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Abstract

The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. 

Much of this work has been enabled by the development and refinement of powerful, high-

dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based 

morphometric analyses, and multivariate pattern analyses using machine learning approaches. The 

evolution of these 3 types of analyses over the years has overcome many challenges. We present 

the evolution of our work in these 3 directions, which largely follows the evolution of this field. 

We discuss the progression from single-atlas, single-registration brain parcellation work to current 

ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional 

pattern analyses combining deformations and residuals; and from basic application of support 

vector machines to generative-discriminative formulations of multivariate pattern analyses, and to 

methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of 

some of the future directions and challenges.
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1. Introduction

Lord Kelvin concisely summarized his thoughts in his address at the Institution of Civil 

Engineers in London, in 1883: “If you cannot measure it, then it is not science”. The field of 

Computational Neuroanatomy has largely followed this vision over the past two to three 

decades and has focused on going beyond qualitative descriptions of brain anatomy, and 

developing mathematical and computational frameworks and algorithms for quantitatively 

representing the complex anatomical patterns associated with normal brain development, 

aging, and with various neurologic and neuropsychiatric diseases. The roots of this field 

could be attributed to D’Arcy Thompson, an evolutionary biologist of the early 20th century, 

whose book “On Growth and Form” showed a remarkable attempt to quantify anatomical 

shape, considering the limited technological tools available at the time (Fig. 1). Modern 
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computational neuroanatomy, perhaps having its roots in the seminal work of Miller et al. 

(1993), basically implements D’Arcy Thompson’s general approach, albeit using 

increasingly advanced tools for image deformation and statistical analysis.

Deformable templates were initially used to map labels from a digital atlas to an individual’s 

magnetic resonance imaging (MRI) scan, then later to map data from multiple individuals to 

a common coordinate system for voxel-based analytics of various flavors, and relatively 

more recently to quantify complex patterns of brain anatomy via multivariate analytics and 

machine learning, eventually leading to personalized diagnostic and predictive indices that 

get closer to being clinically useful. Herein, we review some of our work over the past 20 

years, which largely followed the broader field’s direction.

2. Atlas-based labeling of brain MRI

Labeling regions of interest (ROI) on brain MRIs has been of interest since the 1980’s. Most 

brain disorders and diseases have been associated with changes in the volumes or signal (e.g. 

diffusion, perfusion, T2) within certain regions. MR provides information regarding a 

variety of tissue characteristics, such as volume, shape, connectivity, microstructural 

integrity, perfusion etc. Having the ability to define boundaries of various anatomical brain 

regions allows us to measure these anatomical and functional characteristics regionally. 

Early work involved very laborious and not easily reproducible manual tracing of brain 

ROIs, and was limited to a small number of a priori defined ROIs and lower numbers of 

subjects. Deformable neuroanatomical templates changed this, by developing computational 

algorithms that warped one brain MRI to another, thereby allowing one to map predefined 

anatomical boundaries from an anatomical template, or atlas, to any individual’s MRI. Some 

of our initial work in this direction involved boundary-based curvature mapping, followed by 

elastic deformations (Davatzikos et al., 1996), based on the assumption that the geometric 

characteristics of cortical curvature are largely in line with well-established anatomical 

boundaries. Similar approaches were pursued by other investigators (e.g. Thompson and 

Toga, 1996). Our methods were later extended to 3D volumetric mapping, by attaching a 

morphological signature to each and every voxel in an MRI scan, and achieving very 

accurate 3D deformations by matching respective morphological signatures (Shen and 

Davatzikos, 2002; Ou et al., 2011). Since our certainty in the accuracy of the anatomical 

match achieved by these algorithms is generally variable throughout the brain, with some 

brain regions being less variable and more consistently identified and matched to the atlas, 

these methods also relied on an overarching mutual saliency function, which modulated the 

underlying optimization criterion and weighted different regions according to the certainty 

of respective matches. A variety of methods developed in parallel in the literature, paying 

special attention to inverse consistency of the derived transformations (Christensen and 

Johnson, 2001; Avants et al., 2008), using different optimization criteria and constraints on 

topological properties of the derived deformation fields (Vercauteren et al., 2009; Joshi and 

Miller, 2000), and estimating optimal population-based templates (Joshi et al., 2004).

The past 5 years have seen a remarkable transformation of these single-template, 

deformation-based ROI labeling methods into ensemble-based labeling approaches, which 

have, quite dramatically, increased the accuracy and robustness of these methods (Wang et 
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al., 2013). Our group has participated in this effort, and has contributed MUSE (Doshi et al., 

2016), which achieved top performance in a recent MICCAI challenge (Asman, 2013). 

