect to p ∈ K → ∞, and using the relation , we 

obtain that

(A.15)

which contradicts . Therefore, the subsequence {Zp}p∈S is bounded. By applying 

Bolzano-Weierstrass Theorem Bartle and Sherbert (1982) and the boundness of {Zp}p∈S, 

there must exists an accumulation point Z* such that . Taking limits on 

both sides of Eq. (A.14) as , and using the relations , we 

see that the first two relations of Eq. (A.12) hold with Z* = Λ*. From Eq. (10) and the 

definitions of , we have  for and hence . In addition, we 

know from Lemma 6 that  when k ∈ S is sufficiently large. Hence . 

This together with the definitions of  and  implies that Z* satisfies

Now  so that

has only one unique component. Hence, Z* together with (v*, W*) satisfies Eq. (A.12) so 

that according to Lemma A.7 (v*, W*) is a local minimum point of Eq. (3).
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Highlights

• Model concurrent disease classification and temporal-consistent pattern 

selection

• Minimize model by directly solving logistic regression confined by 

group cardinality

• Correctly identify ROIs differentiating the cine MRs of 44 TOF from 

38 controls

• Generally significantly more accurate than approaches relaxing group 

sparsity
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Figure 1. 
Example segmentation of the RV (blue), VS (red), and LV (yellow)
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Figure 2. 
An example slice of the partitioning of the RV and LV into 18 sections and the VS into six 

sections at time point 1, 6, 13, 19, and 25.
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Figure 3. 
The boxplots of the average, first quintile, and fourth quintile nAcc scores for all four 

ensembles with respect to the percentage of the whole data set used for training and the 

encoding of the LV, RV, VS and the whole heart (RV,LV&VS). For the RV and whole heart, 

the proposed L0-Grp implementation (red box plots) generally achieves a higher average, 

first quintile, and fourth quintile scores than then other three approaches. With respect to the 

LV and VS, all four methods perform similarly with the average nAcc scores starting at 

around 55% and generally increasing with the number of training samples.

Zhang et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Importance of heart sections in distinguishing TOF from healthy controls with respect to the 

type of solver and percentage associated with the training sample size. The incomplete circle 

on the left represents the importance of sections of the RV and on the right the importance of 

sections of the LV and VS. Each ring of those (incomplete) circles represents a slice of the 

cine MRI. As it is common in the cardiac literature, we overlay the bullseye plot over the LV 

& VS maps. For each type and percentage, the importance of a section is inferred from its 

average importance across the corresponding ensembles of classifiers, which is based on the 

number of times a section was selected by a sparse solver. The number of white regions 

(never selected), blue (weight close to 0) and red (weight close to 1) is generally increasing 

with the number of training samples indicating that the confidence of the ensemble increases 

in the selection of the sections. Furthermore, all methods correctly emphasize more sections 

of the RV than the LV&VS. L0-Grp ignores the LV sections the most of all solvers. This 

could explain its significantly higher accuracy in most experiments of the whole heart 

compared to those other three methods.
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Table 1

Significant: p ≤ 0.05; Trend: 0.05 < p ≤ 0.1; Indifferent: p > 0.1. Frequency of p-value of the paired-sample t-

test between L0-Grp and the other three methods. In most tests, the results obtained by L0-Grp are 

significantly more accurate than the other three methods with respect to the paired-sample t-test (McDonald, 

2009).

RV RV, LV & VS

Significant Trend Indifferent Significant Trend Indifferent

Rlx-Grp 13 0 2 10 2 3

L0-nGrp 8 4 3 13 2 0

Rlx-nGrp 15 0 0 13 2 0
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Algorithm 1

Penalty Decomposition (PD) Applied to Eq. (3)

1: Initialization: Choose a sparsity parameter r ∈ ℕ, scalar weight vi ∈ ℝ and a feasible sparsity constrained weights W i ∈ 𝒳 where

𝒳 ≔ W ∈ ℝM × T : W 0 ≤ r .

Furthermore, set the following parameters

    • W0 ← Wi (initialize weight)

    • ϱ0 > 0 (initial penalty)

    • σ > 1 (penalty updating factor)

    • ϵBCD > 0 (upper bound for convergence of BCD)

    • ϵPD > 0 (upper bound for convergence of PD)

    • p ← 0 (PD index)

    • Γ = lavg(vi, Wi) (upper bound for qϱp(v, Y, W))

2: repeat (PD Loop)

3:     % Step 1: Define the penalty function

4:
        qϱp

v, Y , W ≔ lavg v, Y +
ϱp
2 W − Y F

2

5:

6:     % Step 2: Determine the local minimum point of qϱp via BCD

7:     b ← 0 (BCD index)

8:     repeat (BCD Loop)

9:         b ← b + 1

10:         % Solve the following via Gradient Descent

11:
                vb, Yb arg min

v ∈ ℝ, Y ∈ ℝM × T
lavg v, Y +

ϱp
2 Wb − 1 − Y

F
2

12:

Wb
j = Yb

j , if j ≤ r;
0, otherwise,

for l = 1, …, M.

13:

    until max
∣ vb − vb − 1 ∣

max ∣ vb ∣, 1
,

Yb − Yb − 1 max
max Yb max, 1

,
Wb − Wb − 1 max
max Wb max, 1

≤ ϵBCD

14:

15:     % Step 3: Update results, penalty parameter, and check the stopping criterion

16:     ϱp+1 ← σ · ϱp (increase penalty parameter)

17:     if minv,Y qϱp+1(v, Y, Wb) ≤ Γ then

18:         W0 ← Wb

19:         else

20:         W0 ← Wi

21:     p ← p + 1, v p vb, Y p Yb and W p W0
22: until W p − Y p max ≤ ϵPD
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