MUSE utilizes an ensemble of atlases warped to an individual MRI with multiple 

transformations, each emanating from a different algorithm/optimization criterion, and 

multiple parameters, which influence the amount of regularization and other properties of 

these transformations. An image-based template selection and weighting is then used to 

achieve consensus labeling of the individual MRI. We have found this method to be 

significantly more robust than single-template, single-warping methods, partially due to the 

noise reducing properties of ensemble-based methods, and in part due to the diversity of 

anatomical characteristics present in the ensemble that allow the algorithm to choose the 

right labels from the right brains and warps for a given location, based on the individual’s 

anatomical characteristics (Fig. 2).

3. Voxel-based morphometic analysis (VBMA)

Parallel to the development of deformable templates for anatomical parcellation have been 

methods that exploit the imaging data in their full resolution, instead of the resolution of 

predefined ROIs. These data-driven methods are primarily suited for knowledge discovery, 

i.e. when there is no strong a priori hypothesis for the anatomical regions of interest. These 

approaches leveraged the inverse transformation, i.e. the transformation that maps 

individuals’ imaging data, or derivative images extracted from them, to a stereotaxic 

coordinate system residing in an atlas space. Since this process alters the very data one 

wants to analyze, a variety of methods were developed aiming to retain as much information 

as possible from this transformation process. Accordingly, a series of such methods were 

pursued under the names of deformation-based morphometry (primarily looking at Jacobian 

determinants) (Chung et al., 2001), tensor-based morphometry (looking at primary 

directions of variation of the displacement fields around each voxel) (Thompson et al., 

2000), voxel-based morphometry (looking at residuals after low-dimensional registration) 

(Ashburner and Friston, 2000) and others. Our group developed a method termed Regional 

Analysis of Volumes Embedded in Normalized Space (RAVENS) (Davatzikos et al., 2001), 

which was designed to precisely preserve tissue volumes while mapping them to the atlas 

space, thereby generating RAVENS maps whose voxel-wise values reflect regional 

volumetrics of various tissues. Because of the tissue preserving properties, analysis of 

RAVENS maps on a voxel-by-voxel, or region-by-region, basis effectively pertains to 

respective regional tissue volumetrics.

One of the most persistent problems with VBMA has been the need to apply some spatial 

filter to the data, prior to statistical analyses (such as group comparisons via mass-univariate 

statistical tests). This spatial smoothing is necessary for many reasons: it leads to data that 

follow Gaussian distributions, thereby facilitating subsequent linear statistics; and it removes 

noise by examining larger regions, rather than individual voxels, thereby rendering it far 

easier to detect group effects. However this spatial smoothing has generally been performed 

in a very ad hoc, or empirical way, typically involving some Gaussian filter of 6, 8 or 10 

mm. One approach that formalized the concept of optimal smoothing was termed optimally 

discriminant voxel-based analysis (ODVBA) (Zhang and Davatzikos, 2011), and it leveraged 

the strengths of machine learning by applying large ensembles of regional discriminant 
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analysis, and subsequently integrating the results into a coherent voxel-based map that 

optimized our ability to detect group effects. In addition to formalizing the way in which 

imaging data needs to be filtered in VBMA, this approach was shown to remarkably increase 

our ability to detect, especially subtle, group differences.

4. From mass-univariate to multivariate pattern analysis (MVPA)

While VBMA has been a main-stream method in computational neuroanatomy for 2 

decades, it has been quite limited by virtue of applying a large number of independent tests, 

voxel-by-voxel, in an attempt to characterize group differences. The past decade experienced 

a mushrooming interest in MVPA methods using machine learning, mainly for two reasons: 

(1) MVPA methods examine associations among different brain regions, and hence build 

patterns that can be quite distinctive of various pathologies, even though their individual 

voxel-by-voxel constituents might not be when looked at in isolation; (2) these machine 

learning methods were repeatedly shown to produce highly specific and sensitive 

personalized indices, thereby enabling the clinical use of computational neuroanatomy: a 

neuroanatomical (or functional) signature of a disease has little clinical value if it cannot be 

detected on an individual-patient basis, even if it is robustly identified in group comparisons. 

Initial investigations using support vector machines (SVM) were followed by application of 

various other methods, such as random forests, and more recently, deep learning methods.

Even though MVPA methods offer a more comprehensive way of quantifying 

neuroanatomical patterns, compared to ROI or VBMA approaches, they are limited by the 

sheer size of medical images, especially when compared to the typically available sample 

sizes of one or a few hundred scans. Machine learning methods require extensive training 

databases, due to the complexity of the multivariate relationships they explore. Various 

schemes have therefore emerged, attempting to select an optimal set of features, thereby 

reducing the dimensionality of imaging signals down to a manageable level. Many of these 

approaches use different flavors of forward and backward sequential feature selection and 

integration. In our approach of Fan et al. (2007), named COMPARE, we used these 

techniques along with spatial clustering methods, to partition brain images into relatively 

homogeneous regional clusters of voxels, prior to providing these clusters to machine 

learning algorithms. In a somewhat more mathematically principled way, we developed the 

GRASP method (Honnorat et al., 2015) for resting state fMRI (rsfMRI) images, which 

utilized a novel graph-based parcellation method that relies on a discrete Markov Random 

Field framework. The spatial connectedness of the parcels was explicitly enforced by shape 

priors. The shape of the parcels was adapted to underlying data through the use of functional 

geodesic distances. The performance of GRASP was assessed using a large developmental 

cohort of more than 850 subjects. Fig. 3 shows an example of this partitioning approach on 

rsfMRI data of the cortical surface.

These approaches to feature selection, largely driven by spatial and signal criteria (nearby 

voxels of similar signals are grouped together), have been complemented by statistically-

derived feature extraction methods. The main premise of these approaches has been that 

statistically co-varying measurements (e.g. voxels or vertices) can be grouped together 

without significant loss of signal, and on the contrary, with potential significant gains, since 
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noise is averaged out. Our group, among others, has used non-negative matrix factorization 

(NNMF) as a way to achieve data-driven feature extraction and dimensionality reduction. 

NNMF has gained a great deal of attention in the computer vision field, where it has shown 

to effectively achieve parts-based decompositions of images into meaningful components, 

not otherwise obtained via commonly used PCA- and ICA-types of methods. Sotiras et al. 

(2015) applied this method to brain MRI images, and discovered structural brain networks 

that display coordinated change across individuals. Such components might reflect the 

influence of underlying neurodevelopmental and neurodegenerative biological processes that 

affect brain structure and function in coordinated ways that are manifested by statistical 

covariance. Fig. 4 shows an example of neuroanatomical components derived from a large 

study of brain aging, and which largely agree with known anatomical and functional brain 

units. Such data-driven, yet anatomically and functionally meaningful reductions of high-

dimensional imaging data can potentially create parsimonious, yet interpretable feature sets.

The most commonly used approach to feature selection and dimensionality reduction is to 

first calculate a number of features, either according to prior hypotheses, or by capturing 

broad aspects of shape, intensity, texture and other characteristics, and then select the ones 

that seem most relevant. However, more holistic approaches have been developed that 

combine the feature extraction and classification steps into a single framework. Such 

approaches are often generative-discriminative, in that they aim to capture variance of the 

imaging signal, while simultaneously paying attention to the task of classification achieved 

using these features. Our group has developed similar approaches for structural 

(Batmanghelich et al., 2012) and functional connectivity (Eavani et al., 2015) MRI, using 

sparse decomposition methods that aim to describe the data by a number of components that 

are discriminative for the task at hand (e.g. classification of patients and controls). 

Generative-discriminative methods also offer additional advantages when it comes to 

interpretation. In particular, commonly used feature selection schemes might find a set of 

features that achieve good classification, but these features may be hard to interpret. For 

example, one might be interested in a classifier of healthy control vs. AD patients, which can 

be achieved by measuring cortical thickness at a number of vertices throughout the cortex. 

Even if good classification can be achieved, these samples do not inform us about all cortical 

thickness changes occurring with AD, but rather just a small subset that is sufficient for 

diagnosis. Mechanistic interpretations of such classification models greatly benefit from 

generative-discriminative methods, which in contrast try to capture as much of the 

underlying neuroanatomy as possible, as long as classification accuracy is not compromised. 

Therefore they are likely to be discriminative, but also amenable to biological and clinical 

interpretation.

5. MVPA and machine learning models are “black boxes”. How can I find 

out which aspects of brain anatomy or function are important?

Machine learning tools have often been considered as black boxes, which may achieve good 

diagnostic or predictive performance, but are not informative in terms of understanding 

disease mechanisms and phenotypes. The main question that has been largely unanswered 

is: “Which of the aspects of the imaging signal and features are statistically significant, in 
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contributing to the classification?”. One approach to tackle this problem has been to perform 

random permutations, and measure the null distribution of each of the imaging features 

when a classifier tries to achieve optimal separation of randomly labeled images. Recent 

work has significantly expedited this otherwise very costly process, by developing analytical 

approximations to statistical significance maps, especially for support vector machine 

classifiers and in a high-dimensionality setting (Gaonkar and Davatzikos, 2013). These 

techniques allow us to not only report accuracy or the area under the curve (AUC) of an 

SVM classifier, but also to derive spatial maps of brain regions that are statistically 

significant in terms of achieving this diagnostic or predictive accuracy. These methods 

promise to render this process more interpretable and acceptable by the clinical world.

6. Current and future challenges and directions

As Niels Bohr said, “prediction is very difficult, especially about the future”, so 

extrapolation into the future is a dangerous undertaking. However, this section briefly 

reviews some current challenges that are likely to receive more attention in the near future.

6.1. Personalized indices

The vast majority of the work in computational neuroanatomy has focused on group 

comparisons, such as differences between patients and controls, progressors and non-

progressors, responders and non-responders, etc. Population-based results can inform us 

about disease mechanisms, but they are of little value in the clinic, unless they translate to 

individualized biomarkers. Achieving sufficient sensitivity and specificity on an individual 

patient basis has been, and will remain challenging. Alzheimer’s disease for sure causes 

atrophy in the hippocampus, however hippocampal volume has limited value on an 

individual patient basis, due to inter-individual variability. Prodromal stages of disease, or 

diseases with more subtle imaging manifestations, pose even higher challenges for 

personalized medicine. Finally, numerous other brain diseases also cause hippocampal loss, 

thereby rendering specificity of this measure quite challenging. To a large extent, the need 

for individualized biomarkers has largely driven the adoption and development of machine 

learning tools in this field, since it allows for weak individual imaging characteristics to be 

integrated into multivariate patterns that carry sufficient sensitivity and specificity on an 

individual person basis. This line of work is therefore likely to receive increasing attention in 

the upcoming decade. Some of the challenges that come with it will need to be addressed. In 

particular, individualized indices are likely to eventually include multi-modal imaging and 

non-imaging data, which need to be synergistically combined. Moreover, effectively 

learning high-dimensional and complex imaging patterns theoretically requires thousands of 

training samples. Prior work has focused on much lower scale studies, in part due to limited 

data availability, and in part due to computational demands of these methods, including 

cross-validation and permutation tests that establish generalization and statistical 

significance of the results. Large databases of neuroimaging data become increasingly 

available, with examples like ADNI, Philadelphia neurodevelopmental cohort, Human 

Connectome project, NDAR, 1000 Functional Connectomes project, and other initiatives. 

Still, to pull together perhaps 10,000 scans requires multi-site integration of datasets, which 
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raises challenges of data harmonization across studies, which is not a solved or trivial 

problem.

6.2. Heterogeneity

Regardless of whether ROIs, VBMA, or MVPA are used, respective methods have largely 

neglected heterogeneity of neuroimaging phenotypes. In particular, all these methods seek a 

single pattern of difference between two groups, such as patients and controls, progressors 

and non-progressors, decliners and non-decliners, etc., and analogously for regression-type 

analyses. However, heterogeneity poses significant challenges to this type of analytics. If 

certain imaging characteristics are seen in some, but not all individuals, they can be lost in 

these analyses that seek a strongest common denominator. Brain development, aging, and 

diseases are known to be highly heterogeneous. Therefore, detection, classification, 

prognosis, and stratification into treatments, are all likely to benefit tremendously from a 

more refined characterization of this heterogeneity. Some semi-supervised machine learning 

methods have been recently developed that do not simply ask “how does group A differ from 

group B?”, but rather ask “in what and how many ways/patterns do groups A and B differ?”. 

Our group has contributed two methods, termed Chimera (Dong et al., 2016) and Hydra 

(Varol et al., 2016) in this direction, and is likely to look at this problem in greater detail in 

the upcoming years, along with other groups.

6.3. Computational neuroanatomy using consensus approaches

Consensus based approaches have been a game changer in image segmentation in the past 5 

years or so, since they have been able to dramatically reduce labeling errors associated with 

the use of individual atlases, warping algorithms, and parameter sets, and have leveraged the 

power of combining multiple solutions. Several machine learning paradigms also leverage 

the power of integration of multiple “relatively weaker” classifiers. However, these methods 

still have not been formulated in the context of the various flavors of VBMA approaches. 

This is a direction that is likely to be fruitful, but it also poses mathematical and 

computational challenges. For example, if multiple atlases are used in a deformation-based 

morphometry framework, the multiple deformation field, each defined in a different brain’s 

domain, must be combined in a reasonable way. Simple approaches to this problem are 

certainly immediately obvious (e.g. Baloch and Davatzikos, 2009), however mathematically 

principled ways might be more challenging.
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Fig. 1. 
First attempts by D’Arcy Thompson in 1917 to measure shape via 2D transformations of a 

grid, which can be considered as the root of modern computational anatomy.
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Fig. 2. 
Example of an anatomical template (left), and its warped version that matches an 

individual’s MRI scan and transfers the labels to it. Reprinted from Lao et al. (2004).
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Fig. 3. 
Example of multi-scale extraction of rsfMRI features from the brain, by partitioning the 

cortical surface into regionally homogeneous sets of functionally-coherent points. Parameter 

K controls the scale of the partitioning. Figure reprinted from Honnorat et al. (2015).
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Fig. 4. 
Components of structural co-variance identified via non-negative matrix factorization of 

structural MRI images reflect that a small number of anatomical units might be able to 

summarize high-dimensional imaging data in effective and highly interpretable ways. Figure 

reprinted from Sotiras et al. (2015).
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